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A description of Lagrangian and Hamiltonian formalisms strictly
obtained from the invariance structure of given monlinear dynamical
systems on the infinite-dimensional functional manifold is presented.
The basic ideas used, in order to formulate the canonical symplectic
structure, are borrowed from the Cartan’s theory of differential sys-
tems on associated jet-manifolds. The symmetry structure reduced on
the invariant submanifolds of critical points of some nonlocal Euler—
Lagrange functional is described thoronghly for both differential and
dif%erential discrete dynamical systems.

1. Introduction

A fundamental problem in modern theory of infinite-dimensional dynamical
systems is that of an invariant reduction them upon some invariant subman-
ifolds with enough rich mathematical structures to treat their properties
analytically. The first approaches to these problems were suggested still
at the late times of the preceding century, in the classical papers by S.Lie,
J.Liouville, J.Lagrange, V.R.Hamilton, J.Poisson and E.Cartan. They in-
troduced for the first time the important concepts of symmetry, conservation
law, symplectic, Poisson and Hamiltonian structures as well as invariant re-
duction procedure, which appeared to be extremely useful for proceedin

studies. These notions were widely generalized further by Souriau [21ﬁ
Marsden and Weinstein [34,20] , Lax (3], Bogoyavlensky and Novikov [7],
and by a lot of other researchers [8,10-13]. It seems worthwhile to mention
here also the rather recent studies in [22-29], where the special reduction
methods were built for the integrable nonlinear dynamical systems on both
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functional and operational manifolds. In the present paper we describe in
detail the reduction procedure for infinite dimensional dynamical systems
upon the invariant set of critical points of some global invariant functional.
The method uses the Cartan’s differential-geometric treating of differential
ideas in Grassmann algebra over the associated jet-manifold. As one of
main results, we show also that both the reduced dynamical systems and
their symmetries, generate the Hamiltonian flows on the invariant critical
submanifolds of local and nonlocal functionals with respect to the canoni-
cal symplectic structure upon it. These results are generalized for the case
of differential-difference dynamical systems being given on discrete infinite-
dimensional manifolds. The direct procedure to construct the invariant
Lagrangian functionals for a given apriori Lax-type integrable dynamical
system is presented for both the differential and the differential-difference
cases of the manifold M. Some remarks on the Lagrangian and Hamiltonian
formalisms concerning infinite-dimensional dynamical systems with symme-
tries are given.

2. General setting

We are interested in treating a given nonlinear dynamical system

du/dt = Klu], (2.1)
with respect to an evolution parameter ¢ € R on the infinite-dimensional
functional manifold M C C()(R;R™), possessing two additional ingredi-
ents: a homogenous conservation law £ € D(M) and a number of homoge-
nous symmetries du/dt; = K;[u], j = 1,k, with evolution parameters
t; € R. The dynamical system (2.1) is notsupposed to be Hamiltonian,

all the maps K,K; : M — T(M), j = 1,k being considered smooth and
well-defined on M.

To pose the problem to be discussed further more definitely, let us involve
the jet-manifold J(=)(R;R™) that is locally isomorphic to the functional
manifold M mentioned above. This means the following: the vector field
(2.1) on M is completely equivalent to that on the jet-manifold J*)(R;R™)
via the representation {1,2]

(M 3 u— K[u]) £ (K(u,u®,..., w0 — (2.2)

— (il?, u, u(l), ceey ’U,(Oo)) (= J(oo)(R’Rm)),
where n € Z, — fixed, z € R - the function parameter of the jet-bundle.

J®)(R;R™) — R, 7 - the projection on the base R. Let us allow
also that the smooth functional £ € D(M) is a conservation law of the
dynamical system (2.1), that is dL/dt = 0 along orbits of (2.1) for all t € R.
Due to the jet-representation (2.2) we can write the density of the functional
L € D(M) in the following form:

c:AMQ% (2.3)

(R 3 Llu]) <5 (C(w,v®, ..., uM*D) € R),

where the number N € Z, is fixed. Besides, we are going to assume
the functional (2.3) as non-degenerated in the sense that Hessian of C :

L , 2 ciuuV) . y(NHD
JN+D(R; R™)— R has nonvanishing determinant: det|| &58a ot )| £
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3. Lagrangian reduction
Consider now the set of critical points M,, C M of the functional £ € D(M):
My ={u€ M : grad L[u] = 0} (3.1)

where, due to (2.2), grad L[u] := 6L(u,...,u¥+1)/éu - the Euler varia-
tional derivative. As proved by Lax [3], the mamfold My C M is smoothly
imbedded well-defined one due to the condition HessL # 0. Besides, the
manifold My is invariant in relation to the initial dynamical system (2 1).
This means in particular that Lie-derivative of any field X : M — T(M),
tangent to the manifold My, with respect to the vector field (2 1) is agam
tangent to My, that is, from

X[u] € Tu(My) = [K, X)[u] € T(M) (32)

for all w € My . Here we are at the point to begin with a study the intrinsic
structure of the manifold My C M within the geometric Cartan’s theory de-

veloped on the jet-manifold J(°)(R;R™) [2-5]. Let us define an ideal I(£) C
A(J()), generated by the vector one-forms £/ = dul) — ulU+dz, j € Z,,
which are canceled the vector field d/dz on the jet-manifold J(<)(R;R™) :

igl =0, jELy, (3.3)
where z belongs to the jet-bundle base R, ia the intrinsic derivative,

d 0 . 0
—_— i 2, (G+1)
dr or + Z <u ’ (')u(j)> ’

JEL+

where (.,.) - the standard scalar product in R™. The vector field (2.1) on
the jet-manifold J(®)(R;R) has the analogous representation:

d s 0
=5t 'Z <¢ ’au(f>>’ (3.4)
J€ly

where, by definition, KV) := %I\",j € Z,. The problem arises: how to
build the intrinsic variables on the manifold My C M from the jet-manifold
coordinates on J(®)R;R™))? To proceed to the solution of the problem
above, let us study the 1-form dL € A'(J(*)(R;R)) as that defined on the
submanifold My C M. We have the following chain of identities in the
Grassmann subalgebra A(JCN+2(R;R™)) :

; N
AL = d(igLdz)= di%<£dw+2(pj,fj)> (3.5)
i=0
: N .
= (dig +igd)- (E(LH-Z p;, &) ) —ig (de+2(pj,£’)),
j=0 j=0

where p; : JON+tO(R;R™) — R™,j = 0, N,—some still undefined vector-
functions. Requiring now that 2-form d(Ldz + Zj-vz(,(pj,fj)) not to de-
pend differentials du’),j = 1, N + I, with respect to the modulus I(£) C
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A(J=)(R;R™)) :

ia (dE/\dz-{—z (dpe A EF)) € 1(€), (3.6)

k=0

we can determine the vector-functions p; € R™, j = 0, N. As a result we
obtain the following recurrent relations;

dp; _ oL )
o TPi-1 = 355 (3.7)
for j = 1, N + 1, setting p_; = 0 = py, by definition. The unique solution
to (3.7) is made by the following expressions, j = 0, N :

N p:
d’“ ()E
k .

k=0

Thereby we have got, owing (3.5) and (3.6), the final representation for the
differential d.:

L = (—f-[c Ep uwItN]dz) = (3.9)

= di(z <p]», du(j)>]> + (grad L[u], du),

where - = di & T 1 r d — the Lie-derivative along the vector field d ,

Llu] := 5£/6u as 1t was mentloned above in the chapter 2. Below we intend
to treat the representation (3.9) on the question of a symplectic structure
arisen from the above analysis on the invariant submanifold My C M.

-

4. Symplectic analysis and Hamiltonian settings

Let us put into the expression (3.9) the condition grad L[u] = 0 for all
u'€ Mpy. Then the following equality is satisfied:

N
dl = %a(l) ol = Z(pj,du(j)), (4.1)
i=0

since the function h®) = TN ( ],d‘c‘,:)) — L(u,y...,uV*+D) satisfies the

condition dh/dz = 0 for all z € R, owing to the relations (3.7). Taking now
the external derivative of (4.1), we obtain that

d .
%Q@) =0, Q®=daV, (4.2)
where we used the well known identity d - = = £ .4d. From (4.2) we

can conclude that vector field d/dz on the submanifold My C M is a
Hamiltonian one in the respect of the canonical symplectic structure Q(2) =
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SN o{dp; A dul). Tt is a very simple exercise to state that the function
h®) . JEN+2(R;R™) — R defined above is playing a role as corresponding
Hamiltonian one for the vector field d/dz on My, i.e. the equation

dh® = —i L Q@) (4.3)

is true on My. Therefore, we have got the following theorem to be true.

Theorem 1 The critical submanifold My C M defined by (3.1) for a
given nondegenerate smooth functional £ € D(M) C D(JW+)(R;R™)),
being imbedded in the jet-manifold J(®)(R;R™), carries the canonical sym-
plectic structure, with reference to which the induced vector field d/dz on
My is the Hamiltonian one.

The theorem analogous to the above was stated before via different
manners by many authors [8,9]. Our different derivation presented here
is both much simpler and more constructive, giving rise to all ingredients
of symplectic theory, being stemmed from the imbedding of the invariant
submanifold My into the jet-manifold.

Now we are going to proceed further to studying the vector field (2.1)
on the manifold My C M endowed with the symplectic structure Q) ¢

A2(JIVFD(R;R™)), the latter being built via the formula (4.2).
We have the following implicating identities:

dc ) dh(®
il 0 = (gradLu],K[u])=— o
dl du dht®)

0 = (g'radﬁ[u],zl;):— (4.4)

dz dz ’

where functions hA(Y) and h{®) serve as corresponding Hamiltonian ones for
the vector fields d/dt and d/dz. This means that the following equations

are true: . )
dh® = —i QB dh® = —, QP (4.5)
qr a1

To prove the above statement (4.5), we shall build the following quantities
(for the vector field d/dz at first):

d-ig(grad £lu], du) = —dd (dht®)) (4.6)

dz
- from (4.4), and

_ d /. .
ig - d(grad L[u],du) = - — (i40®) (4.7)

- from (3.9), where the identity [i%, %] = 0 is preliminary used. Adding

x

now the expression (4.6) and (4.7) entails the following one:

d d "
il du) = ——(dh®) 1 (2)
o (grad L[u], du) = dz(dh +i g Q) (4.8)
forall z € R and uw € M. Since grad L[u] = 0 for all w € My, we obtain
from (4.8) that the first equality in (4.5) is valid in the case of the vector
field d/dz reduced on My. The analogous procedure fits also for the vector
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field d/dt reduced on the manifold My C M. The even difference of the
procedure above stems from the condition on vector fields d/dt and d/dz
to be commutative, [d/dt,d/dz] = 0 what engenders the needed identity
[im_, ddx] = z[n‘ag; = 0 as a simple consequence of the considerable ahove.
There upon we have stated the validity of equations (4.5) completely.
Theorem 2.Dynamical systems d/dt and d/dz reduced on the invariant
submanifold My C M (3.1) are Hamiltonian ones with the corresponding
Hamiltonian functions built from the equations (4.4) in the unique way.
By the way we have stated also that the Hamiltonian functions A(®)
and A" on the submanifold My C M are commuting with each other,
that is {A(), h(=)} = 0. This indeed follows from the equalities (4.4), since

{h) A=)} = '”‘m = —ﬂd(} = 0 upon the manifold My C M.

5. Symmetry invariance

Let us consider now any vector field K; : M — T(M), j € 1,k being a
symmetry field for the given vector field (2.1), i.e. [K,K;] =0, je 1,k.
As the conservation law £ € D(M) for the vector field (2.1) should not be

relevant for the vector field K;, j € 1, k, the manifold My C M should not
be invariant also with respect to that vector field. Therefore, 1f a vector field

X € T(My), the vector field [K;, X] ¢ T(My) in general, if 24 dt , j €Lk,
is chosen as symmetry of (2. 1) Let us consider the followmg identity for
some there existing functlon h D JONED(R;R™) — R, j € 1,k, originated
by the condition [4, -2 r 241=0, je€lk.on M:

_dhy[u]

o (5.1)

d .
Jpiak (grad L[u], du) =

Lemma 1.The function h;[u], j € 1.k, reduced on the invariant sub-
manifold My C M turns into constant This constant can be chosen obvi-
ously as a zero one.

Proof. We have: [%,iﬁ_] =0. j €1k, there upon

dh;
ia (i%d + dz‘;T) {grad L[u], du) = ——=

=>4 (if_'d(grad[.[u], du) + di s (grad L[u], dd))

d . d d dh;
o= _., == (+)y - 2% . ; (2) My = 29
dQ Z;i‘d(dh )= id(ladTQ +dh'") = T

i
x dx ¥ z

d d
G

= —1

whence we gain that upon whole jet-manifold M C J*(R;R™) the following
identity holds:

ig (dh'*) 400 Q®)) = by : modR. (5.2)

Since on the submanifold My C M iﬁ_ﬂm = —dh, we find that ﬁj =
0, 7€ 1,k, that proves the lemma.
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Note 1.The result above could be stated also using the standard opera-
torial-functional calculus of [8]. Indeed,

aia%(grad Llu], du) ' | (5.3)

%(gmd Llu], K;[u])
(-;—tgrad Clu, K,[u]) + {grad £[u], %Ag[@)

(=K" - grad L[u], K;[u]) + (grad L[u], K} - K[u])
= —(K" - grad L[u], K;[u]) + (grad L[u), K’ - K;[u])

T d - _ dﬁ,[u]
= —E'Hj(grad Llu], K;[u]) = -

There the bilinear form H;(-.-), j € 1,k, is found via the usnal defini-
tion of the adjoined operator I\"]’-* for a given operator K} : L, — L, with
respect to the natural scalar bracket (-, ) -

(K{ a,b) = (a,Kb),  (a.b) f=/dx(a,b), (5.4)
A _

J

whence we simply derive:
(K;"a,b) - (a, K;b) = dH;(a.b) (5.5)

for all a,b € L,. Therefore, we can establish identity h;[u] = H;(grad Llu],
Kjlu]) for all w € M. If u € My C M, we therewith obtain that h;[u] =

0, 7€ 1,k, what was needed to prove.
As a result of the Lemma proved above is the following: the function

izj [u], j € 1,k, can not serve as the nontrivial Hamiltonian one for the dy-

namical system d/dt;, j € 1,k, on the submanifold My C M. To overcome
this difficulty we assume the invariant submanifold My C M to possess

some additional symmetries d/dt;, j € 1,k, which satisfy the following
characteristic criteria: Ly grad Liu] =0, je€l,k forall ue My. This

means that for j € 1,k

Lﬁ%gmdﬁ[u] = Gj(grad L[u]), (5.6)
where G;(-), 7 € 1k — some linear vector-functionals on T*(M). Other-
wise, the equation (5.6) is equivalent to the following:

L . . dh;[u
za%;(g7'ad Lu),du) = _—#r[,—l + g;(grad L[u]), (5.7)

where g;(-), j € 1,k - some scalar linear functionals on T*(M). From (3.9)
and (5.7) we therewith find that for all j € T,%

d
Lo (grad L]u), du) = ——(dh;[u] + i e OF) + dg;(grad L[u]).  (5.8)
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If we put now v € My, that is grad L{u] = 0, we immediately will find the
following: for all j € 1,k,

dh;[u] +i_a Q) =0, (5.9)

4
CI

whence we make a conclusion of the vector field d/dt; to be Hamiltonian on
the submanifold My C M. Since dh;/dz = {h®) h;} =0, j€ 1,k, on the
manifold My, we therewith obtain that dh(®)/dt; = 0, j € 1,k. This is
also an obvious corollary of the commutativity [d/dt;,d/dz) =0, j € 1,k,
for all z,{; € R on the whole manifold M. Indeed, in general case we have
the identity {ht), h;} = i 4,0, whence the equality {h*),h;} =0 on

the submanifold My C M takes place immediately, since [, 4] = 0 on

My due to (5.8). The analysis fulfilled above gives a right possibility for a
given vector field d/dt;, j € 1,k, satisfying the either conditions (5.6) on
the condition (5.7), to be treated analytically on the canonically symplectic
jet-submanifold My C M as a Hamiltonian system.

6. Liouville integrability

Now we suppose that the vector field d/dt;, j € 1,k, all were independent
and commutative each with other on the jet-submanifold My C M and
with vector fields d/dt and d/dz on the manifold M. Besides the subman-
ifold My C M is assumed to be compact one smoothly imbedded into the
jet-manifold J*)(R;R™). If the dimension dimMy = 2k +4, due to the Li-
ouville theorem [8,9] the dynamical systems d/dz and d/dt are Hamiltonian
and integrable in quadratures on the submanifold My C M. This is the
case for all Lax-integrable nonlinear dynamical systems of the Korteweg-de
Vries type [3,7,9,8] on functional manifolds.

7. Discrete dynamical systems. One generalization
Let us be given a differential discrete smooth dynamical system
du,, /dt = K, [u] (7.1)

with respect to a coutinuous evolution parameter t € R on the infinite-
dimensional discrete manifold M C Ly(Z; R™) infinite vector-sequences un-
der the condition of rapid decrease in n € Z : sup, g [n]* ||t ||g < 00 for all
k € Z, at each point u = (..., Uy, Upny1,...) € M, where u, € R™, ne€Z.

Assume further that the dynamical system (7.1) possesses a conservation
law £ € D(M), that is dL/dt = 0 along the orbits of (7.1). Vi the standard
operational approach from (3.5) we can define the variational derivative of

L= Toer Lulu]:

6L[u] .

grad L, = L7 [u] -1, (7.2)

bu,,

where the last right-hand operation of the multiplying by unity is to be
fulfilled by component.
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Lemma 2. Let A(M) be the infinite-dimensional Grassmannian algebra
on the manifold M: then the differential dC,[u] € A'(M) concedes the
following reduced representation:

dLla[u] = (grad L., du,) + d/dn o V[u], (7.3)

where the one-form a{[u] € A'(M) is determined in a unique way, (-, -)—

the scalar product in R™ and d/dn = A =1, A—the usual shift operator.

Proof. By definition we obtain for the external differential dl,[u] the
following chain of representations for each n € Z :

N

L, [u]

ac,ful = - (5
k=0 du"‘*‘"

,dun+k> = ' (7.4)

Nk N
d (<a£n_,[u] >) <8£n_k[u] >
= - T, dun ks + T a. dun
d & /0L, [u] N 0L, [u]
_ 4 On=alt] g, _£> 4 A <~——) du,
dn kZ:%;o < My k- s +k k:z_:N Oty
d L& <a£,,_g[u] > )
= - iy ) + (L - 1,du,
d"g; Opyp_s + (L )
d
= Eﬁa}.”[u] + (grad L,,, du,,).

where N € Z, — a fixed number depending on the functional £ € D(M),

N &k P
()/El] )[“] = Z Z <0‘En_8[u] ’ d'u'n+k—-'>
k=0 s=0 ()un+k—x
N k v
0L,y
-y Y (Yl ), (7.5)
k=03j=0 ()un+j

N -
* () n—k
grad L, = L£;" 1= —éﬁ[ﬁl

k=0

The latter equality in (7.4) proves the lemma 2 completely.
The above proved representation (7.3) gives rise to the following station-
ary problem being posed on the manifold M :

My ={u€M:gradl, =0} (7.6)
for'all n ¢ Z, where by definition det “ auzifzu“NH = 0. In virtue of (7.3)

we obtain the validity of the following theorem.

Theorem 3. The finite-dimensional Lagrangian submanifold My ¢ M
defined by (7.6), is a symplectic one with the canonical symplectic structure
Q) = dal!) being independent of the discrete variable 7 € Z.

Proof. From (7.3) we have that on the manifold My C M dl[u] =
d/dn(a{[u]), whence for all n € Z  d/dn(?) = 0. This means obviously,
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that QF), = Q® for all n € Z, or equivalently, the 2-form 2 is not
depending on the discrete variable n € Z. As the 2-form Q® := da(!) by
definition, this form is chosen to be a symplectic form on the manifold
My C M. For this 2-form which is nondeTenerate on My, we assume that

Hessian of £, equals det _ O%alu] # 0 on Mpy. The latter proves

AUnp N41 Uy N4

the theorem.

Let us consider now the prior given dynamical system (7.1) reduced on
the manifold My C M. To term it as the vector field d/dt on My, we need
preliminary to represent it as a Hamiltonian flow on My. To do this, let us
write the following identities on M :

d
. - (
igd(grad L, du,) = dn' o O[u],

dig d(grad L, du,) = —Eh—(dhs)[u]), (7.7)

which are valid for all n € Z. Adding the last identities in (7.7), we come to
the following one for all n € Z :

d d ,
i = 2 (i40® (t) . .
Tlorad Lo, du,) = = (i 4 9P u] + AO[u) (738)

Having reduced the identity (37) upon the manifold My C M, we obtain
the wished expression for all u € My, N €Z:

i OO0l + A [y] = 0. 7.9)
at n n

The latter means that the dynamical system (7.1) on the manifold My is a
Hamiltonian one, the function h{¥[u] being a Hamiltonian function defined
explicitly by the second identity in (7.7).

We assume now that the symplectic structure Q(2{u} on My be repre;
sentable as follows:

N
QP(u] = D (dpj+n A dUjin), (7.10)

j=0

where generalized impulses p;,,, € R™, j =0, N, are determined from the
following identifications: a,[u] := L(%n, Upngry. - s Ungns1) ER, n € Z,

N Nk k|
anul: = E(dpj+n,duj+n) :ZZ<M,dun+j> =

i=0 E=0j=0 Otny
N N A
() o
Jj=0k=j aun+j

whence we get the final expression:

oL, U
Pi4n i= Z aZ;:H (7.12)
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where j.=0,N, uwe My C M.
Now we are in position to formulate the given dynamical system (7.1)
as that on the reductive manifold My C M :

duy; OB
—H = (A )= —2
dt { +]} apn+j
APy ohy)
Prti — qp® p = _
7 {A), Puss} B, (7.13)

forall n € Z, ,j = 0,N. Thereby the problem of embedding the given
discrete dynamical system (7.1) into a vector field flow on the manifold
My C M is solved completely with the final result (7.13).

8. Invariant Lagrangian construction (functional manifold
case)

In the case when the given nonlinear dynamical system (2.1) is integrable
one of Lax-type, we can proceed effectively to find a commutive infinite
hierarchy of conservation laws can be serving as the invariant Lagrangians,
under considered above.

At first we have to use the important property (3] of the gradient func-
tional ¢ = grady € T*(M) generated by an arbitrary conservation law
vy € D(M), i.e. the following Lax-type equation :

do/dt + K™ o = 0 (8.1)

where the prime sign denotes the usual Frechet derivative of the local func-
tional K : M — T(M) on the manifold M, the star ”*” denotes its con-
jugation operator with respect to the nondegenerate standard convolution
functional (-,-) = fgdz(-,-) on T*(M) x T(M). The equation (8.1) admits,
what follows from [30-32], the special asymptotical kind of solution:

ez, 6 A) = (L a(z,t; N) explw(z, t, A) + 0 a(z, t; A)], (8.2)

where a(z, ;1) € R™!, o(z,1;A) € R, w(z,;)) - some dispersive func-

tion. The sign "7” means here the transposition one, what is adopted in
matrix analysis. For any complex parameter A € C at |A| — oo the following
expansions take place:

a(z,t; A) ~ Z a;[z, t;u] AT

JELy

o(z,t;A) ~ Z o;[z, t; u)A=I+ (),

JE€Z4

Here s(a) and s(¢) € Z; - some appropriate nonnegative integers, the
operation 9~' means the inverse one to the differentiation d/dz, that is
d/dz-07' =1forall z € R.

To find the explicit form of the representation (8.2) in the case when
the associated Lax-type representation [8] depends parametrically on the
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spectral parameter A(t; A) € C, satisfying the following nonisospectral con-
dition:
dA(t; N)/dt = g(t; A(t; N)), M M), = A€ C, (8.3)

for some meromorphic function g(¢;-) : C — C,t € R, we must reanalyse
more carefully the asymptotic solutions to the Lax equation (8.1). Namely,
we are going to treat more exactly the case when the solution ¢ € 1*(M)
to (8.1) is represented as an appropriate trace-functional of a Lax spectral
problem at the moment 7 = ¢ € R, with the spectral parameter A(t;A) € C
satisfying the condition (8.3), the evolution of the given dynamical system
gi%‘being considered with respect to the introduced above parameter 7 €
, that is

du/dr = K[z, T;u], (8.4)

u|,_, = & € M - some Cauchy data of M. This means that the functional

@(z, ;A := grad SpS(z,7;N), A = A(m; At A)) € C, (8.5)

has to satisfy the corresponding Lax equation at the point u € M subject
to (8.4):
dg/dr + K" [u]- ¢ =0 (8.6)

for all 7 € R,. Under the above assumption it is obvious that the spectral
parameter A = A(T; A(t; \)), where

d\/dr = §(; V), X’ =AM eC, (8.7)

g(t; -) : € — C ~ some meromorphic function being found simply from
(8.6), the Cauchy data A(t; \) € C for all # € R, are the corresponding ones
to (8.3), the parameter A € C being a spectrum value of the associate Lax
type spectral problem at the moment t € R.

Now we are about to formulate the following lemma.

Lemma 3.The Lax equation (8.6) at the parameter 7 — ¢ € R, admits
the asymptotical solution

Gz, 7 N) = (1, 4z, 7 X)) exp[d(z, 7, \) + 8 6(z, M, (8.8)

where d(z,7:)) € R™', §(z,7;A) € R, - some local functionals on M,
&(z,7,A) € R - some discrete function for all z € R, 7 € R, and if for [A| —

oo the property |A| — oo at 7 — £ € R, holds, the following expansions are
valid:

a(z, ) ~ Z&j[w,r;u]:\"ﬂ""(&), (8.9)
JE€Ly

Fr(:z,r;j\) ~ Z&j[x,r;u]:\'j+’(5),
JEL4

where s(@) and s(&) € Z, are some integers.

Proof. Due to the theory of asymptotic expansions for arbitrary differen-
tial spectral problems, the result (8.8) will hold provided the representation
(8.5) is valid and the spectral parameter A(%; A) is not depending on 7 € R,
effectively at the moment 7 — ¢ € Ry, when it subjects to (8.7). But the
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above situation is occasional because of the Lax-type integrability of the
dynamical system (8.4). Indeed, due to the integrability of (8.4), the spec-

tral parameter A € C is matching the equation (8.7), and at the moment
T — ¢ € Ry the Cauchy data A(t; A) € C no longer depend on the parameter
7 € Ry effectively, that is at 7 — ¢ € Ry the condition dA(z,A)/dr — 0 is
valid. The latter proves the lemma completely.

As aresult of the Lemma 3 we can formulate now the following important
theorem.

Theorem 4. The Lax integrable parametrically isospectral dynamical
system (8.4) at 7 — { € R, admits an infinite hierarchy of conservation
laws, in general nonuniform ones with respect to the variables z € R, 7 €
R, which can be represented in an exact form in virtue of the asymptotic
expansion (8.8) and (8.9).

Proof.Indeed, due to the expansion (8.8), we can obtain right away that
the functional

F(r3 A1 N)) = /Rdm&(x,T;:\(T; At M) (8.10)

does not depend at 7 — ¢t € R, on the parameter 7 € R, that is

for all ¢ € R,. If we make also the parameter 7 € R, to tend to t € R, due

to (8.5) we obtain that @(z,7; :\)‘ ens w(z,t;A) for all z € R,t € R,
TtERy

and A € C. This means that the local functional ¢(z,t;X) € T*(M) satisfies

the equation (8.1) at each point u € M. As the obvious result, the following

identifications hold:

@(z,7; M)

w(z,t; A
T—»tE]K+‘—>w( v )

&z, 75 )

T—teR4 - U(J;’ t‘ /\)

for all A € C. Hence, the functional

Y(A) = F(r; At Alreier, = Jgdza(z,t;A) € D(M) doesn’t depend on
the evolution parameter ¢t € Ry and due to equation (8.1), it is a conserved
quantity for the nonlinear dynamical system. (2.1) under consideration, i.e.

dy(t; A)/dt = 0 | (8.12)

for all £ € Ry and A € C. Therefore, we have a possibility to use the
equation (8.12) along with (8.7) for the asymptotic expansions (8.9) and
(8.3) to be found in exact form. To do this we at first need to insert
the asymptotic expansion (8.8) in the determining equation (8.6) for the
asymptotic expansions (8.9) to be searched explicitely at the moment 7 —
t € Ry. Keeping in mind that at 7 — ¢t € Ry |\ — oo if [A] = o0, and
solving step by step the resulting recurrence relationships for the coefficients
in (8.9), we will get the functional v(A) := F(r; A(t; Mlrier,» A €C,
in form appropriate for the criterial equation (8.12) to be used. As the
second step, we need to employ the differential equation (8.7) for the criterial
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equation (8.12) to be satisfied point-wise for all # € R,. This means, in
particular, that

dy(\)  d < ie(s
J&(t—) = o2 /dz"’j[tﬂ,r;U]A'”“(”) (8.13)
i€ty '® r=teR4
[z, T3 u) < 4o Cje(s . :
o [ de 3| BT 000 | g O () — )
R dt dt
JEL4 T=teR4

= [ dz ) [(d&j/dt):\_j-f-s(ﬁ) + Y (s(9) - k)51d; i () ATTHO 4

k>>—00

+ Z &j[a:,t;u]:\—j+.«(la)—1(3(&) - j)g—;g(t; /\)} =0,

JELy

where we put by definition g(7; A) i~ Zk>>_m§k(r);\"“ for all 7 € R4 and
|[A| — oo. Since the spectral parameter A = A(f; A) at the moment ¢t = 0
coincides with an arbitrary complex value A € C, the condition |A] — oo

together with (8.13) at the moment ¢t = 0 gives rise to the following recurrent
relationships:

3 |06/dt+ &) - K[tiu] + D (~9(5)—k)5k-§,~_k_1] J-i+e(8) =
J€D ) k>>—o00

o (8.14)
= Z Gi(s(a) — j)gég(t;)\);\“H“('})_1 =0: mod(d/dz)

JEL4
forall j € Z,,z € R,t € Ry and u € M. Having solved the algebraic
relationships (8.14) for the prior unknown function g(t), t € Ry, we will
obtain the genereting functional y(A), A € C, of conservation laws for (2.1)
in exact form. This completes the constructive part of the proof of the
theorem above.

For a practical use we need obviously to solve further the differential
equation (8.3) at the moment 7 — ¢ € R, in exact, maybe in asymptotic
form for the dispersive function w(z,¢; A) and the local generative functional
a(z,t; M) to be determined via (8.11) exactly for all z € R, € R, and |A| —
00. This note together with the possibility to apply the general scheme of the
gradient-holonomic algorithm gives rise to determining the above mentioned
Lax-type representation completely in exact form, what successfully solves
the rather complex direct problem of the integrability theory of nonlinear
dynamical systems on functional manifolds.

Having obtained the generation function y(A) € D(M),A € C, of an
infinite hierarchy of conservation laws of the dynamical system (2.1) on the

manifold M, we can build appropriately a general Lagrangian functional
Ly € D(M) as follows:

N
Ly = =41+ D67 (8.15)

j=0
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where, by definition, y(A) = [, dzo(z,t;A) and for |A] = oo functionals
Y; = Jgdzo;lz, t;A], j € Z,, are conservation laws due to expansion (8.2),
¢; € R,j = 0, N - some arbitrary constants, N € Z, — an arbitrary non-
negative integer. If the differential order of the functional IN+1 € D(M)
has the highest one of the orders of functionals v; € D(M),j = 0, N, and .
additionally, this Lagrangian is not degenerate, that is det(Hessyni) # 0,
we can apply all the theory developed before, to prove the critical subman-
ifold My = {u € M : grad Ly = 0} to be the finite-dimensional symplec-
tic manifold inserted into the standard jet-manifold J)(R;R™) with the
canonical symplectic structure subject to the vector field d/dz,z € R, being
the Hamiltonian flow on the submanifold M.

9. Invariant Lagrangian construction
(discrete manifold case)

Let us consider the discrete Lax integrable dynamical system on the discrete
manifold M without an apriory given Lax-type representation. The problem
arises how to get the corresponding conservation laws via the gradient-
holonomic algorithm [8]. To realise this way let us study solutions to the
Lax equation: . :
don/dt + K [r,u]- ¢, =0 (9.1)
local functionals ¢, [u] € T; (M) at the point u, € M,n € Z. By analogy
with the approach of Chapter 7 we assert that equation (9.1) admits a
generating solution ¢, = ¢,(t;A) € T; (M),n € Z,A € C - a complex
parameter in the form:

P = (L.an(t; A))’ewp[w(t;A)]( H aj(t;/\)), L (9.2)

j=—co

where w(#; A) - some dispersive function for t € R, a,(t; Ay € Rm1,
on(t;A) € R - local functionals on M, having the following asymptotic
expansions at |A| — oo:

a,(t; \) =~ Zan[t;u])\"H’(“),
Je€Zy

Z o[t u] ATI ), (9.3)

J€L4

12

o )(t; A)

To find the explicit form of the asymptotic representation (9.2) we need to
study additionally the asymptotic solutions to the following attached Lax
equation with respect to the new external parameter v e R,

d@n/dr + K| [t,u]- ¢, = 0, (9.4)

where @, € T*(MV), a point w € M is subject to the following dynamical
system: '
dup/dr = K,[r;u], n € Z. (9.5)

Having made the assumption above we can assert that equation (9.4) admits
the asymptotic solution in the form:

@n(T3A)

e

(Lan(r Y eoplo(ri ] I a(ri%),  (06)

j=—o0
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where foralln e Zat T —t € R,
(T A) = > @[z, 75 u]AIHE,

JEZ4
Ga(riA) = 3 AT, (87)
JjEL+

The expansions above are valid if |A\| > oo at |A| = 00 and dA(t; A)/d7 |-~ iem,
— 0 for all t € Ry. The latter case is available because of the Lax-integra-
bility of the dynamical system (9.5). This means that a spectrum evolution

dN/dr = §(m; V), X\ = Mt;\) € C, (9.8)

t=0
for an associated Lax-type representation to the equation (9.5), where g(7; e
C — C - some meromorphic mapping for all t € Ry, satisfies the integrabil-
ity condition )\(7')|T___tE]K+ — X € C, whence the expression 1’%52
0 holds for all ¢ € R,. ,
Substituting the expansions (9.6) and (9.7) into (9.4), we obtain some

recurrence relationships, enabling to find local functionals &; [t;u),7 € Zy, to
be found exactly. Having this done succesefully, we assert that the functional

Y(t A) = Z InGn(m )| = Zln an(t; ), (9.9)
n€L

teR
nel T—telR4

.—)
T—1 ER+

where A = A(T;A), 7 € Ry, A € C, - the meromorphic solution to the
equation (9.8). To find further the exact form of the equation (9.8), we
need only to find an evolution ‘3—’: = g(t; \), recalling that the local functional
- @l ;\)\ — on(t;A) € T*(M) for all t € Ry and A € C. Hence, the

—teRy
following equality holds immediately:

d . < .
o > Inga(7; A) rven, = (9.10)
nelq
< [0F o6 -
~—1(4. "5 K T a(t; A
Z Un (twA)[at +Un .An[’ll,]-f‘ (9/\ g(t’ )+
n€Zy
85, O
R gl )] =
+ Y a/\g(, )} 0

for all t € R,. Equating coefficients of (9.10) at all powers of the spectral
parameter A € C to zero modulus d/dn.n € Z, we will find the recur-
rent relationships for the function §(t; A) of (9.8) to be determined suc-
cessfully. Thereby, using the equation (9.9) and an expansion o(f;A) =~
Yien ~i[t; w]A~I T for |A| — oo, where s(v) € Zy ~ some integer num-
ber, we obtain an infinite hierarchy of discretewise conservation laws of the
initially given nonlinear dynamical system (2.1) on the manifold M. But be-
cause of the parametric dependence of the conservation laws built above on
the evolution parameter t € Ry, we cannot use right now the theory evolved
before to prove the Hamiltonian properties of the corresponding vector fields
on the invariant submanidolds. To do this in an appropriate way, we are
going below to augment the theory of some moments thoroughly. '
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10. Reduction procedure revised

Below we shall use the results obtained in chapters 8 and 9, concerning
the construction of parametrically invariant Lagrangian submanifols in the
phase space M of given nonlinear parametrically integrable dynamical 8ys-
tems. Define an invariant submanifold My C M as follows:

My :={u € M : grad Ly[z,t;u] = 0} (10.1)

where the Lagrangian Ly € D(M) is specified as that in (8.15).

Our next problem is to describe an infinite hierarchy of symmetries of the
given dynamical system , i.e. we will be looking for vector fields du/dr; =
a;lz,t;u),j € Zy, on M, for which the expressions

doy; R
—dti—[x’-aj =0 (10.2)
hold. As the dynamical systems a;[z,t;u},j € Z,, don’t depend on the
evolution parameter 7; € R, 7 € Z,, we may conclude that all vector fields
d/dtj,j € Zy, on M are Hamiltonian with respect to implectic operator 4 :
T*(M) — T(M), satisfying the following operator equation: 9+ Lgb =0,
or :
df/dt -6 - K™~ K'.-6=0. (10.3)

Having solved the equation above by means of the method of a small
parameter [8], we can build commuting vector fields d/dr;, j € Z,, as
follows:

du/dr; = —fgrady;[z.t:u] =: o [z, t;u), (10.4)
where ¢t € R, serves as a parameter.

Indeed, the equation (10.2) holds due to the necessary condition that
elements ¢; := grady; € T*(M) would match the following relationships:
6<p]/(')t + LKij = 0, or

do;/dt+ K" - p; = 0, go;.* = cp;. - (10.5)

for all j € Z;,t € R,. But the latter is obviously true due to the fact that
functionals y; € D(M),j € Z,, are conservation laws for (2.1). Thereby,
we may construct reduced vector fields d/dr;,5 € Z,, on the invariant
submanifold My C M via the standard way developed before in this article.

To escape perhaps some tedious procedure for the equation (10.3) to
be solved in exact form, we may proceed also with the following way: one
solves the generalized Lax equation (by means of the method of a small
parameter for instance)

dyp
dt

for some fixed but arbitrary functional £ € D(M) with the additional con-
dition ¢’ # ¢'* on M. As a result we claim that the operator

+ K" o =gradf (10.6)

= =" — (10.7)

is ‘a cosymplectic one on the manifold M for all dynamical systems (10.4),
thatis L,;0 = 0 forall j € Z,. Besides, if we represented the dynamical sys-

tem du/dt = K[z, t;u] on M as dufdt = —nylz,t;u], n:T*(M)— T(M)
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— some implectic on M operator, then, due to (10.7) and to the identity
Lyyn'=¢ —¢" = —2%71—, we would obtain the operator ' : T(M) —
T*(M) rather simply by a differentiation with respect to the independent
variable ¢t € R. Also as a simple consequence, we get the infinite series of
equalities: Lg/4,,0 = 0, Lajar,m = 0,7 € Z,. In the case when the opera-
tor pair (,n) is independent, we claim they to compile a compatible pair
of implectic operators on M. As the latter is the case, we can therefore use
the standard gradient-holonomic algorithm [8] for the associated Lax pair
to the dynamical system (2.1) to be found explicitely, on what we won’t
enlarge here.

11. The reduction procedure on nonlocal Lagrangian sub-
manifolds

Let us consider the following nonusual reduction problem for a given Lax
type integrable dynamical system

du/dt = Ku) (11.1)

on the manifold M 3 u; augmented by the following compatible dynamical |
eigenfunction relationships: ‘

df/dt = p()f,
—dfjdt = pr)f". (11.2)

Here, by definition,
[W)f = M, Flf =M (11.3)

where [[u] - some scalar pseudo-differential operator with the symbol &, a
spectral parameter X € C, f.f* € W(R;C) - element of some Sobolev
type Hilbert space, the Lax pair I[u; A] and p(l) acts on which. As a result
of (11.2) and (11.3) we demand-the standard Lax type representation

di/dt = 1, p()] (11.4)

to hold for all A € C, ¢t € R, w € M, satisfying the equation (11.1).

We pose the following problem: if we are given the functionals 7v; :=
trli e DM),j € Zy, tr():= [pdu rese=o(.), as local conservation laws
for (11.1) and functionals A; € D(M),j = 0, N(A) as generalized nonlo-

cal eigenvalue functionals (11.3), i.e. for all 7 = LLN(A), fi = fla7) €
W (R;C), how to find the reduced flow of (11.1) on the following apriori in-
variant submanifold My C W x M x W, M}, := {(fru, fYeW X MxW:
gradly{u] = 0}, where

N(v) N(A)

IN = Z a'j7j + Z bk')\kv (115)
j=0 §=0

a; € C,j = 0,N(v), and b € C.k = 0, N()) - some arbitrary but fixed
constant complex parameter.
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To build the reduced flow of (11.1) on nonlocal the manifold My, one
needs to have the canonical symplectic structure on it, inherited by the func-
tional (11.5). For this aim let us evaluate at first the gradient VS, u, f*] €

T*(W x M x W),k =0, N()), using variations of equations (11.3):

(1) f)w o= /R Al f)de = AP, fw =

L pinds = [ (s 5 bu) e, (11.6)
R R
whence
grad /\k[f,u.f‘] = (0, fl:fk’ O)T (117)
under normalization conditions
£ i= / de (f7, i) = 1 (11.8)
3

for all £ = 0, N(A). The analogous estamations for the augmented function-
als v, e D(W x M x W),j € 0, N(v), give the following obvious result:

grad;lf,u, 7] = (0, grad y;[u], 0)7 (11.9)

forallu € M, f, f* € W. Due to the linear nature of the equations (11.2) we
can claim [35] that the vector field (11.1),(11.2) on the extended manifold
W x M x W is also Hamiltonian if the initially given vector field (11.1) is
that on the manifold M. But due to the Lax representation (11.4) of the
dynamical system(11.1) on M, this dynamical system is also Hamiltonian
with respect to the Lie-Poisson bracket on the adjoint linear space G* of the
Lie algebra G of pseudodifferential operators on the complex Sobolev space
W. Thereby we have [35] that the dynamical system (11.1), (11.2) on the
manifold W x M x W can be transformed into the Hamiltonian one with
respect to the following implectic structure:

0 0 -1
8[f,1, f*] := (0 8] 0 ) (11.10)
1 0 0

Therefore, we can try to reduce the implectic structure (11.10) on the non-
local invariant submanifold M}, C W x M x W with the set of constraints
(11.8). To do this we have to take care for the set of functionals (11.8) to be
included additionally into (11.5) as Lagrangian constraints. Hereof we get
the following expressions determining the local manifold My C Wx M x W

My = A{(fm ) e My: [dsifpf) =Lk =TNN),  (1111)

being completely equivalent to the following:

My = {(fiu,[) €W x M x W : grad Cu[f,u, f]= 0},  (11.12)
where by the definition. Ly = Ly + Y080 en(& ~ 1), ¢, € C, K =0, N(N),
some arbitrary Lagrangian multipliers being determined on My by the con-
ditions (11.8) in a unique way. Thereby we have got the finite dimensional
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local submanifold My C W x M x W upon which the canonical symplectic
structure () € A?>(My) can be built successfully via the result of chapter
(4) of this paper: if we have found the representation

dCn(fu, f1] = (grad Lalf,u, £ (df, du,df*)7) + dotV1f,u, £/ de,
(11.13)
where, by definition, Ly := fgdz Ln[f,u, f*] € DIW x M X W), we can
construct on My the canonical symplectic structure above mentioned as
Q) = da,

Let us proceed further to the reduction process of the dynamical system
(11.1), (11.2) ou the invariant already local submanifold My (11.12). To do
this let us recall that due to the construction above the Lagrangian Ly is a
conservation law of the dynamical system (11.1),(11.2). Therefore, due to
relations dLy/dz = 0, dC/dt = 0, z,t € R. we obtain that

(grad Ln[f,w, f*), (df [dz, du/dz, df" [dz)") =
—dh®[f, u, f*]/dz, (11.14)
(grad Ly[f,u, f1, (p(D)f, K[u], —=p* () f*)7) =

= —dh"[f, u, f*)/dz,

where the scalar functions A%*) and A*) on the manifold My are the Hamil-
tonian ones for the vector fields d/dz and d/dt on My respectively:

dh'®) = -iﬁm?), dht) = —i g Q). (11.15)

=

In the case of other vector fields d/d7j, j € 0, N(7), and d/dt;, k € 0, N(}),
we can analogously obtain that

(grad Ln{f, u, f*), (df [drj, du/dT;, df" [dT;)7) =
= —dh")[f,u, f*]/dz, (11.16)
(gradEN[f,u,f*],(df/dtk,du/dtk,df"/dtk)r) =
= —dh\"(f, u, f*]/dz,
where dh(™) = —ig%ﬂ("), dh) = —i g QO on My for all j € 0,N(y), k €

0, N()). When obtaining the relationships (11.14)-(11.16), we have used as
a matter of fact the spectral defining equations (11.3) for the left sides of
(11.14)-(11.16) to be effectively represented as the full derivatives of some
functionals. The latter note is the even needed to have been taken into
consideration additionally to the regular procedure worked out in this ar-
ticle before. It is also easy to prove that all vector fields above d/dr;,j €
Z,,d/dty, k € Z,, are commuting with each other: {v;, \+} = { M A} =

{7,y =0forall j,I€Z,, k,s€ 0, N(MN).

Example.

Let us consider the dynamical system (11.1) on the functional manifold
M, generated by the Lie-Poisson bracket on the coadjoint space of the Lie-
algebra G of pseudodifferential scalar operators on the real axis R, and a
Hamilton function v € D(G*) given for a simplicity as follows:

1
Y= ’? = mTT lk+1, (11.17)
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where k € Q - some rational number, 1 € G~ - the Lax operator representable
as nfl)
b= )" w(e)d, £~8/0z, (11.18)

J»—o0

and satisfying the following general equation:

difdt = [grady(1),.1] — [grad (1), 1}, (11.19)

where 6v(1) := (grad~y(l), 61)g. (a.b)g = tr(aob) for all a,b € G by
definition. If the functional v € D(G™) is due to (11.17) a Casimir one on
the adjoint space G*, we obtain from (11.19) that

dl/dt = [grady(l),,1]. (11.20)

If we define functions f and f* € W(R: C) as the eigenfunctions to the Lax
spectral equations :

If =Xf. I"f"=Xf", AeC. (11.21)
the corresponding to (11.20) evolution equations hold:
dffdt =1 f. df*/di= (%) f~. (11.22)

The system of equations (11.20) and (11.22) on the extended phase space
G* & W?*(R; C) constitutes the dynamical system which we try to represent
as a Hamiltonian system. To do this, we have to use the Hamiltonian (11.17)
and to demand it to depend on the function phase space W explicitely, that
is. I = Il[u: f. f*] € G*. Further. for the dynamical system (11.22) to be the
Hamiltonian one in reference to the canonical symplectic structure on W2,
we need the following relationships to be satisfied:

by e f = () [ ey(D)/8f =1k, (11.23)

for all f, f* € W. From (11.17) and (11.23) we therewith gain correspond-
ingly that

Syl = (180 = ((5) 1" 8w + (X .8 )w =

(S L o0fe g + (1P fe 8 f)g = (11.24)
L OFE 4 JE 6 F ) = (15, 6(fE £))q.
Having equated the left and right hands of equations (11.24), we can state
that the reduced on W? variation 81 = S(fETf), or U[u; f, f*] = I[u] +
fE
u(l)
| = Z ug(@)E? + fEHf (11.25)
IP—c

for all f, f* € W. Therefore, the following theorem is proved.
Theorem 5. Let some element | € G* be representable as the one in
the form (11.25). Then the corresponding dynamical system (11.20) and
(11.22) on the phase space G* ¢ W2 is the Hamiltonian system with relation
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to the canonical Lie-Poisson bracket on G* and symplectic structure on W2,
correspondingly.

Our further step is to find the corresponding symplectic structure on the
phase space G* @ W? for the case when the element [ € G* is given by the
expression (11.18). This problem is solved in a very simple way as it has
been done in [35]: we need just to make the canonical Poisson structure

( 8y/6l ) ([57/6&,1]— [M/él,lh)
§v/6f | — 8v/6 f* (11.26)
by/of* —ov/of

on the phase space G* @& W? into a Poisson structure on itself subject to the
change of coordinates on G* ¢ W2

GBI = U= JE 5 ). (11.27)

As a result of the transformation (11.27) above we can easily find that the

corresponding Poisson structure on the fase space G~ B W? gets the following
form [35]:

&v/81 [67/610, 1) = [6v/61,1)y — fEH(87/8f) + (6v/6 )& f
6v/6f | — (0v/61- fly +ov/0f
6y/8f —((6y/81) f* )y — 67/ f

Hence, the following theorem is true.

Theorem 6. Dynamical system (11.19), (11.22) on the phase space
G*®W? is the Hamiltonian one with respect to the Poisson structure (11.28),
the Lax spectral element [ € G* being chosen in the form (11.18).

The further Theorem gives rise, for example. to a solution of the follow-
ing important problem: what is the evolution of the eigenfunctions for the
spectral value problem (11.21) when the Hamiltonian functional is given as

follows: )
() =5+ A (11.29)

where X € D(G* x W?) - an eigenvalue of the spectral value problem (11.21).
Indeed, using the simply derived formula

grad/\:(f{']f*;l*f*,lf)r, (11.30)

(11.28)

where f, f* € W - the corresponding cigenfunctions, the element [ € G* is
given by (11.18), one obtains, due to the Poisson bracket (11.28) on G*@W?,
the following result:

dl/dt [livl]—[fg—lf*al]+a
dfjdt = Ef+1f, (11.31)
df/dt = () f -1If.
The hierarchy of dynamical systems (11.31) on the phase spase G* @ W*
for all £k € Z, when reduced upon an invariant submanifold My C M

generates the commuting finite dimensional Liouville integrable vector fields
on My C M x W? subject to the canonical symplectic structure regularly
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built before. It is obvious also that the hierarchy (11.31) is easily generalized
to the case when the Hamiltonian (11.29) takes the following form:

N(A)
Z k L K+ 37 s, (11.32)
k=0 q=0

where ¢, € R,k = 0, N(v), and s, € R.q = 0, N(A) - some arbitrary but
fixed real numbers. As a result from (11.28) we find that

N(~) N(A) _ _
difdt =" e[l5,0) = > s [f, 7 L0, (11.33)
k=0 g=0
) N(v) i )
k=0
N(v}

df;/dt =S by S -5, (11.34)

k=0

where If; = A f;, I f; = A; f; for all j = 1, N(A). The dynamical systems
(11.34) are also commuting with each other Liouville integrable Hamiltonial
flows on each Euler-Lagrange type invariant submanifold My C M x W2NQ)
with respect to the canonical symplectic structure on My C M x W2NQ),
Here we need just to mention that the whole theory of Neumann type inte-
grable dynamical systems on submanifolds like the spheres SV and others
are contained in the theory having been developed in the present article.
Some applications being interested in plasma physics, nonlinear optics and
others fields of science we are going to display in great detail in subsequent
paper by authors.

12. Conclusion

The developed above theory of parametrically Lax-type integrable dynami-
cal systems concedes to wideu to a great extent the class of exactly treated
nonlinear models in many fields of science. It is to be noted here the follow-
ing important mathematical fact got in the paper: almost every nonlinear
dynamical system admits a parametrically isospectral Lax type representa-
tion but a given dynamical system is the Lax-type integrable if an evolution
of the spectrum parameter doesn’t depend on a point v € M at all Cauchy
data. This result has allowed us to develop a very effective direct criterium
for the following problem to be solved: whether a given nonlinear dynamical
system on the functional manifold M is parametrically Lax-type integrable
or not. Having the problem above solved, we have suggested the reduction.
procedure for the associated nonlinear dynamical systems to be descended
on the invariant submanifold My C M built before inheriting the canonical
Hamiltonian structure and the Liouville complete integrability. Thereby,
the powerful techniques of perturbation theory can be successfully used for
dynamical systems under consideration, as well as the relationships between
the full Hamiltonian theory and various Hamiltonian truncations could be
now got understandable more deeply.
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The imbedding problem for infinite-dimencional dynamical systems with
additional structures such as invariants and symmetries is as old as the
Newton-Lagrange mechanics, having been treated by many researches, using
both analytical and algebraic methods. The powerfull differential-geometric
tools used here were created mainly in works by E. Cartan at the beginning
of the twentieth century. The great impact in the development of imbedding
methods was done in last time, especially owing the inventure the theory
of isospectral deformations for some linear structures, built on the special
vector bundles over the spase M as the base of a given nonlinear dynamical
system. Among them there are such structures as the moment map { : M —
G* into the adjoint space to the Lie algebra G of symmetries, acting on the
symplectic phase space M equivariantly [8,10], the connection of the Cartan-
Eresman structures appearing via the Wahlquist-Estabrook approach [L1],
and many others.

For the last years the general structure of Lagrangian and Hamiltonian
formalisms was studied thoroughly using both geometrical and algebraical
methods [12,13]. The special attention was paid to the theory of differential-
difference dynamical systems on the infunite-dimensional manifolds [13.14].
Some number of articles was devoted to the theory of pure discrete dynami-
cal systems [15-18] as well as treating the interesting examples [18] appeared
to be important for applications.

In future work we intend to treat further imbedding problems for infinite-
dimensional both continuous and discrete dynamical systems basing on the
differential-geometric Cartan’s theory of differential ideals in Grassmann
algebras over jet-manifolds, intimately connected with the problem under
regard.
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OEAKI 3AYBA2KEHHA 0O JIATPAH2XKEBOT'O TA
TAMIJIbLTOHOBOT'O ®OPMAJIISMIB ¥
BE3MEKHOBUMIPHUX TUHAMIYHNX CUCTEMAX
3 CUMETPI€IO

A.llpukapnatcekuit, P.Camynsax, [.baekmop,
B.Crpamnn, HO.Cunoperko

4

3anponoHoBaHo TMAXiN N0 JarpaHXKeBOTO Ta raMiJIbTOHOBOTO
$dopmMadiaMiB, Mo MPUPOJHIM YMHOM BUKOPUCTOBYIOTDH IHBapiaHT-
Hi CTPYKTYPM HeJiHIHUX IMHAMIYHMX CHCTEM Ha HECKIHUEHHOBM-
MipHUX () YHKUiOHaJIbHUX MHoroBuiax. OcHOBHI igel 3aIl03U4YeH] 3
Teopii KapTana nudepeHuiajdbHUX CUCTEM Ha aCOLIATUBHUX IKET-
MHoropuaax. CTIPYKTYPU CUMETplil pelyKOBaHMX Ha IHBapiaHT-
Hi MIMHOTOBMIM KPUTUUHUX TOUOK NEAKOr0 HeJIOKaJbHOTO ¢ YHK-
uioHasy Eimepa-Jlarpanxa onucaHi AK y BUNALKY I epeHLialb-
HUX, TaK 1 Y BUMMAIKY IMCKPETHUX 11 epeHIialbHO-Pi3HNLIeBUX IU-
HaMIYHUX CHCTEM.



