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‘The main aspects of the Langevin approach to the theory of fluctua-
tions in plastia are discussed. [t is shown that both dielectric response
function and correlation functions of fluctuation sources in plasmas

macroscopically agitated included) may be calculated in terms of the
reen functions of evolution equation for the phase density fluctua-
tions in the system without self-consistent electromagnetic interaction.
Within the framework of this approach the microscopic theory of elec-
tromagnetic fluctuations in plasmas is generalized to the case of a
turbulent plasma with random flnid-like motion. General relatiouns
for fluctuation spectra in the system under consideration are found

1. Introduction

Theoretical studies of electromagnetic plasma fluctuations are of great im-
portance both for the theory of electromagnetic processes in plasmas and for
the development of modern methods for noncontact diagnostics of plasma
systems. The theory of electromagnetic fluctuations in stable stationary
plasmas is the most advanced today. Fluctuations in such systems are de-
scribed by many approaches: fluctuation-dissipation theorem and its exten-
sion to nonequilibrium plasmas [1.2]. method of dressed test particles [3-6],
method of microscopic phase density [7,8], method of the inverse fluctuation-
dissipation theorem and the probability approach [9-11], etc. These methods
have been applied to calculate fluctuation spectra of various electromagnetic
quantities in plasmas (both infinite and bounded), to find energy charac-
teristics of fluctnation fields, to derive collision terms and thus to formulate
closed kinetic equations for plasmas, to work up the bremsstrahlung theory,
to describe wave and particle scattering in plasmas.

The progress of the theory of electromagnetic fluctuations in unsta-
ble (turbulent) plasmas appeared to be much slower, and microscopic ap-
proaches have been developed only for weakly turbulent plasmas which can
be efficiently treated by means of the perturbation theory [2]. In such cases,
one manages to calculate the Huctuation spectra and to find relevant sta-
tionary levels for the state of saturated turbulence. Renormalization of the
plasma dielectric respounse function with regard to all perturbation orders
also proves to be an efficient approach which provides another step towards
the theory of strong plasma turbulence [12-15]. As to the theory of electro-
magnetic fluctuations, the results here are insufficient to be a subject for
consistent analysis.
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Phenomenological approaches to the description of turbulent plasma
fluctuations, which have been intensively developed lately [16-19], turn out
to be more promising. As a rule, however, these approaches are insuffi-
ciently substantiated because they are based on some intuitive assumptions
concerning turbulence effect on the microscopic particle motion.

The purpose of this paper is to work out and substantiate a phenomeno-
logical theory of fluctuations in turbulent plasmas in terms of statistical
theory of many-particle systems. To do this, we generalize the theory of
electromagnetic fluctuations in stable stationary plasmas for the case of
turbulent plasma states.

In the second section, we give the main aspects of the fluctuation theory
in stable plasmas in terms of the Langevin approach. Both dielectric re-
sponse and correlation functions for fluctuation sources are calculated with
the help of the Green functions of evolution equations for the microscopic
phase density fluctuations in a system without electromagnetic interaction.

In the third section, the evolution equations for the microscopic phase
density are generalized to the case of turbulent plasmas under the assump-
tion that random particle motion and large-scale plasma perturbations are
statistically independent.

2. Electromagnetic fluctuations in stable stationary plasmas

We start from the equation for the microscopic phase density of some par-
ticle species

FL(X.0 = Y6(X - X2),

i=1

where X = (r,v), X7(t) = (r?(t),v{(t)) is the phase trajectory of the
i-th particle, n, = N,/V is the particle density of the relevant species
(V is the volume of the system under consideration). Henceforth we omit
the subscribes related to particle species in all cases that do not lead to
misunderstanding. The equation for F(X,t) is given by
d d | R 0 _
{at+var+m(F +F) av}}‘(x,t) 0. (1)

Here F*=' and F are the forces produced by the external field and the in-
trinsic plasma fields, respectively, i.e,

Ft = ¢ {Eeﬂ + l[v’Be""t]} \ F=e¢ {E + ‘}[V,B]}’
[ -

E and B are microscopic fields, ¢ and m are particle charge and mass.
Averaging Eq.(1) over the Liouville distribution yields

i a 1 . d 19
{2 bvat o (B4 () 5o} (K0 = = RS, 1), (2)
where f(X,t) = (F(X,T)) is the one-particle distribution function (aver-
aged phase density), 6 f(X,t) = F(X,T)— f(X,t) is the fluctuation of the
distribution function, and §F = F — (F). If the quantity in the right-hand
part of Eq.(2) can be written as a functional of f(X,t), then we may regard
it as a collision term, and equation (2) becomes a kinetic (closed) equation
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for the distribution function. Subtracting (2) from (1), we find the evolu-
tion equation for the fluctnations of the one-particle distribution function
(averaged phase density) to be given by

sy .
{i+v—+14P”+w»3}aﬂxn+gﬁg%ﬂXﬁ

ot ar m v
10 19, ..
+—0F o f(X,t) = — o= (F6 f(X, 1)), 3)

This equation (similarly to (2)) is not closed; in the general case it
should be solved together with the relevant equations for the moments
(6F8f(X,t)). However. it is appreciably simplified in the case of stable sta-
tionary plasmas. We make two assumptions: i) fluctuations are not large,
|6 (X, )| < f(X.t), and ii) the characteristic time of fluctuation evolution
(correlation time) 7, is much shorter than the one-particle distribution
relaxation time 7,.,. The latter suggests the collision terms to be constants
rather than functionals of the one-particle distributions, and hence we may
disregard them in the analysis of Eq.(3). The first condition enables to ne-
glect the terms nonlinear with respect to fluctuations. Thus, equation (3)
reduces to

9 o 1 .. 0. 1 (X,

We note that (F) = 0 for the unbounded plasma if no electromagnetic
excitations occur.

First of all we consider plasma fluctuations assuming that no excitations
occur at the initial time instant. We write the solution of Eq.(4) for the
general case in terms of the Green functions. We introduce the retarded and
advanced Green functions GUP(X, t: X', ') and G\-( X, t; X', t'). These are
governed by the equation

a a 1 ewt a () -4, !N , ,
E+v$+;#F + () 50 GH(X X' t) = 8(X X"8(t -1, (5)

the causality conditions
GH(X,t: X'. 1) =0, (6)
1533

and the relevant boundary conditions. We remind the reader that the dif-
ference between the retarded and advanced Green functions W(X,t; X', 1),
given by

W(X.t; X' 1) = GH(X, X)) - GT(X, 4, X', 1), (7)

is the probability density for the particle transition from the point X’ to
the point X for the time 7 = ¢ — #'. The transition probability density
W(X,t; X',t') is determined by Eq.(5) with zero right-hand part and the
initial condition

WX, 6 X 1)]  =86X—X") (8)

t=t'

with the relevant boundary conditions. In the stationary state when the
time-dependence of Fe*' 4+ (F) may be ignored, the probability density
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W(X,t; X', t') depends only on the time difference ¢ — t' and hence, within
the context of the initial condition (8), is symmetric with respect to its
arguments, i.e.,

WX, X' 1) = W(X', 1 X, 1). (9)

Moreover, according to (7), the advanced and retarded Green functions are
related according to

G(_)(Xa X, t/) — _G(*)(X’,tl; X, l). (10)

Making use of the retarded Green function definition, the solution of
Eq.(4) may be written as

of(X,t) = (11)

af(X',t')

1
_ 5f(0)(X,t)— _r;/dt/ /d-’EIGH’)(X’t;‘X'/, t/)(SF(X’,tl) v’ ’

where 6 f(O( X, 1) is the solution of Eq.(4) with zero right-hand part (in the
absence of electromagnetic excitations, the distribution function of plasma
fluctuations 6 f(O(X,t) reproduce the one for the system without electro-
magnetic particle interactions). 1f we emplay of the relation (7) the solution
(11) rewrites as

§f(X,t)= (12)

t
X't
:éf(o)(X,t)——% /dt'/dm'W(th; X',’")‘SF(XI,W)Q%;,"—)'

Notice that, using the probability density for particle transition, we can
write the solution of the homogeneous equation which corresponds to Eq.(4)
with the given initial condition at t = #, , in the form

§FO(X, 1) = / AX'W(X. 1 X' 10)65(X " to), (13)

and hence

hfm)(Xaiu) = éf(X,t(,‘). (14)

The structure of the solution (11) or (12) suggests the two-part structure
of the fluctuation densities of the charge 6p(r.t) and the current 6J(r,t):

bp(r .ty = 6pV(r, 1) - (15)
: X0

- dt'/dv/dx'(;<+’(x,t;X',t')aF(X',y)%—"),
m av’

§3(r,t) = 63O (r, 1) - (16)
£ ‘X’I 7

_E [ ar / dv / axX~ GO, 1 xR, ) LA
m av'
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where
5o\ (r, 1) = e/dvé‘f(o)(X,t) and  83(r,t) = e/dvvé'f(”)(X,t). (17)

The first parts of the charge (15) and the current (16) determines elec-
tromagnetic fluctuation sources, whereas the second part depends on the
fluctuation fields and characterizes the response of the system to the fluctu-
ation fields. We regard relations (15) and (16) as the coustitutive equations
specifying the relationship between charge and current fluctuation densi-
ties and the fluctuation field. Then the fluctuation electromagunetic field is
described by the Maxwell equation with the dielectric permittivities deter-
mined by the Green functions and the Langevin sources - by the charge and
current densities (17).

Thus we arrive at the Langevin formulation of the fluctuation problem,
and the physical meaning of the Langevin sources is known to be charge
and current density fluctuations in the system without self-consistent elec-
tromagnetic interaction. The latter observation enables us to write the
correlation function for such fluctuations as

(EFOXO6 LX) = WX, 5 X ) f (X 86,000, (18)

where subscript o labels particle species. Since the correlation function
(FO(X, )6 fOX', 1)) is symmetric with respect to its arguments X, ¢ and
X', t", in the general case the right-hand part of (18) must be symmetrized.
Such result can be immediately obtained by solving the equation
J 0 1 . (’)
vt F*" +F,)
{()t T Jr m,,(

with the initial condition
(O LSEX OB LX) = [ (X )6(X = X600, (20)

which follows from the direct calculation of the mean product of simultane-
ous distribution function fluctuations with the use of the Liouville distribu-
tion for uncorrelated particles DO(X7. ... X% ; X7, .. XN i t). Indeed,

}< SIX D6 FX L)) = (19)

(6 FO(X, )8 V(X 1) = / (na'X”) (naxa“)
N,

x DT o Xa i X7 X5 [ 6(X = X7(1)

1=

—f(X.1) HZ(S(X’ X7 )—fn/('X’,t’)] (21)

= faﬂ’(X=*¥l~ l) - fa(‘x«,l .[a'()(af'/) + f,,(X,t/)(S(X - X/)(S,,,,r,

where f,,.(X,X’;t") is the two-particle distribution function. Since in the
case of uncorrelated particles f,, (X.X":t") = f( X, ¢)f,(X',t"), Eq.(21)
reduces to Eq.(20).

If there exist binary particle correlations, the two-particle distribution
function may be written as

—_

oo (X, X50) = {14 0o (X, X O} (X0 F (X0, (22)
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where g,,:(X, X';t) is the binary correlation function. In this case, instead
of (20), we obtain the initial condition of Eq.(19) given by

(BFOX, OV [D(X, 1)) = L(X,{8(X = X" )b,
900 (X, X'5) for( X', 8) ).
With this initial condition, instead of (18) we have

(SFOUX, VS FD(X )Y = W (X, 4 X ) [ (X! 4V
+/dX“Wa(X,r,;X".t')f”(x”.t")gm,(x",X',t')f(,,(x’,t'). (23)

It is necessary to remind the reader that by virtue of the assumption
Teor & Trer, the quantity (F) depends on the slow time since it is determined
by the distribution function f(X,t). This means that we may neglect the
time dependence of (F) and f(X,t) in the calculation of G*(X,t; X', 1)
and W(X,t; X', t'). Inasmuch as in the stationary case the Green functions
and the transition probability densities depend only on the time difference
7 =1t — 1, we find the plasma dielectric permittivity tensor to be given by

g;(r,r',w) = 8(r — r')6;; + 4#2 Ky (r,r',w), (24)

2

=

K,ij(r, r'.w) = -

;[ v [dxmarixxn «
mw
X{(w-{—iv'i)é' v 0 }df(.X)
or/

A P P P
GUNX, X" = /dTe'i‘”TG(+)(X,t;X'.t’), T=1-1.

where

The source correlation functions are specified by the relations
(600 (x, 1800 (x', 1)) = e"’/dv/dv’(&f“”(X,t)6f“”(X’,t’)), (25)
(0,087 1)) = ¢ [ dv [ dvoaf(a fOLX08FO(X" 1)),

For an infinite homogeneous system (F) = 0 and both the Green func-
tions and the transition probability depend only on the difference r — r'.
Therefore

(6p(0)(r, 1)6p 0’ 1)) = (5/)2>£~0_).-/,z_:',
(@1 (e, )T (' ) = (ST ;WD o (26)

The Maxwell equations in the k,w representation loox as follows

A(w.X)Ew, = 4”5.1&2,

w

kiky\ ke
A,‘j(w,k) pod EZ](w,k)-*— (5” — ,]> : y (27)
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where

gij(w, k) = &; +47rEk (w, k),

' af(v'
kij(w, k) = i— /dv v/ 0, G (v, v') [6jk(w -kv')+ v]'-kk] QEJ‘,’ ),
k
G (v, V') = / dRe*FGWH(X, X), R=r-r. (28)
For the potential field, we have
gij(w k) = 1 +41 Y K, (w, k),
) _ e e o, I (V)
(e, k) = —i— /dv/dv G (v, v K= (29)

The spectral densities of the source correlation functions are given by

(6p")) = 2(6n*)) = e /dv/dv Wi (v, V1) f(v'),
(816109 = ¢ /dv/dv’v,-ijkw(v,v)f(v ). (30)

If the binary particle correlations exist, then, for a stationary homogeneous
system we have

(6 = ¢ [ dv [ avWin(v,v)f(V)
+eg/dv / dv’/dv”Wkw(v,v”)f(v”)gk(v”,v’)f(v’). (31)

Equations (27)-(30) are sufficient to calculate correlation functions for
any electromagnetic quantities. In particular, the correlation function for
charge density fluctuations in the potential case is given by

Z‘YUJ” w) 747 a”( k)<bp3'“>(k(2’ (32)

gl

bp,
<5pa Ps >kw k)lz

where

Yoo (W k) = 8,me(w, k) = ATk, (w, k).

For o = ¢’ we have

1447 T Kp(w, k)|?

(697 e = E(Zk) (6p°)ie) +
4 IJ( -,k ’ 9
e P ()

ol#a
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The formula (33) becomes even simpler in the case of a two- component
plasma. For example, the correlation function for the electron density fluc-
tuations takes the form

1 +4r7k

(onihn, = [ LT

drr(w, k)| . .
e G (34)

glw,

where Z; is the ionic charge number.

In order to enlarge on the fluctuation spectra, we have to specify the
system and to find the Green function G*)(X,X’,7) and the transition
probability W(X, X', 7) which together with f(X,t) determine both the
dielectric response function and the correlation function of the Langevin
sources. Since characteristics of Eq.(5) (in the case when initial excitations
occur in the plasma) are particle phase trajectories in the system with exter-
nal and average fields F*** and (F) respectively, the solution to this equation
with the condition (6) is given by

GO(X, X7) = (X = X(X',7))6(r), (35)
where X (X', 7) is the phase trajectory of a particle influenced by these fields

(X' are initial coordinates of a particle at 7 = 0), 6(7) is the step function.
Then the transition probability is determined by the formula

W(X.X'ir)= 6{X - X(X, r)},
which may be reduced to a more convenient form
W(X,X';r) = 8{X - X' - AXO(X',m)}, (36)

where AX((1) = AX(O(X’, ) is the change of the phase variable for time
7 in course of particle motion under the influence of the external and average
fields F*** and (F) .
If there are no external fields and no initial excitations, we have
W(X, X" 7)=68r-1"—vr)d(v-v') (37)

If the system is exposed to a uniform external magnetic field B**' = Bge,,
then

W(X,X1)= (5'(93 -z - ;L [v‘,’psianT +v,(1 - costT)]) X
B

5(y —y = wi[ — v/ (1 - coswpT) + v;sianT]) X

B
6(2 = 2 — v,7)é(v, — vy coswpT — v sinWpT) X
6(vy + v sinwpT)(—v, coswpT)é(v, — v,)8(T), (38)

where wg = % is the cyclotron frequency.
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As follows from relations (29) and (30), the description of fluctuations
in the potential case requires the Green function moment and the transition
probability moment to be known, i.e.,

GV =[G V), W) = [avWiu(v.v).  (39)

In the absence of external fields, we have
1

G(+) N —
ko (V) w—kv’' +10’

Wi (V') = 278(w — kv'), (40)

and in the presence of an external magnetic field,

To (552) I (2)
w -~ Ic“v” — nwg + zO ! ”, (41)

G =i 3

k k .
Wkw(v =27 Z J ( :}Zl> Jm ( :Z'L) 5((4.) - k”’l)" - ’I’LwB)et(n_m)‘P,

where ¢ is the angle between the vectors k and v’. Thus, for an isotropic
plasma we have

ﬂv

k/ w— kv+z0
(62 = ox / dv f(v)8(w — kv), (42)

and for magnetoactive plasmas with the distribution function f(v) being
axially symmetric with respect to By ,

(52) (2352« 242

_ " v aUJ_ 31}"
(w ) mkz n_z_oo/ W — k“'l)" — nQ + 10 ’
kivy
(En >£23 = 2Wn:z_m/dvf J'z ( 9 ) 45(&0 k”’l)” - nQ) (43)

Together with the general formulas like (33), (34) these relations com-
pletely determine spectral distributions of fluctuations in the potential case.

Now let us apply the general expressions to the analysis of fluctuation
spectra in nonisothermal electron-ion plasmas. For instance, in the case of
nonmagnetized plasmas Eq.(34) yields [1]

(6nH)ygw = 67r%9; [{ [azk2 + Z,-t(l - @(pz))]z + w222t e }e ua
+ [(1 - <p(z))2 + ﬂzze'222] Zi,ue‘“z"?]/{ [azk2 +1—¢(2)

+Z,-t(l - (p(;tz))]z + w2’ (e”"z + Z,-t,ue"‘?zzy}, (44)
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p(z) = 226_22/0 e de, z= \/g:—s,

a’® = =L is the squared Debye radius, s = \/ST is the electron thermal

4rn.e?

where

velocity, t is the electron to,ion temperature ratio, and u? = Anft (M is the
ion mass).

It is clear that the ionic contribution is important only for small w. In
this case the fluctuation spectra strongly depend on the parameter a?k?
and the temperature ratio t. If a’k® > 1, e(k,w) — 1 and fluctuations are
produced by noninteracting electrons (incoherent fluctuations). On the con-
trary, for a2k? < 1, the electronic contribution becomes small and ionic fluc-
tuations dominate. In this case a central maximum occurs for an isothermal
plasma. Its Doppler width is determined by the ion velocity and side res-
onances associated with the fluctuational excitation of plasma oscillations.
In a strongly nonisothermal case, two maxima arise due to ion-acoustic
oscillations and high-frequency plasma peaks.

Similar results may be obtained for low-frequency fluctuations in a mag-
netoactive plasma. Indeed, for strong magnetic fields , w < wp;, Eqs.(43)
may be approximated by the formulas

9 k_LU.L k“%z
(UJ k) A /d J ( ) w — k}”’l)” + io’
kv 1 9f(v)
2 1VL _
ro(K) + k2 / dv [J ( ) 1] —
(6n*)e) = 27?/va3 (k:m) f(v)8(w = kyvy). (45)

Here we use the cylindrical reference system in the velocity space with the
v), -axis directed along B, .

When particle distributions are Maxwellian with temperatures 7, and
T), with respect to the external magnetic field direction, Eqs.(45) yield

e=h 0 - . - 22
k(w, k) = ko(k) + —————[@ [l — () +ivrze* ],

47raﬁk:2
1 _
k) = (1),
(6n?)2) = ¢67k"° e (B)e~7, (46)
(K]

where Io(B) is the modified Bessel function,

,_ T, _ T 1, )
ay = 7 L= 5 B=— =
4rn.e 4nn.e W k”s"

We note that the spectral distribution of fluctuation sources in this case
(strong magnetic field) is specified by the longitudinal temperature only.
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Thus,
1 23
e(w, k) = go(k) [1 + W(l — p(2) + t/mze? )
Z~i£ 1 ~ . ~a Ljig?
+612k2 ( - <P(/‘l”") + 1‘\/7-?/’[’26 ) ’ (47)
where

eo(k) = 1447 Y K(K),

~9 go(k) 2 g e_ﬁ/t"'z'IO(ﬁ/t.LZi)

i B TSGR AT Ty

Having substituted Eqs.(46) and (47) into (34), we find

(6n2)i = Vor f"l:" e~ Io(B) {{ [%dzkz+2if(1—w(ﬂf))} 2
+r IR e { [";,8((—113&2]“2 +(1- go(z))r‘

iﬂe—ﬁ"i’} /{ [a"k2 +1-(3)+ th”(l - 99(/"5))]2

Zi"ﬁe-ﬁ”f")z}. | (48)

Comparing Eqs.(48) and (44), we observe that these equations are re-
lated by the scaling transformations z — 2, a? — @*, Z; — Z;, ng —
noe P Iy(B) and K(w,k) — &(w,k) + ko(k). This enables to reproduce the
[ab(])ve analysis using the appropriate results for a nonmagnetized plasma
20].

Thus, electromagnetic fluctuations in a stable plasma (that is described
by particle distribution functions) may be considered provided one rather
simple quantity is known, namely, the particle transition probability with
regard to the external field influence. For distribution functions given, just
this quantity determines both response functions and correlation functions
for the Langevin sources. Though the range of validity of this theory is
essentially restricted (the plasma state is stable and stationary, the corre-
lation time is much shorter that the relaxation time), the general relations
of the type (14)-(16) hold also in the case when particle collisions are taken
into account. It is possible to show that these relations may be general-
ized for the case of large-scale (kinetic) fluctuations if one allows for in (6)
interaction between particles and other dynamical subsystems (including
stochastic ones) and thus obtains a modified transition probability.

The theory of fluctuations in a weakly ionized plasma has been devel-
oped just in this manner [21]. Now our task is to construct the transition
probability for a turbulent plasma under the assumption that turbulent
fluid-like motions are chaotic, and to obtain relevant modified microscopic
evolution equations for fluctuations. This will be done in the next section.
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3. Transition probability for turbulent plasmas

Let us generalize the transition probability (36) for the case of a turbu-
lent plasma state. We consider plasmas with developed turbulence and
assume that there occur large-scale turbulent pulsations. This means that
microscopic motion of noninteracting particles (and we are interested just in
the transition probability of this system) reduces to the motion of particles
under the influence of the external field that is averaged over a small macro-
scopic volume, and the stochastic motion of the latter. We admit thermal
motion of individual particles and chaotic (turbulent) large-scale motions
to occur independently. In this case, it does not matter whether we first
average over microscopic states and then over the ensemble of turbulent
pulsations, or vice versa.

In view of above speculations and under the above assumptions, the
transition probability for a specific turbulent stale may be written in the
form (36) but with the replacement

AXO(X' 1) = AXO(X' 7)+ AXT(7),

where AX7T(7) is the phase variable change due to the stochastic motion of
the elementary volume for the specific realization of interest, i.e.,

W(X, X'+ AXT(r)i7) = 8{X - X' = AX(X',7) - AXT(r)}. (49)

Inasmuch as we have assumed that microscopic distributions and distribu-
tions of turbulent realizations are statistically independent, we can average

W(X, X'+ AXT(1); T) over the ensemble of turbulent motions and carry

out further calculations making use of the general relations obtained in the
previous section. Thus,

WT(X,X';T)z/dAXTPT(AXT)W(X,X'JrAXT;T), (50)

where P,{AX) is the probability that phase coordinates of the elementary
volume are changed by AX for the time 7. Its explicit form depends on the
model of the turbulent process. In particular, if the elementary volume is
involved in the diffusion-drift motion, then

P(AX)= /duF(u)WB(Ar,u-%—Av;(),u;r). (51)

Here W(X, X';7) is the probability of a diffusion-drift transition in the
phase space for time 7 (v/ = u and v = u+ Av), F(u) is the velocity
distribution function for turbulent pulsations.

We have already mentioned that the knowledge of the zero-order velocity

moment of the transition probability is sufficient to treat the potential case.
As follows from (50),

WT(R,v/;7)= / dyWT(X, X', 7)= / dAT" P(AYTYW (R — ArT,v'; 7),
(52)

where

P,(ATT)E/dAvTPT(AwT) :/dv/dv’F(v’)WB(r,v;r’,v’;r). (53)
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Having performed the Fourier transformation, we find the transition prob-
ability for a turbulent system to be given by

dw’
W (v') = / P Wi (V). (54)

where Py, is the factor determined by the Brownian particle transition
probability, i.e.,

Pey = / dv / dv' F(v)WBkuw(v,v'). . (55)

Making use of (50), we rewrite the retarded Green function for the turbulent
state as ‘

G(+>T(X,X';r):/dAXTP,(AXT)W(X,X'+AXT;r)a(r). (56)

Then, having performed the Fourier transformation, we obtain the spectral
representation of the retarded Green function of a turbulent system in the
form

G (V) = | S B G, (57)

where Py, is the factor determined by the retarded Green function for the
Brownian particle, i.e.,

P, = / dv / dv' F(v' )G Bkw(v,v'). (58)

Thus, employing of the general definitions of the plasma dielectric per-
mittivity (23) and the spectral correlation function for the spontaneous fluc-
tuation sources (24), we obtain the general relations between these quanti-
ties in turbulent and nonperturbed states, i.e.,

9 d 7 -
k(w0 k)= [ 2L Py or(w' k), (59)

2

Ly
dw o

(6T :/Epkw_w,wﬁ)kw_w. (60)

The gnantity WB(X, X’.7) may be calculated from the Fokker-Planck
equation for the Brownian particle transition probability [22]. One can
also use simplified model equations, such as the Bhatnagar-Gross-Krooke
equation [21,23]

0 0 Biv vi oy
{E—I-va}w (X, X',1) =
= —V{WB(X,X’;T) - @(v)/dv”WB(r,v”, X’,T)}. (61)

Here v = 1/7r is the effective collision frequency, 77 t is the mean time of
free evolution for a fluid element.
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The solution to Eq.(61) is given by

dk dw
WB ,XI :/ 1k(r ¥ —iwrya7 B v’
xoxn = [k [5 W (v, V),
where
1W0{v — v')
WB , N = L
(V2 V') w—kv+w
ve(v) . ®(v) B :
(w—-kv+iv)(w—kv +iv) [l_w/de—kv+iz/ - (62)

This solution describes the Brownian particle motion in the phase space
and may be regarded as a possible version of the transition probability
calculation for turbulent plasmas, W8(X, X', 7).

Further calculations require specification of the transition probability
WE(X, X' 1) (or, in the potential case, the quantity W#(R,u,7). To do
this, we employ formula (62). In the limiting cases 7 < v=!, |r—r'| < (v)/v,
and 7> v, |r — /| > (v)/v, such relations become appreciably simpler.

In the first case (large correlation period 77 = % > 7, large correlation
length (v)7r > |r — 7’]), the correlation is weak,

WB(X,X',7)=6(r =t/ — vr)é(v — V'), (63)

the particle motion is free, the velocity is conserved, i.e., is equal to the
initial velocity v’. Then we have

W (v,v') = 2m8(w — kv)§(v — V'), (64)
P = 27r/dvF(v)6(w — kv). (65)
The retarded Green function is given by
(v —v')
(+)B N —

G (V’V)_zw—kv-l—fz?o’ (66)

and therefore CRw)

v
= dv 67
e 1/ w—kv+io (67)

Making use of formulas (54) and (57), we thus find that for the turbulent
plasma

GHT(v) = /dvlf‘(v)kwaitlkv(V’), (68)

We see that in the potential case both the transition probability and the re-
tarded Green funiction for the turbulent plasma depend only on the velocxty
distribution function of turbulent pulsations.

If the initial plasma drift is given, F(v) = §(v — up) , then

~ 1
P, =2r6(w -k , P =t————. 69
k mé(w up) k Lw—kuD+zo ‘ (69)
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and the transition probability corresponds to the free drift, i.e.,

WL (V) = Wil (V). GRSV = G L (V). (70)

kw—-kup

In the second case (small correlation period 7p = % &€ 7, small correla-
tion length (v)r < |r — r'|), the correlation is strong, i.e.,

2y
(w b kuD)2 + ‘)’2
o(v)
w~—kup + 14y’

Wio(v.v') =

2(v),

G (v.v') =i (71)

Here up is the drift velocity and D is the diffusion coefficient given by
up = /dvvtb(v),
1 Ty 2
D= 37T /dvv“@(v). v =k°D. (72)

The solution of (71) corresponds to the particle motion with regard to dif-
fusion and drift, ’

WE(v,v'ir) = emikuoT=kDirl (v,
1 1 4 2
B ., — ~prir—r'—uapT) «
WE(X, X" ) ar DT B(v). (73)

By virtue of strong correlation. the distribution over velocities v does not

depend on the initial distribution over v’. The strong correlation is caused by

strong collisions (i.e., important role of the collision term in Eq.(61)) which

determine the distribution over »’. At the same time, this distribution (i.e..

strong collisions) determines the drift and diffusion described by (72).
According to the definitions (55) and (58), we have

9 .
i P =i

Pw: G PR P TN
k (w—kup)? + 42 w—kup + iy

v=kD, (74)

and thus we find the trausition probability and the retarded Green function
of a plasma with drift and diffusion caused by strong collisious, to be given

by

2y

T AN

Wi (V) = (w—ku' —kup)? + ~2°

G (V') = : (75)

w—ku — kup +iy’

Formulas (68) and (75) completely determine the dielectric permittivities
and the spectral distribution of the spontaneous fluctuation sources in a
turbulent plasma. The explicit expressions for the dielectric permittivity
and the spontaneous fluctuation sources spectral distribution in a turbulent
plasma also may be derived by substituting expressions (65), (67), and (74)

for Py, and Py, into (59) and (60).
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The results obtained may be reproduced making use of the modified
equation (1). One has to separate in F the forces, responsible for the large-
scale turbulent pulsations, and to describe their effect on the microscopic
particle motions in terms of interaction with an additional subsystemn (tur-
bulent thermostat). Indeed, having assumed that Eq.(1) describes only
microscopic particle distributions in the presence of large-scale plasma mo-
tions, one has to introduce in the right-hand part of LIq.(1) the collision
term with regard to the fact that F(X,t) must relax towards the distri-
bution averaged over the ensemble of turbulent pulsations. We take the
collision term in the form

Ir = —L{.'F(X,t) - / dAr P, (Ar)F(r - Ar,v,t)}, (76)
Tr Vi

where 7p and Vp are the characteristic time and characteristic volume of tur-
bulent perturbations, P.{Ar) is the probability that the elementary volume
coordinate is changed under the influence of the turbulent field. Assuming
the distribution to be Ganssian. we write it as

_ (Ar—ugr)?
/8

!
(2m )72y

2V,

P.(Ar) = (77)

where uy is the drift velocity of an elementary volume. Having expanded
F(r — Ar.v.t) in terms of Ar. we obtain the Fokker-Planck collision term

to be 3 VF(X
( OF (Xt
_ 2 [pPrin
or
where the diffusion coefficient D and the drift velocity u, are given by

1

IT - ud]:(X,t) . (78)

Jr

D=— dArAr’ P, (Ar),
Tr Jvr

u; = i dArArP,(Ar).
Tr Jvr

Thus, the equation for the microscopic phase density takes the form

d 0 1 0 7] 0
— — 4+ —(F*'"+F)— }'X.t:—[D—— }fX,t. 79
{(9t+v8r+m( * )av} (Xt = 55 [Por — o) 70 (79
This equation may be used in the same manner as Eq.(1). As a result we
reproduce all the relations of the first section in which. however, W(X, X', t)
satisfies the equation

o 9 1. 0 P L} e
{E+Var+}ﬁ(F +(F))gy — g, ~ Dymy WX Xm) = 0. (80)

It is not difficult to show that in the absence of external fields

() oy i
G (V) = Sy TR, 3 kD

or .
28%D

W V) = G Tk + (D)
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Thus, the model representation of the transition probability (50) cor-
responds to the microscopic description of the phase density in the system.
with relaxation. This suggests that one can derive an equation lize (80)
more consistently, in terms of the kinetic fluctuation theory making no at-
priori assumptions that turbulent motions do not depend on the microscopic
distributions.

Acknowledgements

The authors acknowledge the financial support of NWO and the Ukrainian
State Committee of Science and Technology. ’

References

(1] Sytenko A.G. Electromaguetic fluctuations in plasmas. New-York-
London. Academic Press. 1967.

(2] Sytenko A.G. Fluctuations and non-linear wave interactions in plasmas.
Oxford et al., Pergamon Press, 1982,

[3] Nozieres P., Pines D. Iuteraction in solids. Collective approach to the
dielectric constant. // Phys. Rev.. 1958, vol. 109, p. 762-777.

[4] Thompson W.B.. Hubburd J. Long-range forces and the diffusion co-
efficients of a plasma. // Rev. Mod. Phys., 1960, vol. 32, p. 714-718.

[5] Rosenbluth M.N.. Rostoker N. Scattering of electromagnetic waves by
a nonequilibrium plasma. // Phys. Fluids.. 1962, vol. 5, p. 776-788.

[6] Ichimaru S. Theory of fluctuations in a plasma. // Ann.Phys., 1962,
vol. 20, p. 78-118%.

[7] Klimontovich Yu.L. The statistical theory of nonequilibrium processes
in plasma. Cambridge. MIT Press, 1967.

(8] Klimontovich Yu.L. Kinetic theory of non-ideal gas and non-ideal
plasma. Oxford, Pergamon, 1982.

[9] Sytenko A.G.. Yakimenko L.P. In: Advances in Plasma Physics / Ed.
A.Simon, W.B.Thompson. New-York, Intersciences, vol. 5, p. 19-32.

[10] Ichimaru S., Yakimenko 1.P. Tramsition probability approach to the
theory of plasmas. // Phys. Scr., 1979, vol. 7, p. 196-208.

[11] Klimontovich Yu.L.. Withelmsson H.. Yakimenko I.P., Zagorodny A.G.
Statistical theory of plasma-molecular systems. // Phys. Rep., 1989,
vol. 175, p. 265.

[12] Sytenko A.G., Sosenko P.P. Kinetic theory of low-frequency nonlinear
structures in magnetized plasma. In Proc. 1987 Intern. Conf. Plasma
Phys. (Kiev): Invited Papers / Ed. by A.G.Sytenko, Singapore, World
Scientific, 1987, vol. 1. p. 436-452.

[13] Sytenko A.Gi., Sosenko P.P. // Phys. Scr., 1991, vol. 43, p. 609.

[14] Sytenko A.G.. Sosenko P.P. Kinetic theory of nonlinear interactions of
low-lrequency oscilations in inhomogeneous magnetoactive plasma. //
Ukr. Fiz. Journ., 1990. vol. 35, p. h54.

[15] Sytenko A.G., Sosenko P.P. Low-frequency turbulence in an inhomoge-
neous magnetized plasma. In Proc. 1989 Intern. Conf. Plasma Phys.:
Contributed Papers, New Delhi, 1989 / Ed. by A.Sen and P.K.Kaw,
Bengalore. Indian Academy of Sciences, 1991, vol. 3, p. 877-880.

[16] Gressilon D., Cabrit B.. Villian J.P. et al. // Plasma Phys. Contr.
Fusion., 1992, vol. 34, p. 1985-1991.

[17] Gressilon D.. Cabrit D., Maafa N. Plasma collective scattering spectra:
from particles to fluid motions. // Fizika Plazmy, 1993, vol. 19, p. 469.



122 O.H.Sytenko, A.G.Zagorodny

[18] Sosenko P.P., Gressilon D., Maafa N. Low-frequency electrostatic fluc-
tuations in macroscopically agitated magnetized plasma. Contrib. In-
tern. Workshop on Trausport, Chaos and Plasma Physics, 5-9 July
1993, Marseille, France.

[19] Sosenko P.P., Gressilon D. Density fluctnations in macroscopically agi-
tated magnetized plasma. Palaiseau, 1993 (LPMI, Ecoll Polytechnique
/ PMI 2839).

[20] Sosenko P.P. Quasiparticles in macroscopically agitated magnetized
plasma. Palaiseau, 1993 (LPMI, Ecole Polytechnique / PMI 2827).

[21] Williams R.H., Chappel W.R. Phys. Fluids 14(1971) 591

[22] Chandrasekhar S. Stokhastic problems in physics and astronomy. //
Rev. Mod. Phys., 1943, vol. 15, p. 1-89.

[23] Bhatnagar P.L., Gross P.E., Krook M. A model for collision processes
in gases. I. Small amplitude processes in charged and neutral one-
component system. // Phys. Rev., 1954, vol. 94, No 3, p. 511-525.

4O PEHOMEHOJIOTTYHOT'O OTINICY
EJIEKTPOMATHITHUX ®PJIYKTYAIIIN
B TYPBYJIEHTHIM IIJIA3MI

0O.I".Curenko, A.I".3aroponsiit

O6roBoprIOTLCA OCHOBHI ACMEKTH JIAHXKEBEHIBCBKOIrO IMIOXOLy
B Teopil paykryaumir y nnasmi. [lokazano, mo sk menekTpud-
Ha QyHKIA, TaK | KopejAuiiiHa GyHKUIA GAYKTYOIOUUX HXKepel
(BKJIIOUAIOUM MAKPOCKOIIYHO 36y IKeHy I71a3MY) MOXYTh 6y TH Mo-
XKyTh 6yTH pospaxoBaHi 3 gonomorow ¢yHkwi I'pina pIBHAHHA
eBosomll A ¢asoBol ryctuHn ¢GuaykTyaliil B cucTeMi 6e3 caMo-
Y3rodKeHHA eJIeKTpOMarHITHOl BsaeMomi. B paMkax nboro Ha-
6NUKEHHA MIKPOCKOIIYHY TEOPIIo eJeKTPOMATrHITHUX (G IYKTYyallin
B IJIa3Mi y3arajibHeHO Ha BUMNaloK TypOyleHTHOl [J1a3MU 3 BUNA-
KOBHMM plaMHONOMOHUM pyxoM. [IJis cMCTeMH, WO pO3TIANAETLCA,
3HAMIEHO 3arajibHl CHBBIMHOUWEHHA A QJNYKTYAIiHHOrO CNEeKTPY.



