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Abstract

The calculation of the “transverse” dielectric susceptibility of Hub-
bard model including interaction with anharmonic vibrations (pseu-
dospins) is performed using the expressions for correlation functions
obtained in the generalized random phase approximation. The analysis
of possible ferroelectric type anomalies is performed and the temper-
atures of instabilities T are calculated. A phase diagram T* — n is
plotted. The possible interpretation of the onset of superconducting
phase in HTSC crystals is proposed.

1 Introduction

In last years in the theory of high-temperature superconducting crystals
considerable attention has been payed to the models taking into account,
on the one hand, the strong single-site electron correlation in the spirit of
Hubbard model and, on the other hand, the interaction with local anhar-
monic mode of lattice vibrations. Particularly, such properties are typical
for vibrations of the so-called apex oxygen ions of the layered compounds
of YBaCuO-type structure (see, ‘[1—3]). In the case of local double~well po-
tential, the vibrational degrees of freedom can be presented by pseudospin
variables. The Hamiltonian of the pseudospin—electron model derived in
this way (so-called Miiller model) has the following form [4]

H = ZHi—{-Z:ti]'a}Uaj,, (1.1)
1 ijo

where t;; being terms describing the electron transfer. The single—site part
H; includes the electron correlation (U/~term), interaction with anharmonic
mode (g-term), the energy of the tunneling splitting (Q—term) and energy
of the anharmonic potential asymmetry (h-term)

H; = Un”ni,l + Eg(nﬁ + nil) + g(n,jT + n,‘l)Sf - Q57 - th. (1.2)

Here, Ey gives the origin for energies of the electron states at lattice sites.
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T

Hamiltonian of (1.1)~type can be obtained considering excitonic mech-
anism of superconductivity [5]. It was proposed in [6] as a model for the
consideration of electron states and effective electron—electron interactions
by means of cluster calculations. The investigations of possible supercon-
ducting pair correlations were performed in the framework of model (1.1)
using numerical Monte—Carlo simulation [7].

In previous papers [8,9], we considered single—electron spectrum, elec-
tron-electron exchange interaction and static dielectric susceptibility of mo-
del (1.1). In particular, it was established using Hubbard-I approximation
that the interaction with local anharmonic vibrations (i.e. with pseudospin
subsystem) leads to the splittings in electron spectrum and gives rise to the
additional subbands. This influences the character of the electron states
occupation and the behaviour of the chemical potential. By calculation of
the occupation change under the influence of the transverse electric field
(perpendicular to the CuO-layers in YBaCuO-type structures) the possi-
bility of large values of static dielectric permeability for the case of partial
filling of electron subbands was established [9].

Detailed study of dielectric and dynamic properties of pseudospin—elec-
tron model is important in the problem of possible connection between
superconductivity and lattice instability of ferro- or antiferroelectric type
in HTSC compounds [10-13]. The purpose of this paper is to obtain the
expressions for Green functions and correlation functions determining the
dielectric susceptibility and giving information about the spectrum of low—
frequency vibrations and to evaluate, on this basis, so-called “transverse”
dielectric susceptibility for certain values of electron concentration n (0 <
n < 1), asymmetry parameter h and chemical potential u [14,15].

2 Hamiltonian and initial relations

We shall write the Hamiltonian and the operators corresponding to physical
quantities in the second quantized representation using the Hubbard oper-
ators X}7, acting in the space of eight states |R) = |n;1,n;;, 57) of the unit
cell

|1>: 0,07% )= U,O,——%
2)=11,1,3) 2)=]|1,1,-1
e e 1 (2.1)
I3>" 011)2 3 - Oalv 2
l4) = 11,0,3) [4)=1]1,0,-}).

In particular,

a1 = Xiu + X132 + Xz'ﬁ + X?Q’ ;) = Xi13 - X:n + Xgié - Xz;ia
mip = XP4XP L XE+XE, = XP 4 X+ XE 4+ XE

4
7 = % > (x - xF). (2.2)

r=1

Then

H; = i A X[ — i (X7 + x77), (2.3)

r=1 r=1

X L)
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where
\

h
/\2,§=2E0+U:l:g:|:§,

h
ALi= ¥3

are the energies of single-site states,
The aim of the paper is to calculate Green functions

Kim(r=7) = (TS{(nSu(r)),
Kin(r—1) = (T8} (r)inm(r")), (2.5)

Kr(r=1") = (Ta(7)am(r"))

constructed of the operators given in Heisenberg representation with imag-
inary time argument

1
A33=Ai=Fot §(g —h) (24)

A(r)=e™H e X, (2.6)
The dielectric susceptibility of the system is expressed in terms of the Fourier
transforms of functions (2.5) using expansion in even Matsubara’s frequen-
cies (see below). The perturbation theory and diagram technique for Hub-
bard operators will be used to calculate these functions. Here we shall
restrict ourselves to the case of absence of tunmeling splitting in anhar-
monic potential well (@ = 0). Accordingly, the initial Hamiltonian can be
rewritten as a sum

i
H=Ho+ Hine, Ho=)Y_ Y A\XI, (2.7)
1 r=1
Hie = Yt (X 4+ XP+XH+ XB) (XP+ X2+ x4+ X7 +
ijo
Sty (X7 - xP 4 xF - xP) (xP - x2+ XB-x).

ijo

We shall use the standard representation of the exp(—GH) operator in the

form

B
e PH — oPHo5(3) () = Texp{ - / Hu(r)drS. (28
J |

Then we obtain for the functions <TX',””(T)X33(T')>, in terms of which the
Green functions (2.5) are expressed, the following expressions

(TXPP(1) X)) = KP(7 - 7') = (29

1 . s
EEON (TXPP(1) X3 (r")a(8))g = (TXPP(r)X3T')o(8))g -
Here, the operators are given in the interaction representation

A(T) = e"Ho gg=THo, (2.10)

the averaging (.. .), is performed over the statistical distribution with Hamil-
tonian Ho, and symbol {...); denotes the separation of connected diagrams
(that is, the diagrams which do not split in the isolated parts without ex-
ternal vertices while cutting of interaction lines #;;).
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3 Perturbation theory for Green functions and
diagram technique

Expansion of the exponent in (2.8) in powers of Hy leads, after substitution
in eq. (2.9), to the expression that has the form of the sum of infinite series
with the terms presented by the averages of T-products ¢¥ Hubbard oper-
ators in interaction representation. The evaluation of such averages can be
performed using Wick’s theorem for Hubbard operators [14,15]. This theo-
rem gives the algorithm reducing the average of product of n X—-operators
to the sum of averages of products of n — 1 X-operators. Finally, this gives
the possibility to express result in terms of the products of nonperturbated
Green functions gff(r — ') = 6;;9P9(7 — '), where

iy _ ATXPUOXP(EN ) (e | ET£ (Apg) , T >
gpq(,r T,) = <[Xm,XqP]i)o 2 = el Poq {:l:ni ()\::) -1 ,7r<7 >
1
nt (M) = a7 A= A=A (3.1)

and averages of certain number of the diagonal X-operators (in expression
(3.1) “+” sign refers to the case when both X—operators are of Fermi type,
otherwise the “—” sign applies). The averages of the products of diagonal
operators are in turn expanded in semi-invariants

(X7")o = by, <Xf”’X;"’>O = bpabij + bpb, (32)
<X.-”PX}NX1">0 = bpgrdijbit + bpgbijbr + byrbitby + bor851bp + bpbybr,

etc., where

-1
b = (X), = P [ze-ma] ,

s

e} b = 0 b
(=BXp) ™ 7 8(=BAg) ™"
62
P o= (XPPXUXTT) = br.
Pe ( )0 8(—,@Ap)a(-ﬁ)\q)
Let us demonstrate the above described procedure for the case of eval-
uation of <TX' ,”(T)X},,I(T’)>, separating one of the terms which appear in

the second order of the perturbation theory

bpg = (XTXT)o. = 3 (3.3)

b

8 B
/ dry / dry 3 tistiysy (TXP(O)XRE) X () X ) X () X))
) 0 ifd1 51

(3.4)
The stepwise pairing of certain nondiagonal operator with the other ones
gives the possibility to reduce expression (3.4) to the sum of averages of the
smaller number of operators

(TXOX X)X M) XE ()X (7)), =
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(T XX XE ()X} ()X (m)XHi(m)) +

(7x0(r) XA XE (X)X ()X} () +

(Tt O RERR ) = (9
g (n = ) (TXEEO XX )X X)), +
g8 (r — ) (TXP (D) XA (X ) XE () X3 (m2)) | +

gm(Tl T3) <TX111(T)X11( ’)XM(Tl)X (TZ) (X;11+X?14)72>0'

We use the following priority rule for X-operators in the pairing proce-
dure: X4 > X3 > X3, X% > X% > X3 (see, [15]). The successive
applications of pairing procedure for (3.5) lead, finally, to

(3.4) = / dry / dry th 2t

t1.71
{98 (1 = T)gtt(r2 = TNgiA (T = T2)giy (! — 1) x (3.6a)
<T (‘XJ11 + X.;M) (X}11 + X_;l14) >0 + [(1”]’7-1) = (7'1’].177'2)] +
g4 (m ~ T)gtk (2 — 1) g (T = T gy (7' = T2) X (3.6b)

(T (X 4+ X34 (X34 X597, +16,d,m) = (i, )] +
()= (my) + [ G 7) = Cpanm) |+

g (1 = 7)gik(ra — m)gi (7 — 72) ¥

(TxiN) (X + x3)" (X11 + X1 T’>O + ~ (3.6¢)
[(4,3,71) = (i, 50, 72)) + [, 7) = (m,7)] +

[ (1(,1]’,7_7')1) = (z(17’7,‘317’_7-)2) ] +.!7,,1(T1 TZ)g-ilj(TZ -T7) X

(TXP X3 (X + x4 (X + x8)7) 1 (3.6d)

We introduce the diagrammatic notations

« ; 0D — free vertex; diagonal operator,
e - fln -,
Lot - gll(n—m) (X7 + X[,

1 ~irmnnan 1 - 117t

(3.7)
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The diagrams

correspond to the expression (3.6) (with additional diagrams obtained from
(3.8) by corresponding permutations)

The expansion of (3.6) in semi-invariants leads to the multiplication of
diagrams (semi-invariants are represented by ovals surrounding correspond-
ing vertices with diagonal operators). For example,

(3.92)

(3.9b)

(3.9¢)

(3.9d)
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The diagrams of the same form appear in the other contributions of
the second order in ¢;; entering average <TX M) X )> However, the
additional diagrams containing lines corresponding to Green functions con-

structed of spin flipping operators X34 or X3 (which are Bose-type opera-
tors) can appear (e.g., evaluating (Tx ' xJx x4 x21x12)). These diagrams
are important for evaluation of the magnetic susceptibility (see, [18]).

Let us proceed to the momentum—frequency representation in the expres-
sions for Green functions as well as in their diagrammatic representations.
The following notations are introduced

B
/ d(r—r")enr=) L 57 K (7)ol aReRe) = K7 (g, ). (3.10)
0 ' Im

The nonperturbative Green functions are expanded into series

1 ,
gi(T) = < D e Tgh (wn),
OB S
1 2n+1

— w
Wy — Apg " Jé,

for Fermi-type functions, and

1 .
g'rs(T) — E Z ezwn‘rg‘r.s (‘-Dn) ,

- 1 - 2n
9" (@n) = AW Wy, = 76-7!' (3.12)
n rs

T | (3.11)

g7 (wn) =

for Bose—type functions.

Integration over time variables (7y,...,7,) in the expressions corres-
ponding to diagrams leads to the conservation law type conditions for the
frequencies at each diagram vertex due to the relation

p .
/ef(ZWn)*dr = 36 (an) (3.13)

0

(after Fourier transformation, the same holds for the wave vectors).
For example, performing transformation (3.10) we obtain the following
expressions for some of diagrams (3.9)

1 1 _
(3.9a); : _E Z N Ztklgfé ("‘"m)g(‘%kl (On —wn,) X

" 1

2

lo+k, gala—kl (@n + wm)gﬁ (wn1)<Xu + X44>01 (3.142)
. 1 1 2 [ .41 11 44\ 12

(3.90)r : 3 ; N %:tkl [le (wny) <X +X >O] X

1

gfc} (wnl ) g?l{f-kl ((Dn + wnl) 3 (3.14b)
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- 1
(B9c)r : —6@.)Y N—Etfq gt (wn1)< XM 4 X44>0 o
ni k1

s (@n) Iah, (@) (X (X4 X%)) , (3.140)

1
n1 k,
<X11 (Xu 4 X44)>0c <X11 (X“ + X44)>0c' (3.14d)

pPq

Here, ty, g7 are Fourier transforms of transfer integral ¢;; and function gt

respectively (for nonperturbed function g’ = g77).

4 Diagrammatic series for Green function with
diagonal X—operators

The distinct feature of already presented diagrams and of the diagrams

corresponding to the other orders of perturbation theory is the presence of

chain fragments 1(i.e. ones where links are connected by wavy lines #;;). The
simplest series of chain diagrams

%"_@é}_+ (=

(=)
G5 + .. (4.1)
where o3

B0 = O+ -EO- + 5O+ O~
T = O+ BO-+ BO-+ ED ()

corresponds, as in the case of ordinary Hubbard model (see, [15]), to Hub-
bard-I approximation for single-electron Green functions. The expressions

1

£ (wn) = ———, 4.3
B <X11 +X44> <X22+X33>
9 (w‘n) - iwn - ’\41 + iwn - )‘23 +
<Xii +Xii> <X§§ +X§:§>
iwn - )\ai t 'iw.n - /\55 ’
B <X11 + X33> <X22 + X44>
91 (wn) = o= Tt (4.4)

i1 a3 22 4
(XTT+x%) (XP+x¥)

WUy — /\:}i Wy — Aﬁ
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correspond to the graphs (4.1), (4.2) in momentum—frequency represen-
tation. The poles of function Gf (w,) determine the spectrum of single—

electron excitations. This spectrum was investigated in detail in [7]. One of
its main features is the presence of additional subbands in comparison with
Hubbard model (in addition to subbands (41), (31), (23) and (24) there

appear (41), (31), (23) and (24) ones; the difference between the first group
and the second one is connected with different pseudospin orientation at
single—electron transition).

For the case, when the chain in diagram starts or terminates in the
external vertex, the corresponding nearest Green function is determined by
operator index of this vertex. The following notations are used for such
series

re (kywp) === P |c -

%

Ggq,”(k,wn) =

Pqg|Is {o

P9
+ +
PS> [a=5)

)
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pq,pq(k wn) —_—) P9 | Pq O

+
(4.7)
The corresponding analytic expressions read:
979 (wn)
g (K n 1 4. 7 N
T oon) = T
N XPP 4 X99)
4 = Pq rs ——-————-—< 4.
qu,rs (k’w‘n) g (w )tkg (w'n) — 1 g(wn) ( 8)
(XP? 4+ X99)

Pq Pq (k wn) = g¥ (wn) [1 + tkgpq (wn) — tig (wn)

Let us now return to the problem of diagram series for average K (”")( T—

) = <TX PP(r) X g8 ‘”(r’)> taking into account the above mentioned argu-
ments. It is convenient to write down this function in the form

K& (r =)y = P (r - ') + (XPP) (X2, (4.9)
with the use of semi—invariant
B (r — ) = (TXPP(r)R3(r)) . (4.10)

The diagram series, with the accepted priority rule, has the form
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Here, the summation of chain fragments is performed. This enables one to
pass to the propagator lines (4.5)~(4.7) 1.

Analysis of structure of the diagram series for function K?? can be per-
formed in the same way [18,19]. The consideration of diagrams of higher
order of perturbation theory leads to the conclusion that this function can
be presented in the form

KPi =

Fach quantity in (4.12) is a (8 x 8)-matrix in space of single-site states
(pg=1,...,4,1,...,4). Quantities

= N, = I, =
pe Pq rq
p@q r @'l p@q (4.13)

being sums of the diagrams in which one or both external vertices are free

(are not included in the semi-invariant averages); diagrams entering (4.13)

do not break into independent parts if any of the semi-invariants is cut.
The first term in (4.12) is the “full” semi-invariant of the second order

bpqy, which satisfies the Dyson-type equation

=10 O+
Pp q

<NZ
p q
Here = by is the second-order semi-invariant renormalized due

to the “single-tail” or “multi-tail” parts (one of the diagrams that give such
contribution is shown in (4.11): diagram No 2);

I, =

is the irreducible part (that can not be broken across @ ), both
vertices of this diagram are to be averaged in semi-invariantsTogether with
vertices from the other parts of diagrams.

Solution of the equation (4.14) can be written as a matrix

=
|

b= (1-bn)""d. (4.16)

!The diagrams like the last one in (4.11) containing bare Green functions, contribute
to renormalization of semi-invariants (see, [19]).



MODEL WITH LOCAL ANHARMONICITY ... 145

In the same way starting from (4.12), we can represent the correlator K79
in the form "

K =b+ 1"+ '1Ib + bII' + 'TI0IT". (4.17)

Hence, the problem of calculation of this correlator reduces to the calcula-
tion of the irreducible parts (4.13), (4.15) and semi-invariants in any ap-
proximation.

5 Generalized Random Phase Approximation

In the summation of diagrams entering functions (4.13), (4.15), we shall
restrict ourselves to the contributions from the so-called ladder diagrams
with antiparallel lines. This corresponds to the so-called generalized ran-
dom phase approximation (GRPA) (which was applied in 118,19] where the
magnetic susceptibility of the ordinary Hubbard model and ¢t —~J model was
considered). Diagram series for the functions (4.13), (4.15) appearing in
this case can be obtained starting from the equation

ST - L,

and then connecting the external lines on the left and right sides of the
diagrams to the free vertices or to the vertices to be included into semi-
invariants (in the last case this is performed with the help of additional
wavy line). Then

~GyC
| (5.2)

|
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For given p and ¢, the existence of nonzero contributions in (5.2) and their
signs are determined by selection rules following from the consideration of
elementary vertices of diagrams. For example,

-0

Q

o o (5.3)

|
+
=

(o] (o ]

Multiplication of diagrams (5.2) according to (5.1), leads to the appear-
ance of multi-loop diagrams. Neighbouring loops appearing in this case
contain Green function corresponding to the opposite spin directions. Spin
is conserved along separate chain in the loop. Pairings which can lead to

the spin flipping are accompanied by appearance of operators X34 (or X 3.

This, in turn, gives rise to boson functions g3, ¢g**. Such scattering pro-
cesses are neglected in approximation (5.1).

Multi-loop diagrams contain the zero order loops as elements in the right
hand parts of the relations (5.2). We introduce the shortened notations for
them

= M) = o =

Iy =
TS IS O e

and

‘HII

= = H’=@ n= 65

for renormalized loops, respectively.
The summation of the series appearing due to multiplication of diagrams
(5.2) leads to the set of equations for loops (5.5)

Cpp = <>+ > + <
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<y =<+t + L > (s
P> =<_D + DR + <>
> =L + > + L —<>

Elements of these graphs are matrices with respect to p, ¢ and spin indices.

Circles o correspond to the matrices 'yg;,’,' =6bpp18q,—or. Matrices (5.4) contain
factors é,,+. Equations of the set (5.6) are written in the explicit form as

4 . 4
Hll,aa _ Hll,a 6001 + Z HII,G‘ HI,—a‘a + z Hll,a HI,-—Ua' +

pp' T (0)pp (0)pp1™ P17’ y (0)ppr a9’
Pp1=1 Pr=1
4 1 4 ’
1o ,—oo o n—oco
Z H(O)PPIHPIP' + Z H(O)Pﬁxnﬁlp' » (8.7)
r1=1 1=l
! 4 ' 4 ]
hoo' _ yyho Z Lo l—oo : Lo ly—ao
prl = H(O)ppfﬁaa’ + H(O)pp1HPlP’ + _E H(O)Pﬁl Hﬁlp' +
r1=1 p1=1
4

(©)pp1 ™ pr1p! (0)pp1 510

4
e H’/:*‘UU, + E e H”y_UU’.
r1=1 p1=1

The other two equations are written in the similar way.
Overall contributions to the irreducible parts (5.2) are formed by sum-
med over spin indices solutions of above set of equations:

My, = M2 ete. (5.8)
a0t

6 Elementary loop diagrams (zero—order loops)
Our next aim is to obtain explicit expressions for polarization loops of the
zero—order approximation (5.4).

Matrix HZ'O)W. There are loops of two types among the diagrams
corresponding to matrix 2’0):

. EEN L, ~ETEN
" (mr) = “/ v (mr,np) = ~
Nl T~ (6.1)

where ((mr) # (np)). Analytical expressions for them can be obtained start-
ing from formulas (4.6)—-(4.8)

1 1
<I>"(m1') = ‘1_3- Z N kz ng'r,mr (kl » Wy ) Gﬁw,m'r (q + kl’ Wn + wnl) ’ (62)
n 1 .

1 1 L Ao -
‘D”(mr’ np) = E Z N Z Gmr,np (kl"-’-’m ) an,mr (q + ki, 0n + Wn, ) .
ni kl
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Functions G or G have poles coinciding with those of electron Green
functions G (w,) and defining single—electron spectrum ¢4(k) of the model.
Using decomposition in simple fractions

a A.gnrn k (4 Atrmr k
ngr,np (kl 9wn1) = g W:%I:%" Gmr,m’r (kl’wnl) = g T“,—,‘TL_;_G((]EXI_)_’ (63)
we obtain

W(mr) =+ T A (1) A @+ k)X (64)
k1 af
4 [€a (K1)] — 74 [€a (g + k1)]
1y, + Eq (kl) — Eq (q + kl)

and the similar expression for ¥”(mr, np). The following relation is used in
order to perform summation over frequency:

1 1 1Y ny ()= ny (M)
ﬂ %\: iwnl - Al iwnl + oy — /\2 - 10, + A1 — /\2 - (65)

This relation follows from the definition of Fourier transform of nonpertur-
bated Fermi-type Green function (see also, [15]).

Expressions of (6.4) type contain contributions both from intraband
(e = B) and interband (a # @) transitions. For T — 0 the first ones
arise from the partially filled subband (with chemical potential inside); in-
terband transitions take place between occupied and unoccupied states of
different subbands.

Substantial simplifications are achieved for the case of independent sub-
band approximation (corresponding to the situation when subbands widths
are small in comparison with the distance between them: t « U,t < g).
Then,

1

Grapg (kown) & Ty

(6.6)

X -~ thpq 1 - L
qu,” (k,wn) =~ €pg (K) — €rs (k) (iwn — Epq (k) Wy, — Erg (k))

and
ey~ L g P leme (K)] = 74 [eme (4 4 X))
#(mr) = N ; Wn + emr (k) — €me (@ + k) ’ (67)
" 1 By Bnptktk+q 1
U“(mr,np) = — . X
() = 2 0 — e () oy (kT @) — e (K F )

ny [emr (K)] — 24 [emr (k+ Q)] | 14 [enp (k)] — nq [Enp (k+ q)]
i@ + Emy (k) — €mr (k + q) i+ Enp (k) — €np(k+q) |’

respectively. Here we neglect the contributions corresponding to the inter-
band (mr) to (np) transitions. Here

Epg(k) = Apg + Bpqli; Bpy = (X7 + X99) (6.8)
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are the energies of separate noninteracting subbands.
Matrices Tl (g)pq, H(O)M. The diagrams for the matrices 'Tl(g)q, H{O)pq

have the form of loops
Jarf=
v = (T3
o] ap > (6.9)

where ((mr) # (np)), corresponding to the following contributions

1 1
,Q(mr) = E Z F Z GZw,mr (kl’wnl ) tq+k1 r:n.r (q + kl""—)’n + Wn, ) ’ (6‘10)
n k1

| S R )
"Il(m'r, np) = E Z N ZGmr,np (kl‘)wﬂl)tq+k1 I";‘n'r (q + kl’wﬂ + Wn,y ) .
n kl

Decomposition of the functions G° and I' in simple fractions and sub-
sequent evaluation of sum over frequency according to (6.5) leads to the
expressions like (6.4).

Using )
e R e a1
qu (k’w") iwn — €pq (k)’ (6 )
we find in the independent subband approximation
1 4 [emr (K)] = 74 [emr (q + k)]
'd(mr) = =9V ¢ + Fmr , 6.12
(mr) NXR:“*"‘l in + Emr (k) = €mr (q + k) (8.12)

1 Bmrtictitq gy [emr (k)] = n4 [Emr (K + q)]
N k Emr (k) —&np (k) Wy + Eppy (k) - Emr (k + CI) )

"U(mr,np) =

Here, in the same way as above we separate only the terms corresponding
to the intraband transitions. It is easy to verify that the expressions for
loops

®'(mr) =
(6.13)
entering matrix HZO)pq are connected with (6.12) by relations
' (mr)|,, = "®(mr)|_, ; ¥'(mr, np)l,, = "¥(mnr, np)|_g, - (6.14)
Matrix Il(g),,. Matrix II(g),, contains the loops
ol
Y(mr,np) = .‘~.
=g (6.15)

as its components. The corresponding expression is

1 1 X - _
Y(mr,np) = E Z N %:tkl lq+k, Io (k1ywn, ) r'n,p (q+ ki, 0n +wn, ).
1

n1

(6.16)
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In the approximation considered here:

1 Ny [Emr (K)] = ny [€0p (K + q)]
v = — E it . 6.17
(mr, ”lp) N ” klk+q ?,(Dn + Emr (k) — Enp (k + q) ( )
This function satisfies the condition
¥(mr,np)|, = ¥(np,mr)|_, - (6.18)

The contributions corresponding to loops (6.1) possess the similar symmetry
properties

@"(mr)]a)n = <I>"(mr)|_wn; v (mr, np)]on = ¥"(np, mr)l_wn . (6.19)

It should be mentioned that all elements of matrices {H(o)} (Hiio)’ (o),

II’(O), H(o)) are the even functions of wave-vector q (if the condition ) = t_y
is satisfied).

Now let us pass to the analysis of the structure of matrices {H(O)}

corresponding to zero—order loops. The selection rules defined by conditions
of (5.3) type can be applied in this case. One should also take into account
that with the adopted operator priority rules the pairing procedure leading
to closed loops of the Fermi~type g—functions adds extra (—1) factor. We
can see that, for example, the loop ®”(mr) contributes only to the elements
H{O)mm’ HZ’O)TT, H,(,O)'m.'r and H’(’())rm of matrix IIf;;,. The contribution to the
first two elements enters with minus sign and to the last ones with plus
sign. The similar analysis can be performed for all other types of loops.
The obtained results are in the table:

v [ T T
Vimran| | PP
o | 7T
"W(mr,np) n_z}-n 7'_p 77:‘6-]) r_n (6.20)
¥ime) | LT T
V(mr,np) | T PT T P
Y(mrynp) | "L PT T P

It should be mentioned, that the pairs of indices (mr) take values (41), (23),
(41), (23) for the spin direction ¢ =T and values (31), (24), (31), (24) for
o=|.

Then, we can construct matrices {II(O)}. The resulting form of matrices

H?é; and H;’S is given in Appendix A. One can learn from this example

how the expressions for other matrices can be constructed with the help of
(6.20).
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Let us now consider the case of the system where electron pair sub-
bands are well separated from the hole ones (U 3> ¢ > t). Below half filling
(when the electron concentration n < 1), when double occupied states are
absent and the chemical potential is within one of hole subbands, this gives
the possibility to consider only the boson correlators or Green functions
corresponding to the electron transitions within the set of hole subbands

(41),(41),(31),(31). Then the matrices {H(’O)} reduce to the (6 x 6) dimen-
sionality due to removing of [2) and |2) states. They have the following form

" i [

e = quly | @2l | . me. = L I; [ '],
0) — T ’ 0) — [}
(©) gl | g2l (0) ro1'ly | T2l

8111{, 612117

1 !

32110 32210

puls | prals
6.21
pals | paals (6.21)

where (3 x 3) blocks being their constituent parts. They are formed with
the help of matrices

© = i Mgy =

[ I =71
I = s =T =1
1 i —1 !
_ [=IT 1T . [T
I,= N In=-111
t = i |
B EIEE! . [=T7=1
IIT = H ’Il = 1 1 (6.22)
1 1
) T | _[I71
I = s I =[T]1
1 1

Here, the following notations are used

qu1 = 9"(41) ; g¢n = U'(41,41)
g2 = ®"(41) ; g2 = ¥'(41,40)
ri="®(41) ; g ="W(41,41)
rop ='®(41) ; rp = "W(41,41) (6.23)
si1 = 9'(41) ; sy = W(41,4])
832 = B'(41) ; s1p = ¥'(41,41)

pu = U(41,41) 5 py = ¥(41,4])

poz = U(4141) ; pip = V(41,41).

It should be mentioned that we consider nonmagnetic (paramagnetic) state
when electron spectrum and semi-invariant averages are degenerated with
respect to spin directions,

7 Renormalized polarization loop diagrams

Starting from the obtained expressions for matrices {H(o)} of the zero-
order approximation we can find solutions of the egs.(5.6), (5.7) for the total
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renormalized) polarization loops. The results obtained can be written in
] P
the following form

T T 7 T T 7
Hu,¢m=_( 31 32))([:,’ : Hr,aa:( 11 lz)xfclr

T T4z T21 22
moeoe _ T33 T34 ;oo oo _ [ T13 T14 7
i __(m z“)xla ;I ..(m $24)><I, (7.1)
mo—o _ _ [ Y31 Y32 i1 . oo = [ Y11 Yz i/
I - ( Ya1 Y2 ) Xlgo 5 M1 ( Y21 Y22 ) X Ig—o
tpo—o _ _ [ Y33 Y34 7 . o~0 __ [ W13 Y14 i
1 - ( Ya3 Y44 ) X'lomg 5 1 - ( Y23 Y24 ) X Lo,ay
where
. -1 1 . 171
Ir=11 11 ; I} =
i1 1l =T
. -1 1 . 171
I, =-1 1 : If =
I T —TTT
X -1 -1 ) —17-1
’I“ = 1 1 y ’IH = (7.2)
1 1
. 1 1 R 171
[lT =11 1 ) I“ =
' T[T

Quantities z;, y;x are components of matrices X,Y satisfying the set of
equations

X+MY=-M; VY+MX=0 (7.3)

Matrix M is formed by the components (6.23) corresponding to the zero-
order loops
S11 S12 P P2
o 821 822 P21 P22
M = 11 12 Tin Tz |} (7.4)
gn G2 T2 T22

Formally, the solutions of the set of equations (7.3) are the following

k=2(0+9); v=5(0-7), (7.5)
where ) )
U=-(+m)" 0, V=-(i-m) M. (7.6)

The full irreducible parts (5.8) summed up over the spin variables are
determined with the help of (7.1) and are represented by block matrices

. [ETT= ) Ui | —Uik | —Uik
M === ; S =ik | Tik | Yik
41 1 =42 —Uik | Yik | Tik
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, =T . Zuik | —wip [ —uig
I ==Het2 5 Ei=[ ik [~z [~y
=21 1 =22 Uik | —Yik | —Zik
, "Ea | Saa , 20k | wik | Uik
II = == 3 Bk =ik | —Tik | —Yik (7.7)
=43 1 =44 —Uik | —Yir | —Tik
PRI 2Uik | Uik | Uik
I= Tos [ Sos | 0 ik =| ik [Tk [Yik |

Uik | Yik | Tik

8 Pseudospin, electron, and mixed correlators

Formulae obtained in the previous paragraph complete the evaluation pro-
cedure for correlators KP?. Expressions for them are determined by the rela-
tions (4.17) with matrices (7.7). Here, the total semi-invariants by, (sums of
chains with loop-like insertions IT) are determined by formula (4.16) where

the matrix of second-order semi-invariants by, for the considered case of
U > g > t has the form

b1y [ 013 | D13 [ b7 1045 [ 043
213 233 234 2q1’ a3 Zai

5: 13 34 | V33 3i 34 33 i 8.1
bii [ ba7 [ ba; | b5 | B33 [ bi3 (8.1)
b1 | B33 [ b3 | b5 [ a5 [ baz
bis [ bag [Baz [ B33 [ 35 [ b3

Here, we take into account (see, (3.3)) that b,y = b,,. Invariance with
respect to electron spin reverse is taken into account too. In zero—order

approximation
bpg = bpépg — bpby, J (8:2)
as it follows from the definition (3.3).

Starting from formulae (7.7) and (8.1) we can rewrite components of

correlator K#¥ in the explicit form using relation (4.17). It must be taken
into account that passing to the momentum—frequency representation we

have . -
bppl = 36 (Qn) bpp’- (83)

The same applies to the components of matrix Z,,,,. (this matrix, as well as

bppt, is symmetric with respect to the indices pp'). '
Hence, it follows from (4.16) and (4.17) that

K’ (Wnyq) = p {EPP'(Q) + [IH(O’ q)?}(q)] + [Z(q)II'(O,q)]pp, +

rp’

[T, M@0, @) ,}6@0) + Wy (@), (89)

= ar -1 -~
bov(a) = [ (1 - Aim0,0)) 8] (8.5)
rp’
Structure of this expression shows the existence of contributions from either
localized or collectivized states. The first ones are proportional to 86 (@, ) (of
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the Curie type) and have static nature. The second one exists at W, # 0 as
well, Such feature of the correlators for the system described by the ordinary
Hubbard model was pointed out in [18] in connection with calculation of
the magnetic susceptibility.
The contribution into the dynamic susceptibility comes only from the
last term in (8.4) corresponding to the full polarization loops .
i

Let us consider now the expressions for correlators K55, K5, K
which can be evaluated starting from the relation (8.4) using formulas (2.5)
and (2.2). After corresponding summations, we obtain

30 Y B = 2 (B + oa) + 4 (B + Bag) +2 (B + B33)
14

pl
SO, =3 S O, = 2(by; - biy),
) I P v
Z (5) Z (S)pr/ = Z]] + 43]3 + 2333 + 2334) (86)
p 2
3 (n) > (")HZP, = 2 (u31 + uzz2 + uar + Uag), (8.7)

P

P
S OT I, =20 O, =30 5O, <o,
P P P ' P v
3 (n) ) (n) (/Hz) =
4

op'
'
—2 (u33 + u43) (21:113 + 21:)13 + bz + bas + 335 + 33,1) -
2 (uga + waa) (2Bag + 2b33 + bz + by + bz + bs3) »
z () Z (%) ('Hz) o= —2(ua3 + 143) (311 + 3313 + 333 + ?)34) -
- - PP
2 (u3a + u4a) (311 + 2331 + 315 + 335 + 773;1) , (8.8)

LOT (1), - LT (1), =0

P 4
(n) ONU =
Z Z (bH )pp’
P P
-2 (un <+ um) (2313 + 2315 + 333 + 334 + 33 + 3;) -
2 (’LL21 + u22) (2?)31 + 2?)15 + ?155 + zéi + 773:3 + 231) , (8.9)

il
1]

g (5) g(") (ZII’)W = =2 (u1 + u12) (zn + 3by3 + baz + 334) -

2 (a1 + ua2) (Zﬁ + 2ba; + byz + bz + bsi) )

Zp: ™) %: ) (E]‘[’) pp’ - ; @ ; ® (znl) pp' =0
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Y30 (')

p o pp’

2 (u33 + wa3) (w11 + u13) (212)11 + 4bya + bas + 7134) +

2 [(uas + u4a) (ua1 + u22) + (usa + uaq) (w11 + u12)] ¥

(2845 + 2bg; + 2By + bz + Byg) +

2 (U34 + U44) (U21 + U22) (QZﬁ + 4Zi§ + 355 + Zé';) , (8.10)

[E (%) 3 () 4 z (n) 3 (%) 4 Z(S) Z(S)} (’HZH') .= 0
P p! P p’ P p! P

Here, we introduce the notation
1 (A i
Z(s)=§ DIED N FEED LT S (8.11)
P P=1  p=i p p=3,4,3,4
Besides, the property

ZEW = ZZPP, =0. (8.12)

which follows from the condition 2op X PP = 1 and the definition of semi-
invariant averages is also taken into account.

In th It
n e resu )AA' Z (A) Z (A’).K pP (8.13)

where A, A’ = S or n. In particular,
K55 (@y,q) = B (b + 4bug + 2bss + 2bs4) 6 (@), (8.14)
K5 (&,,q) = [2 ((:)13 + baa + bas + 7713 + 335 + 333) -
2 (un1 + w1z) (Bus + 3b1a + b + Baa) —
2 (ug1 + uz) (Zﬂ + 2by5 + by5 + byz + 333)] § (@),  (8.15)
K™ (0, q) = B2 (Bas + bag + bsg + Byg + 265 + 2bs;) ~
2 (u11 + w12 + u33 + Ua3) (2313 + 2315 + 7733 + 334 + 333 + 7; )
2 (uzn + wrz + uaa + use) (2B + 2bgg + by + by + bz + by ) +
2 (us3 + ua3) (w1 + u12) (2311 +4bi3 + baa + 334) +
2[(u3s + uaz) (w21 + uag) + (uss + ua4) (ugy + ug2)] x
(231i + 2ba5 + 2by5 + bys + Zsa)
2 (uas + ta) (wr + uaa) (2B55 + 4bgs + bgg + b33) | 6 (@) +
2 (uz1 + u3z + va + ua2), (8.16)
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K™ (@n,q) = K5 (@n,q) - (8.17)

Evidently, the correlators containing pseudospin variable §* differ from
zero only in the static limit (@, = 0). This is due to the fact that the
operator 57 commutes with the Hamiltonian being the integral of motion

in the case of absence of tunneling splitting (2 = 0). The corresponding
two—time temperature Green functions ({$?]5%)),, (($%|n)), and ((r]5%)),
are equal to zero in this case. We have only

K™ (0n, q)lg, 20 = 2 (ua1 + 3z + ta1 + va2) (8.18)

for non—zero frequencies.

It is known that the correlation functions K44’ (@r, q) characterize the
response of the system to external fields and define its susceptibility. Static
and dynamic dielectric susceptibilities are expressed in terms of correlators
K55 K™, K5* and K™5. The first one describes the pseudospin (ion)
contribution to the so-called transverse susceptibility at 4 = const regime;
the second one describes the pure electron contribution (’;ee Appendix B).
Pseudospin component of the susceptibility in the case of fixed electron
concentration (regime n = const) has the form

B KSn .K"S
%55 = K55 - —Je (8.19)

the other components are equal zero.
Applying (8.14)-(8.17), we can rewrite formula (8.19) in more explicit
form. We introduce notations

v=1+u1 + w12 = 1 + uaz + uys,
w =14 ug + uz2 = 1 + uzq + ug4 (8.20) -

(the latter reﬁec:ts the symmetry of loops at @, = 0);
Y11 = 2byy + 4bya + bas + bas
Py = 21=)ﬁ + 47)15 + 333 + 35;1
Y12 = 2byg+ 2bys + 2bag + baz + byg
¢1 = bu+3bhat bsz + b4
2 = —big —3by — bz — by / (8.21)

&n = bn (7)33 + b34) —~ 2by3
b = by )
&2 = b

Then |
K™ = 28 [v2¢11 + wihy + 21’“”/)12] §(@n) + K3

K5 = K™ = —28[ver + wea) 6 (@)
K58 X(5y 6 (@n) (8.22)
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and
2,2 2
ss_ 200 bt W Zowkis] + X G oy (8.23)
20 [v311 + wihay + 20wz + K(d)
Here :
Ky = 2(us1 + u32 + ua1 + ug2) (8.24)
is the dynamic part of the susceptibility;
X(y =8 (Zu + 4by3 + 2bgs + 27’34) (8.25)

is the static pseudospin susceptibility for 4 = const.

9 Matrices of the total pair semi—-invariants

Formulae obtained in the previous paragraph give general expressions for
correlators K AA" It remains only to consider the matrix of total pair semi-

invariants b,,q Forma]ly it is settled by formula (4.16) which follows from
the Dyson equation (4.14)

b= b+ bIIb, or b= b+ bIIb. (9.1)
Let us write the matrix equation (9.1) for the Fourier components in the

explicit form ) _
bppr = by + 8 Z bpr(11b)p- (9:2)

On the basis of (7.7), (8.1) we have

m B+C B¢ 2 ptv p+v
n g B z 4 v
_1 n v u
plib = 2 G+ g+ 2r b+k S+ |° (9.3)
'*é I v T F K
1/) v ﬁ, T K 6

where

N = Btu13 (b1 + b13) + 14 (b7 + by3)]
B=p (#1313 + €13b33 + Y13baa + u14big + T14b35 + y14bgg]
¥ = Blura (byg + bag) + u14 (byg + b13)]

p = B [u13by5 + ©13baz + y13byg + ur4dbiz + T14bsz + v14dsg], (9.4)

(=Bz—yy—z) ; v=p(z—>yy—z)

¥ =1 (u1s — U3, ure = uzq) ; T = P (U3 — ugz, Uy — Ugg)
B o= B(u13 — ug3, u1g — Uzg) ; 8= pt(U13 — U2z, Urg — Ugg)
U= ((u13 = ug3, U4 = Ugq) ; K = v (U3 — Uz, Urg — Ug).
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Components (9.4) have the following properties

n+B+(+v+p+v=0, P+a+i+r+84+5=0. (9.5)

The solutions of the set of equations (9.2) can be presented as (p =
1,...,4)

byt = by + Dety 11+ Det, 2]
b1 = by + g W+ o (2 (9.6)
B+ Byt = by + byt + g;f 1+ ’I‘):tf 2]
bys+byi = bys + b5+ l;):t: [1]+ f):tf (2]
1 1

el
g
&
|
ol
<
'y
Il

Do Bl b= b= 4,

with
[1] = (2bp1 + bys + bya) (1= 27 = 6 = &) + (2b,5+ b5 + b,5) (2 + & + D)
[2] = (26,7 + b5+ b,3) (1= 20— B = ) + (261 + bys + bpa) (29 + 1 + 1)
(3] = (bys = bpa) (1= 6+ 8) + (b,5 = by3) (3 = )

[4] = (b5 = byz) (1= B+ ) + (bya = bpa) (1 = v) (9.7)
and also

Dety = (1-29-8-Q(-2r—6-k)=(20+p+v)2¢0+ia+5)
Det. = (1-F+)(1-6+K)—(p-v)(a-7). (9.8)

Substitution of the relation (9.6) into (8.14) — (8.17) leads to the final
expressions for correlators K 44",

10 Static correlation functions

The calculation of the polarization loops and corresponding correlators K77
and K44’ will be performed for three cases which correspond to the different
values of asymmetry parameter of local anharmonic well . As one can see
from fig. 1 the band picture which is determined by the poles of single~
electron Green functions suffers principle changes at h = 0 and h = g.
When the tunnelling splitting is absent (Q = 0), the chemical potential is
within the lower subband (41) at A < 0, in the upper subband (41)ath > g
and for values 0 < h < g it is located between subbands and is fixed on the
line A; — Ay at @ — 0 (see [9]). The average number of electrons per site n
being in the range [0,1] in this case.

In this section we shall consider only the static limit @,, — 0 determining
the contributions to the correlation functions.
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1. h > g. For the considered case we have

ny [ezi(k)] =1 nylen(k)] = { (1): Z:EB ;Z (10.1)

at T = 0. It follows from (6.7), (6.12) and (6.17) that at sufficiently low
temperatures we can put

g2 =0; 72=0; 7121 =0; pa2a=0; 832=0; 82=0 (10.2)
In the limit &,, — 0 we have

811 =Ty 821 = T2 P12 = Pat- (10.3)

Besides, we can take into account that the quantities g;3 = g1 contain the

ratio 12/ (Ay1 — Az5)® =~ W?/g? as a factor (W is the width of the initial

electron band) for which the relation W?/g? <« 1 is satisfied in the case

when the considered subbands can be treated as independent ones. This

gives the possibility to put ¢12 = g21 = 0 when we neglect the contributions

g g})le corresponding small order of magnitude solving the set of equations
Finally, for the matrix M we obtain

d 0 ¢ o
y_| f 0% 0
M= 0" il (10.4)
000 0
where _
a=q; d=rn; f=r2 e=pn; ¥ =pn. (10.5)

Substituting (10.4) into (7.3), we obtain after the corresponding transfor-
mations

U U
= = g 109

uf = ~d(ltd)tpa ; uf=-p
up = —f(ltd)tye ; uf=-p(1d)+ fo
uf=-a ; uh=-dltd)tea (10.7)
wfy=—yp(1xd)tof ; uli=-F1+d)+ypa
up, = £2fPp(1+d) - p*a - Pp ; uf =uf =0,

where

dety = (1% d)? - pa. (10.8)

Using the obtained expressions and formula (9.6) we can calculate com-

binations of components b, entering (8.21) and (8.25). Let us take into
account that B

| by = (X"} =0

/

(10.9)
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Figure 1: The single-electron bands = Figure 2: The semi-invariants b,
and chemical potential u as the as the functions of the dimension-
functions of the dimensionless cou- less coupling strength h/g (U — oo,
pling strength h/g (U — 00, 2=0, Q = 0, T/g = 0.03, W/g = 0.2,
" T/g=0.03, W/g =0.2,n =0.9). n = 0.9).

in the considered case (see fig. 2). Expressions for the quantities (9.4) are
simplified if we use the functions of zero approximation for b,,. Allowing
for (8.2) and (3.3) we get

n = B [u13 (b11 + b13) + v14dy3),
B+ ¢ = B[u13 (2b13 + baz + bays) + u14(bg5 + by3)],
ﬂz + Vv = ﬂ [’U,13 (2b1§ + b3§ + b4§) + U4 (béé + bé«i)] ) (1010)

¥ =1(w3 — U3, v14 = ugq) ; B+ 7= (B+¢) (u13 — uz3, ure — uzq)
Yv=m=0 ; §+kK=(p+v)(u3 — uzs, 14 — Uzq).

. After the corresponding transformations, this gives the possibility to
obtain

Pety =1-p6(1—n) [%uw + (Buyz + ugq — 4u14)b§] + (10.11)

2,5 (2’".14 — U113 — ’U.24) b3b5 — ﬂ2(1 - n) (uh - U13UQ4) b3b§,

= = = nT 1
bll + 4b13 + 2b33 + 2b34 = —’E [2(1 - n)bg + 4b3b§ - 2(1 - n)u13ﬁb3b§] .

(10.12)
Using (8.21) and (8.25), we have
KSS (@, q) = Diw [2(1 ~ )b + 4bsb; — 2(1 — n)uzsBbabs] 6 (Gn)
(10.13)

respectively. The correlators K™, 5™ and K™ can be expressed in the
same way with the help of formula (9.6) and (9.4).
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2. h < 0. The chemical potential is in the lower subband for T = 0

nelen®] =0 nefe)={ ¢ FIRISE (0.1

In this case we can assume
m=0 r1=0; r2=0; pu=0; s11=0; s =0 (10.15)
and ¢i12 = ¢21 2 0. Besides,
822 =T22; S12=T21; P12 = Par (10.16)
for &, — 0.

Matrix M now takes the form

~

M = , (10.17)

SCOO O
SO .
“wo'eo
A= NI S

where
b=go3; F=ra; f=rn; @=pa; ¥ =pp. (10.18)
Solving the set of equations (7.3) with the use of (10.17), we obtain

+ -
o Uy L T
Uig = dot T (10.19)
up = —g(1Eg) @b ; ujy=-¢
uh=—f125) b ; ul=-P(1+g)+fp
uh=-b ; uif=-g(1+7)+@b (10.20)
uh = ~Pp(1£§) £ @f ; uh=-f(1tg)+¢b
ufy = £2fP(11§) - ¢% - f2p ; uf =uf=0.

Here

det!, = (14 g)* - @b. (10.21)

For h < 0 and T — 0 we have b3 = by = (X‘”) = (X‘“). We shall

write the expressions for quantities (9.4) taking into account this fact and
evaluating semi-invariants b, in zeroth approximation in the same way as

in paragraph 10.1
1 = B [usbur + w14 (by5 + by3)],

¥ = B lu1abig + w14 (b35 + b53)],
B+ v = B[2u13b,5 + u14 (2bg5 + bsz + bs5)], (10.22)

P =1 (u3 > U2z, Uig — Uza) ; T =P (Ur3 — uga, Uy — Ugg)
B+{=fG+7=0 ; §+K=(p+v)(u1z — 23,14 = Uugq).
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In particular after substitution of (10.22) into (9.6)—(9.8) we obtain

1—-n
2

20 (214 — w13 — uz4e) bib; — Fn ("%4 - u13u24) b1bs,

Dety =1-fn [ Uzq + 2 (’M13 - u14) bl] + (10.23)

= = = = = 1 n
bll + 4b13 + 2b33 + 2b34 = bll = D [nbl + blbi - 5U24ﬂb1bi] . (1024)

et+
This gives the possibility to write
-SS (- B n _
K (wn, q) = nb1 + b]bi — ""U,g4ﬁb1bi ) (wn) . (10.25)
Det+ 2

The expressions for other correlators K AA" are obtained in the same way.
3. 0 < h < g. In this case the chemical potential is located between

subbands (41) and (41). For 7' — oo we have
nylea (] = 0y [egi(R)] = 1 (10.26)

for all values of k.
If we restrict ourselves to the contributions up to the first order in powers

of W/g we can keep in matrix M only components pyz = pa

0 0 0 ¥
=979 ’16' 0. (10.27)
00 0 O
where ¥’ = py3. Among the quantities ufk, only
ups = uiy = ¢ (10.28)

are different from zero, as it follows from (7.3). This leads to the simpler
expressions for quantities (9.4).
Starting from formulas (9.6)(9.8), we can obtain

Dety = 1 4 duyyf (by + b3) (b + b3) — u?,B%b1bg (b3 + 2b;),  (10.29)

Expression (10.29) is written in the linear approximation with respect to
the averages b, bs, for which the relations b; € 1, b3 < 1 are satisfied if

the values of parameter h are in the interval [0, g].

11 Static susceptibilities ¥*%, ¥ and x"°

The expressions obtained in the previous section become more simple when
we use the results of evaluation of quantities (10.7), (10.20) and (10.28)

which are the combinations of the matrix elements M. The calculation
procedure is described in the Appendix C. This gives the possibility to
write in the explicit form the pseudospin, electron and mixed components



MODEL WITH LOCAL ANHARMONICITY ... 163

of the static susceptibility which for the u = const regime are determined
by the corresponding correlators

XSS = I\"SS, X'n.'n = I(n'n.’ XnS = XSn = I{ns (11.1)
db
e ss 5§ _ KS" K™ o
=k om0 X =XT=0 (11.2)

for the regime n = const.
The “transverse” dielectric susceptibility (corresponding to the compo-

nents €,, in the normal direction to the layers of YBaCuO structures) is
given by the formula

X1 = XPP — d2XSS + d2xnn + 2 dSXSn (113)

whic[h]follows from the definition of the dipole momentum operator of the
cell [9

P; =dgS? + den;. (11.4)

In the same way as above, let us consider separately the cases h > g,

h<0and0<h<g
1. h>g. It follows from eqs. (10.7) and (C.6), that

u w W w2
Y _ta P I P 22_12_2, (11.5)
U313 U13 g u11 g u13 g

The main contribution into total semi-invariants 13,,,, (eq. (10.12)) and cor-
relators (8.22) at W/g < 1 is connected with the quantities u13 and u41. So
we can put

B N = furs (b1 + b13),
B+ ¢ = Puiz(2b13 + baz + b34),

p+ v = Pz (25 + by5 4 by3) (11.6)
Pp=p+v=6+k=0; Yp=r=0,
v=14wu; w=1L (117)

This results in

Dety =1 — u3f [(l—n)( + 3bs ) , (11.8)

¢“_Det [(l—n)( +3b> ,
P2 = E:T; [(1 —n)b; —vo + Euleﬁvo(l - n)_ ;

12 = G (=20 = b + (11.9)

v = 2(1 - ’n)bs -t ; 2= —%n
1
i = Det, v(n—1) ; Ep=~E2=0.
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Here vg = —2b3bz and it is taken into consideration that b; > 0 in the region
h>0.
The pseudospin component of susceptibility in this case is equal to
X = X(s)ﬁ( n) = [2(1 — n)b- — 21]0 + ulaﬁ’l)o(l had n)] 6(&),-,,)
(11.10)
for p = const,
5 = uag{awu+uufmu-nn

K3 [2(1 = n)bz — 2vo + ug3fuo(1 - n)]} X (11.11)
{ﬂ2u13'v0(1 -n)+p [n(l —n) + 4uy (1 - n) (g + bg)] +
B (20} - Kfurs) [(1 —n)g +3(1 = n)bs - vo] N I(?J;}-—l

for n = const. Correspondingly, we obtain for electron and mixed compo-
nents

nn »
K = (d) + [(1 n)é- (1 + 'U,11)2 - 'Uo'u%l"l'
1
(1 - n)b~ (2“11 + 37-1«%1) + '2",511131)0(1 - n)] 6(L2?n) ,
K5% = K" Det (1~ n)bs (2u1; — 1) + (11.12)

1
U11% + —2—u13ﬂv0(1 — n)] é (‘Dn) .

2. h < 0. In this case the following relations take place

Uiq U3 - W UuU12 ~ W. U3 ~ VV2 .
— = o — (11.13)
U4 U4 9 U22 g U24 g

If we limit ourselves to the zero—order terms in W/g we find
T = Puga (byg + biz), ¥ = Buza(byg+by3),
6 + & = Pugq (213 + b3z + b3z) , (11.14)

n=B+{=p=v=y=a+p=0,
v=1; w=1+4 us.

Using these expressions, let us write in the explicit form the formulae (9.6)-
(9.8) and (9.4). Then

Det+ =1- u24ﬂ [(l - n)g + 2b1bi] y
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2 n
Y = Dety [bl (n+b7) - u24ﬁ5515i] )

P22 = 1 [(1 - n)g + 25151] '

Det+
1
Sl o ly
<P1—211, <P2—212
1 n
fu=62=0 ; £y = mblbif

(b3 = by 2 0 for h < 0).
On the basis of (8.21) and (8.23) we find for the pseudospin component
of susceptibility

58 = X(y 6 (@) =

B n .
Det+ [bl (n + bi) bt U24ﬂ§b1bi] 8 (wn) (11.16)
for u = const;

n

55 = {2031 4wt 2
BK [bx (n+b5) - u24ﬂgblbi]} X (11.17)
{Qﬂ [(1 + uga)? 3(1 — 1) + 2udybybs — Qugybyn — u24ﬂnb1bi] _
Buz [3(1 _n)+ 2b1bi] .y K(';,’j}—l §(@n)

for n = const. Then the electron and mixed components have the following
form

243 n
e (1= )2 (14 ) + 20ty -

2u29byn — ’U24ﬂnb1bi] ) (LTJn) s (11.18)

K™ = K&’;-{—

K5 = gnS = —Dle‘;t.*_ [bln(l - Ugz) — 2u33b1 b5 — uuﬂnblbi]ﬁ(a‘)ﬂ) .

12 Numerical calculations and discussion of the
results

Starting from the obtained above formulae for susceptibility, we can investi-
gate its behaviour with the change of the thermodynamic parameters (e.g.,
temperature, electron concentration) and constants of Hamiltonian (h, Qor
gﬁ The corresponding calculations are performed numerically. We shall use
the following dimensionless quantities
ha Wokr_1 (12.1)
9 9 9 g PBg
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<S*'S*> <PP>
103 60 1
3 ——— i = const ]/ n = const |
3 —— n = const ]—-—— 4 = const |
8 Iy
3 - W_ .
] 1 !
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Figure 3: The pseudospin suscepti-
bility (5.5} as a function of the di-
mensionless coupling strength h/g
(=0,T/g =0.03, Wig = 0.2,

Figure 4: The total susceptibility
(PP) as afunction of the dimension-
less coupling strength h/g (U — oo,
Q =0, T/g = 003, W/g = 0.2,
n =109, dg/d. = 0.6).

n = 0.9).

where W is the half-width of the initial electron band (at the absence of
the correlation and interactions), and

21-1
(S5)=K55g; (PP)= KPPI. y = \FF [-di] : (12.2)

de 'ch

We shall start, predominantly in choosing the possible numerical values
of parameters, from the data presented in [6,7,20], where the values g =
10+-20,2=0+5W=0+2[6],g=1+10,Q=1=+10, W =1 [7] and
g =03+05, Q=01 W =1 [20] were used. This gives Q/g = 0 + 10,
W/g = 0+ 1. We shall limit ourselves to the case W/g <« 1 in accordance
with the independent subband approximation used in this work. We also
put = 0. The values of the asymmetry parameter k and temperature kT
will be changed in the wide range (-1 < h/g < 3; 0 < kT/g < 1). Also,
'Ehe differerst possible values of electron concentration n will be considered

0<n<l).

The results of the numerical calculations are based on the formulae ob-
tained in the previous sections and are shown in fig. 3-8,

We shall start the analysis from the consideration of the dependencies
of the susceptibility vs symmetry of the anharmonic potential (fig. 3 and
4). One can see, that the characteristic feature of the function (SS), (at
n = const) is the existence of two sharp maxima localized near values h = 0
and h = g. The width of these peaks increases with the increase of T (on the
other hand, they tend to é—function form with decrease of temperature and

W — 0). The similar two peak structure of the function (), was revealed

in [9] for the Q # 0 case where for the determination of susceptibility the

relations
ACH Hni
2[os (550) e (382), ] onmcome
"

L (12.3)
wds ( PEL )n

XL =
, = const
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. . . pp . A
were used, and the evaluation of derivatives %%L_l was performed in Hub-

bard-I approximation (the broadening of the peak exists in this case even at
T = 0 and is caused by the tunnelling). The presence of two sharp maxima
of function s,S'S)n in the regions b ~ 0 and h =~ g testifies the “softening”
of the initial crystal structure with respect to the anharmonic degrees of
freedom. One can verify that this effect is caused by the cancellation of
the fields acting on the pseudospins: the asymmetry field (~ h) and the
field from the electron subsystem which is determined by the occupation of
electron states (~ n,g; n, =0 or 1 for U — 00). If one varies the electron
concentration in the range [0,1], then the heights of the peaks redistribute
(see fig. 3) and at n — 1 there remains only one peak at h = g while at
n — 0 only the second one is present. It should be mentioned that at finite
value of correlation energy U and 1 < n < 2 there appears also the peak at
h = 2g with the corresponding value n, = 2.

The behaviour of the susceptibility (55), (at 4 = const) vs h is some-

what different in comparison with the (SS), one. Function (85), achieves

a constant value in the region hetween maxima (0 < h < g) and increases
with the decrease of temperature (tending to infinity at T — 0). Out of
this interval (§5), coinsides in general with ($5), .

<PP> The dependencies of total suscep-
60 1 tibility (PP) vs h in the regimes n =
]—/—— n = const const and 4 = const are presented
7~ # = const in fig. 4. The significant increase of
the function (PP), at values h =~ (

40 ] TN and h ~ g is caused by entering of

] t | chemical potential into allowed en-
) | ergy bands and, as the result, by
! the appearance of the electron com-
] , ponent of the susceptibility which is
20 4 much greater than the pseudospin

] .7 one (such effect was marked in 59])1.
- In our calculations, the chemical po-
] - tential was supposed to be given but
1= | the appropriate value was chosen to
obtain the certain value of electron
concentration.

M

Figure 5: Dependence of total sus-
ceptibility (PP) on electron concen-
tration n (U — o, h/g = 1.05,
Q =0, Wjg =02 T/g = 0.03,
ds/de = 0.6).

The behaviour of total susceptibi-
lity (P P) with the change of electron
concentration is shown in fig. 5. The
case, when A is in the region of right
maximum of the function (55), , was

considered. Here, (PP) /(PP), >

1 due to the electron component of susceptibility. This ratio achieves its
maximum at n =~ 0.85 and rapidly decreases with the decrease of n.

The dependencies of pseudospin and total susceptibilities vs temperature
are shown in fig. 6a,b. The difference between the behaviour of function
(58) in the regimes n = const and y = const is not considerable. For h > g
(as well as for h < 0) the curve ($.5) (T) has a maximum rapidly decreasing
to zero when T — 0 and smoothly decreasing (like Cuerie-Weiss law) at

"For YBaCuO-type structures dg = Z(04)8, where § =~ 0.13 A is the characteristic
size of the anharmonic well (the distance between minima); d, ~ eD, D is the distance
between the CuO plain and the plain of Cu-O chains; ds < d..
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Figure 6: The temperature dependence of ($5) (a) and (PP) (b) (U - oo,
hfg=1.05,9Q=0,W/g=02n=07,ds/d, = 06). .

high temperatures. The total susceptibility (PP) , achieves much greater
values with strong increase at T — 0,

The peculiarities of the temperature dependencies of functions (55),
and (55), (fig. 7) (appearing in the certain range of parameter values) are
the essential feature of the model. These peculiarities have the character
of divergencies. At T < T™ (where T* is the temperature at which the
peculiarity takes place) susceptibility (5S) is negative in the certain tem-
perature range. The existence of such peculiarities can be treated as the
manifestation of the dielectric type instabilities appearing in the pseudospin
subsystem (i.e. anharmonic oscillators) under the influence of the effective
interactions. The denominator in the expression for susceptibility 55 (eq.
(8.5)) becomes zero at temperature T*. This denominator is connected with

say—1
the factor (1 - bII) , which appears as the result of the summation of po-

larization loop series. The total loop () describes the effective interaction
between the states |r) and |s) of the cells i and j via conducting electrons.

The dependence of the instability temperature 7* on the electron con-
centration is shown in fig. 8 for two different values of the electron transfer
integral (i.e. initial width of the electron band W). The case h > g is
taken. It is clear that the effect is caused by the band motion of electrons;
T decreases with the decrease of W. The graphs presented in fig. 8 can be
treated as the phase diagrams with the curves separating regions where the
initial state of the system is stable. The problem which state takes place at
T < T* and is there the possibility for the phase transition (e.g. of ferro-
or antiferroelectric type) needs additional investigations.

It should be mentioned, that the obtained considerable increase (for the
certain region of values of temperature and parameters) of the contributions
into transverse dielectric susceptibility from pseudospin and subsystem of
electron can be relevant in the problem of interpretation of the onset of su-
perconducting state.! As far as the effective interelectron coupling constant
A is proportional to the contribution of the correspondent lattice mode into

dielectric susceptibility (A ~ N(0)(V?) x5(0)), the increase of x5(0) and

"It was shown in Refs.

[12,13] that high values of dielectric susceptibility occur in
YBaCuO compounds.
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a<S.S.> T '/g
] 1
| ~--- g = const
‘| —— n = const ]
: 0.02 4
6 ‘\ 1
: ! ] — W=0.2
\ : =0,
3 \ =o.15
. ‘ ]
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0 vl 000 KE—————
0.01 01 T/g 0.0 0.5

Figure 7: The temperature depen-  Figure 8: Dependence of the tem-
dence of (55), and (§5), (U — o0, perature of dielectric instability T*
h/g = 1.05, = 0, W/g = 0.2, on electron concentration n (U —
n = 0.95). 00, 2 =0, h/g = 1.05).

especially the anomalies of this function can initiate the transition to su-
perconducting phase. The analogy (may be formal) between the right part
of diagram T™*(n) (fig. 8) and characteristic dependency of temperature 7,
vs electron concentration in high-temperature superconductors can lead to
this conclusion.
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A Matrices H’('(g and H'('(;%

no /I,O'
T T
ne = ( A ) (A.1)
Toa  Tob

where

~®"(41)  ¥(41,23) -¥”(41,23)  &"(41)
mp U"(23,41)  -9"(23) $7(23) ~ —0”(23,41)
Taa = | _wf(23,41)  $"(23) -97(23)  ©"(23,41) |°
\  0"(41) = -w”(41,23) ¥"(41,23) —&"(41) )
[ —U"(41,41)  ©"(41,23) —w"(41,23) @"(41,4])
o v"(23,41) -9"(23,23) w"(23,23) -U"(23,41)
@ | -vf(23,41) ©7(23,23) -9"(23,33) ©”(23,4) |°
w(41,41) -w/(41,38) ©7(41,23) -U"(41,41) /
( —8"(31)  ¥"(31,24) 2"(31)  —¥"(31,24)
mi U7(24,31)  -@"(24) —U"(24,31)  9"(24)
Taa = ®"(31) " -¥"(31,24) —&"(31) ©"(31,24) |°
\ —¥¥(24,31)  @"(24) r(24,31) -9"(24)
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-0”(31,31) ©"(31,24) 9”(31,31) -v"(31,24)
U(24,31) —0"(24,24) —0"(24,31) W"(24,24)

my 1 <4 oL 28

Tab = | v(31,31) -v”(31,24) -¥”(31,31) ©"(31,%4) |°
-U"(24,31) ¥7(24,34) ©"(24,31) —v"(24,24)

m = (1,234 = (1,3,3,9)], (A.2)

LIV i [(1,2,3,4) = (1,5,3,3)] .

B Dynamic dielectric susceptibility at u = const
and n = const

Let us consider the response of the system to the external electric field. The
interaction with the field is taken into account adding term

H'=-E, Y P (B.1)

to the Hamiltonian, where
P; = dgSF + den; (B.2)

is the variable part of the dipole momentum of the primitive cell consisting
of ion and electron components. Formula (B.2) for the P; vector corresponds
to the consideration of the so-called transverse component of polarization.
When the model is applied to the description of HTSC with layered structure
of YBaCuO-type, this component is connected with the oxygen motions in
the double-well potential along the direction normal to the Cu-O layer
and with electron charge redistribution between layers and other structure
elements [9]. '
Statistical operator of the system for the case of grand canonical ensem-

ble p = e=PM is written as
ﬁ:exp{—ﬁ [H—E(d35f+den4)El—uZn,-]}.‘ (B.3)

In the interaction representation
B
p=ePHTexpd Y / dr [P(T)EL + pni(7)] (B.4)
‘o

we can generalize this expression introducing fictitious fields h;(7), pi(7)

8
p=ePAT exp Z/d‘r [Pi(T)hi(T) + ni(T)pi(7)] (B.5)
o ;

(at the end we shall put hi(r) — Ey; pi(7) — p). Obviously,

VA §Z
whiir) = 2B ey = Z{min), (B.6)
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where Z = Spe~#™ is the partition function.
We pass on to the momentum-frequency representation

fi(t) = \/_iﬁ ; ;fq (Qn)eiwnfeiqR.' (B.7)

(where f; = P;, h; etc.). Then

p=ePAT éXP {ﬁz [P-q (=@n) hq (@) + n_q(—@n) fq (@n))] } (B.8)

nq
with
Py (&n) = dsSq (@n) + deng (@n) . (B.9)
The relations (B.6) take the form
67 WA
——— = BZ(P_q(~@.)); ——— =7 (n_q{(-@,)). (B.10
6hq(wn) /B < Q( )> 6/Lq (wn) ,B ( CI( )> ( )
Functional derivative
6 (Fi(r)) _ : ) _ PP
T = TROP). =X (= m) (B.11)

determines the reaction of the system to the field h;(). After the transfor-
mation (B.7) formula (B.11) takes the form

8 (P_q (=&n))

Shglon) - P (TP-q (=) P-qr (=0w)), =

8(q+ q)6 (@n + @) XF§ (~@n),  (B.12)

where function xF¥ is the dynamic dielectric susceptibility of the system.
Here we use the notation

o
XA8 (@n) = / d(r — 7)Y e URR ) o=Bn (=) (T A,(1) Bi(r)), =
0

i=j
/6 <TA—(1 (_‘I’n) Bq (‘I’N))c (B-13)
for the Fourier-transform of the semi-invariant average of T-product of A;

and B;.

The derivative with respect to field h;(ry) in (B.11) is the partial one;
fields y;(7) are supposed to be independent of variables A;(ry). Hence,
susceptibility xgp (wr) describes dielectric response in regime u = const.

Another situation takes place when the external field is applied to the
system with constant number of particles. In this case, to ensure n = const
regime the chemical potential value u should be changed with the change
of field h;(7). This means that we have to consider the derivative

8 (P_q(=@n)) _ 6(P_q(=@n)) + 3 8(P_q(=@n)) bpq, (¥n,)
6hqt((.:)nl) (5hql (@nr) Qi J/J,q] ((.';._),-L1 ) 6hql(c7.)nl)
(B.14)

n=const
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and determine du/6n from the conservation condition (n;) = n:
§ (nq (@n)) §(q)8 (&n) = 0, (B:15)

that is from the equation

6(ng (@) | -~ &(nq (@) Shgn @n)] 5rovsio
6hq’(®"1) +(hn1 6!“"11(“—"711) 6h(l’(‘:)n') J(q)6( n) 0. (B‘lﬁ)

Since,
§ Pn ) )
6(’?3((;,))) B(Tnq (@n) P-q (=w)),
6(ng (@n)) _ ) )
6,‘(;(“—)71,') - ﬂ (an (wn) n_q' (—-wn,))c (B.17)

then, as it follows from (B.16),

Spq (©n) IR S
6:;(G)n/) = —6(q)5(q )5 (wn)ﬁ(wn’){xq (wn)} XqP (wn)- (B.IS)

We shall present derivative (B.14) in the same manner as (B.12)

8§ (P_q (=@n))

Shg (@) = ~8(a+q')8 (@n + &) %G (-@n)  (B.19)

n=const

introducing susceptibility, which corresponds to the regime n = const. Sub-
stituting (B.18) into (B.14) with

g <P— (—"‘_’n» . - _
_E,I:,(@—n,)“ = B(TP_q(~Gn)n_q (~&w)), (B.20)
we find
KEP (@n) = XEP (@) = —xE™ (@) {X&" (@0)} " X3F (@0) 6(2)6 (@)
(B.21)

This relation provides the connection between dielectric susceptibilities cor-
responding to the regimes g = const and n = const. We can separate
ion, electron and mixed components in the total susceptibility using the ex-
pression (B.2) for the dipole momentum F; in terms of pseudospin 57 and
particle number n; operators

xFF = dix%5 4+ dx™ + dsd, (XS"’ + an) . (B.22)

It is clear that

~PP 2 =SS 2 [ss  x5x™8
Xo' (0) = dsXo~(0) = d§ (X T v )
0,0

BhO)=0;  %™(0) = ¥55(0) = 0. (B.23)
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C Contributions from elementary loop diagrams
at w, - 0,q—0

The analytical expressions corresponding to the elementary loop diagrams
(zero—approximation loops) are given by the formulae (6.7), (6.12) and

(6.17). In the w, — 0, ¢ — 0 limit (at 7 = 0) we have

1WWn + Emr (k) — €mr (k+ q)
ey [Emr (K)] — 0y [emr (K + q)] -
B (tk - tk+q)

1 1
N anﬁ- ()‘mr + ertk) = —YV_ 26()‘11" + ertk - l") = (Cl)
k k

{ —pmr(@t) ,if chemical potential is located

_1_ Z ny [Emr (k)] —-ny [Emr (k + Q)]
N
k

1 .
N 2 im

in the (m7) subband
0 , otherwise

(511"(“) is the density of states of the (mr) subband at Fermi level, n/,(A) =
i+ (AN);

i ny [5mr (k)] — N4 [Em‘r (k + q)]
N Zk:tk Wy, + Emyr (k) —~ Emr (k + q)

: :
k
{ —g—pmr(p) . ,if chemical potential is located

in the (mr) subband ;
0 , otherwise

1 4 [emr (K)] — 0y [€mr (k + q))]
N % it :‘Dﬂ + Emr (k) j“':WH' (k+4q) -

1
k

2
- (E%) pmr(t) ,if chemical potential is located

in the (mr) subband i
0 ,otherwise

1 1y [emr (k)] = 14 [enp (k + q)]
N zk: tktk"'q ;-(Dn + emr (k) :-Enpp(k + q) -

1 21— ny(enp(k)) ~
N Z1(:tlc“3rrtr (k) — Enp (k + q) ~ (C4)

3
TR S vy W s 3 4 Ll V-

np
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(here (mr) # (np); subband (mr) is completely filled, chemical potential is

in the (np) subband)
We use the rectangular density of states

y—WBp, <t < WBy,

— | 3wB, .
Prp(t) { 0 ,t<-WBy,; t>WB,, ’ (C.5)

where 2W is the width of the initial (uncorrelated) electron band; the origin
of energy is at the band center.
Accordingly to (C.1)-(C.4), we have the following expressions for the

components of the matrix M:
1)h>g.

| p g \?
a=—pup) d= —E;P:u(#); p= (3—41) pa1(p),

f = ( ; )2
- (K ; C.6
f o= oo \Bn par(p) (C.6)

__ " (Y
¢m6(1\41—'\&i [1 (B41W)]'

Chemical potential is located within the subband (41); subband (41) is
completely filled (A3 — Az; = g > 0).
2) h<O0.

b=—psi(n); g= "B pii(n); @ = ( ) Pii(K),

= = - 41 ( ?ﬁ) Pii(K); (C.7)

- w?
v= 6 (A1 _’\41) [1+ BZiW> ] ’

chemical potential is within the subband (41); subband (41) is empty.
HN0<h<yg.
W2

W = Tev (C.8)

subband (41) is completely filled and subband (41) is empty; chemical po-
tential is located between them.
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