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The supersymmetry representation for correlation functions of
spherical model and non-interacting quantum gas is obtained. Us-
ing this representation the configurational averaging can be performed
before thermodynamical one and the problem of calculation of config-
urationally averaged correlation functions of the disordered system is
reduced to the calculation of correlation functions for Fermi-Bose in-
teracting regular system.

1. Introduction

It is known that the calculation of configurationally averaged free energy for
disordered systems is not an easy problem. In 1975 Edwards and Anderson
proposed a new method (the so called replica method) for calculation of
free energy of disordered systems [1]. In this method the disordered system
is replaced by systems (“replicas”) which are identical to the original one.
The limit n — 0 gives the initial model. Using replica method the configu-
rational averaging of free energy can be performed before thermodynamical
averaging. The partition function of a regular model is obtained after the
averaging and standard methods developed for regular systems can be used.
However, the replica method has some difficulties. For example, the proce-
dure of analytical continuation of non-zero integer n to n = 0 is not simple,
the Hamiltonian obtained by the replica method is very complicated and
cannot be solved exactly.

Another method, where counfigurational averaging can be performed at
the initial stage of calculations, is the supersymmetry method [2]. This
method is applicable to the description of the motion of non-interacting
particles in a random potential and is based on the use of functional integrals
over both commuting and anticommuting variables. After configurational
averaging the problem is reduced to the supersymmetry field theory. The
supersymmetry method can be used for an essentially narrower class of
problems than the replica one but it is free of the problem of analytical
continuation. :

Note also that the representation of Green’s function in the form of
Feynman’s path integral [3] is usefull for investigation of electron motion in
random potential [4]. Whithin this method the configurational averaging of
Green’s function can be performed before calculation of the path integrals.
In a result the path integrals for a regular system are obtained and the
calculation of path integrals is simplified.
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In the present paper the correlation functions of disordered systems are
considered. The main problem in calculation of the configurationally aver-
aged correlation functions of disordered systems deals with a factor 1/Z (Z
being the partition funtion) in statistical operator. The idea of the present

paper is to rewrite 1/Z as a partition function Z’ = Spe=PH' of some new
system with the Hamiltonian H’ and then to perform the configurational
averaging. In the present paper this idea is realized for spherical model and
for non-interacting quantum gas and as a result the supersymmetry rep-
resentation for correlation functions is obtained. Using this representation
the configurational averaging can be performed before the thermodynamic
one and the problem of calculation of configurationally averaged correlation
functions of disordered systems is reduced to the calculation of correlation
functions for interacting Fermi-Bose regular systeins.

2. The spherical model

The spherical model is one of the most studied models of statistical mechan-
ics (see, for example, [6] and references therein). The disordered spherical
model was investigated by Pastur [7]. It was shown that straightforward
generalization of the spherical model to the disordered case for a finite-range
interaction has some rather unnatural properties: the phase transition in
the model exists even in one dimension, and even in the case of ferromagnet-
ic interaction it does not vanish as a homogeneous external field is switched
on and the spontaneous magunetization is zero for T < T.. In ref.[7] for
the ferromagnetic interaction. a modification of disordered spherical mod-
el was proposed which displays the behaviour expected for the disordered
ferromagnets.

In present paper using the supersymmetry method we calculate the cor-
relation functions of the disordered spherical model and modified disordered
spherical model. The explicit expresions for critical temperature of both
models are obtained. The results are in agreement with [7].

At first we consider spherical model for two-dimensional classical spins.
In this case the supersymmetry representation for correlation functions can
be performed in the simplest way. The generalization for 2n—dimensional
spins can be easily performed. The supersymmetry representation in the
case of 2n + 1~dimensional classical spins faces some difficulties but can be
performed as well.

2.1. The supersymmetry representation for correlation functions

The spherical model Hamiltonian [5] of two-dimensional classical spins reads

H==3_1J;S:S; +#ZS?, (2.1)
1, i

€

where i, j are the site numbers of lattice, S; = (5} ,Sj-’) is 2-dimensional vec-

tor, J;; is the random exchange interaction of i and j spins, jz is determined
from spherical condition

! Al SZ _
¥ s =L (22)

In present work only finite-range ferromaguetic interaction J;; and the case
of bounded fluctuations of exchange interaction are considered.
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Let us introduce a complex variables
@; = S;L + 'L'S;-’, (,9;-‘ = S;-v - iS;‘-'. (2.3)

Then the Hamiltonian and the spherical condition read

H==-Y Jielei+uy_ vlei (2.4)
; :
1 N
¥ 2L {ee) = 1. (2.5)

6

Now let us consider the spin correlation functions or the mean value of
function of spin variables

(A) = %/(dw"d@)A(w*M) exp (— Zfij w?%) ; (2.6)
2y
where ‘

N
(do*dp) = ] dS7ds?,

A(‘ID*’ 99) = A(‘P;’ Pl 99*N? SON) = A(Sf", Sil’ Ty 511\:7’ S]y\7)7
Lj = (ubij — Ji)/T.

The partition function Z is

N
* * m
Z= /(dw dp) exp (— ZlijSoi‘Pj) aPZIVAL (2.7)
. tJ

i!]‘

It should be noted, that we consider only the case of bounded fluctua-
tions. Therefore, there is such u > 0 that integral (2.7) converges.

We shall be interested in the configurationally averaged mean value (A),
where

(‘.._.)z/HdAJ,-j P(...AT;. )(.), (2.8)

AJ;; = ji_,‘ - Jij,

P(...AJ;;...) is the distribution function of exchange integral. We assume
that fluctuations of exchange integral are bounded and statistically inde-
pendent

P(...AJ; . )= H PZ'Y]'(AJ“‘). (2.9)

i<y

Note, that the calculation of configurationally averaged quantity (A4)
using (2.6) is difficult because of the presence of factor 1/Z. The main idea
is to write 1/Z as a partition function of some new system and then to
perform configurational averaging.
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Using Gaussian Grassman integral we obtain

1 1 1 . .
7N det || I;; l|= ;—N-/dnldm ...dnydnn exp (— Z]ijm' n | =2
. ]
' (2.10)
Note, that Z’ can be treated as partition function of spherical model with
anticommuting variables.

Then (A) reads

1
(A) = ;—ﬁ/(dgo*dc,o)(dn*dn)A(t,o*,go) exp (—thiaﬁj) , o (211)

i

where we have introduced the supervectors

; Pi R
<Di=<n>, ot = (pF n7).

The functional

F:—Z[ij o} ¢
i

is invariant under linear transformation

9-COR e
75 -z 1 7

where ¢ is Grassman variable.

This transformation can be treated as a rotation in the space of super-
vectors. That is why the functional has supersymmetry with respect to the
group of transformations mixing commuting and anticommuting variables.

Note that important result of supersymmetry is

(ies) = =(nin;). (2.13)

It can be easily proved. Consider (2.11) in the case A = 1. Then taking the
derivative of (2.11) with respect to I;; we obtain (2.13).

Using (2.11) the configurationally averaged correlation function (A) can
be written in the form

@) = & [uedearanatee) x (2.14)

For distribution function (2.9) one can perform configurational averaging
exactly

exp (% > AT </>;*¢j) = exp(U(p, 1)), (2.15)

b
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where

Ulpn) = 3 32 10U (895 + 6} 60)/T)),

U,'j(:z) = /dAJi]'Pij(AJij)exp(—AJija)),

and for (A) we have

A = =5 [l de)dnan i, o) exp (Fg,n)), (2.16)

——~

where

F(o,n) = Fole,n) + U(e, 1),
Fo(p,n) = - ZE ot o;,
4,3

T; = (ubiy — T5)/T = (uéi; — J(Ri — R,))/T.

Because ¢}, is invariant under linear transformation (2.12) the full
functional F = ﬁg + U is invariant under this transformation too. Thus,
the configurational averaging does not break the supersymmetry. Note also
that the configurational averaging over the fluctuations of exchange integral
leads to Fermi-Bose interaction.

It is convenient to introduce new variables

1 N
Pk = =)
>
1 N
e = g
=1

J
Vs

e~ KRy (2.17)

kR,

3

Then

(de™dep (defdex),

) =11
k
(dn*dn) = [[(dnjdm),
k

and Fp is diagonal

Fy = =) I(k)(¢f o), (2.18)
k

where
I(k) = (p - J(k))/T,
J(k) = 3" J(R;)e~ Ry,

Because in the limit ¥ — oo one has —11\72(99;“99,) = %E((p:‘%) the
k3 7

spherical condition now can be written as

71,‘%(90’12990 =L (2.19)
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2.2. Quadratic fluctuation approximation

Unfortunately, the calculation of functional integral (2.16) with full func-
tional can not be done exactly. Consider the simplest approximation. We
assume that fluctuations of exchange integral are small. During all calcula-
tions we shall preserve the terms up to the quadratic fluctuations of exchange
integral AJ;;%. We carry out this approximation for the case T > T, where
T. is the critical temperature.

In quadratic fluctuation approximation we obtain

exp(U(e,m)) =1+ m ZD” (¢F ¢; + ¢+¢1) (2.20)

where D; ; = AJ;;* = D(R; — R;).

In k-space this result reads

1
exp(U(p,m) =1+ 5 3 3 (Dlkr +Ki) + Dk = kp))  (2:21)
ky Ky ki K,

6(ky + ki — ka — K3)(9f, 41c,)(Si; 9c)

On the basis of this approximation using Wick’s theorem we can easily
calculate the pair correlation function. The result is the following

Fierid = (Fgaado + HAMTZEAds (222)
where
AK) = 7+ 3 (D(c + )+ D(O) oigpalo.
q#0

Firido = —
\PkFk/0 = J(K)
is the correlation function calculated with Fy.

In quadratic fluctuation approximation (linear approximation with re-
spect to D) two term of (2.22) can be involved in the denominator (¢} ¢k )o-
Then (@} ¢k) has the same form as (¢} K)o

T

(ehex) = T (2.23)
where
J(k) = J(k) + ij* >~ D(k+q) (pgPa)o, (2.24)
q#0
- D(0)
A

Then for j» we obtain the equation

—Z —j(k) : (2.25)

k;éU
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The critical temperature can be obtained from the pole of correlation
function (2.23) at k = 0. Then

fi. = J(0). (2.26)
Substituting (2.26) into (2.25) for the critical temperature we obtain
1

1 1
T. Nkzﬂ J(0) = J(k) (227)

The asymptotic behaviour of i at T — oo is i = T, and for the
correlation function in the high temperatures limit we obtain

(Pppx) — 1 while T —oo.

Then in the site representation

(pre;) — b;; while T — oo.

Let us consider, for example, the case of nearest-neighbours interaction.
In this case the renormalized exchange integral (2.24) can be calculated
exactly , :

d
J(k)=2J Z coskya, (2.28)
a=1
where
= AJ2 L (p . p
J'J<1+ 72 2d (27f(2_)_ l))
1 1 1 2m 27 1
f(z) ='N Z y — = (QW)d/dyl'.../dyd e
k#0 z — ¥ cosk,a 0 0 T — Y COos Yy

a=1 a=1

d is lattice dimension, a is lattice constant.

At critical temperature = . = 2Jd and then f(u./27) = f(d) =
2J/T?, where T? is the critical temperature of ideal spherical model with
exchange integral J. Using (2.27) and (2.28) for renormalized critical tem-

perature we obtain
A2 (T 1
_ g0
T.=T. (1 + 72 (Tﬁco - 2—(;)) . v (2.29)

It is interesting to note that J/T? > 1/2d and the fluctuations of ex-
change integral in the case of nearest-neighbours interaction lead to increase
of critical temperature of the spherical model straightforwardly generalized
to the the disordered case. The renormalized critical temperature is nonzero
even when the critical temperature of the ordered model is equal to zero.
Thus the phase transition in disordered model exists even in one and two
~ dimensions. This result is in agreement with the result of paper [7].
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2.3. The modified spherical model

The Hamiltonian of modified spherical model proposed in [7] with two-
dimensional spins reads

1 1 * * *
H= 33 0ii(8i = 85)% + 13 8% = 5 2 Jis(6i =) eims)+u 2 iwi
7 1 147 T
(2.30)

Note, that in ordered case the Hamiltonian of modified spherical model
is equivalent to the spherical model. In disordered case the Hamiltonian
(2.30) contains the diagonal disorder. In [7] it was shown that such modifi-
cation of the spherical model leads to the properties expected for disordered
ferromagnets and this model can be considered as a good model of disor-
dered ferromagnet.

The supersymmetry method developed for spherical model can be easy
used for modified spherical model. Using the same approximation as in the
case of spherical model, for correlation function of modified spherical model
we obtain

< _ T
<‘Pk‘rok> = u+ j(O) _ j(k) (2'31)
where '
= 2 - 21 —
J00 = 100 - 200 + 25 Dk + @) (Ggeale: (232
q#0

In the case of nearest-neigbors interaction the result for the critical tem-

perature is the following
AJ?1
L=T9(1- -1. .33

The fluctuations of exchange integral in the case of modified spherical
model in contrast to (2.29) lead to decrease of critical temperature.

2.4. The generalization of supersymmetry representation for ar-
bitrary dimension of spin

The generalization of supersymmetry representation for correlation func-
tions in the case of even dimensions of spins faces no problems. The su-
persymmetry representation in the case of odd dimensions of spins is more
complicated but also can be performed. Let us consider the spherical model

with one dimensional spins. In this case 1/Z = y/det || I;; || /= and for
mean value we have

(A) = gz /det I T || [(d57) exp (—21,-]-53"53) A(SE,..., S%)-
b (2.34)
The main problem is that (2.34) contains y/det || I;; ||. Note, that
v/det || Ii; ||, where I;; is symmetric matrix, can not be written as Gaussian
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integral over Grassman variables. This problem can be solved if we rewrite
(2.34) in the following form

(A) = (2.35)

7r‘N/2 " . , .
= det || I;j || —— — /(dbi)exp [—Z[,,-S}S}} A(SE, ..., 8%) =
det || L; || - "

dsdsv) o .
= det “ I” “ /(Texp {— Z.[L](L 19 + SlyS]y)j| A(Sl s ?SN)
4
Equation for u is
AR
TSP = 1. (2.36)
=1

Taking into account that ((S¥)?) = ((5¥)?) the equation (2.36) can be
written as

1 Y 2 — 1
ﬁ;< Hh=1 (2.37)

On the basis of (2.35) and (2.37) the calculation of correlation functions
of spherical model with one-dimensional spins is reduced to the calcula-
tion of correlation functions of spherical model with two-dimensional spins.
Therefore the method described in sections 1 and 2 can be used.

3. Non-interacting quantum gas

In [2] the supersymmetry representation for Green’s function of electron in
a random potential was obtained. In this section we propose the new super-
symmetry method for calculation of configurationally averaged correlation
functions of non-interacting quantum particles. We develop this method for
electrons on a lattice. The proposed supersymmetry method can be used
also for description of a non-interacting bosons in random potential.

3.1. The Hamiltonian and the main definition
Consider non-interacting electron gas which is described by the Hamiltonian
Hy = Zeiaj;aw +ZZVija$ajU, (3.1)
g LAY

where a;t,, a;s are creation and annihilation operators of fermions with spin
o on the lattice site ¢, ¢; is the energy of fermion located at site i , V;; is
the hopping amplitude between sites ¢ and 7.

The electron correlation functions are defined in a standard way
1
(A) = = SpyAe Hi/T+uN /T (3.2)
Zs
where A denotes the product of creation and annihilation operators,

Zf = Spfe—Hf/T-i-p,Nf/T
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is the partition function of fermions,
Ny= Za?(;aw
1,0

is the operator of fermion occupation number, p is a chemical potential.
In the case when ¢; and V;; take random values we shall be interested

in the configurationally averaged correlation functions (A), where configu-
rational averaging contains the averaging over ¢; and Vi;

(A) = /(dedV)P(e,V) <A>, (3.3)

P(e,V) is distribution function of ¢; and Vj;.
The performing of configurational averaging using (3.2) is difficult be-
cause of factor 1/Z. The aim of next section is to solve this problem.

3.2. The relation between fermion and boson partition functions

In this section we show that partition functions of non-interacting fermions
Z¢ and non-interacting bosons Z, are connected by the following formula

m = Zy(p £ inT). (3.4)

For this purpose first of all let us consider the system described by the
Hamiltonian of simple fermion harmonic oscillator

Hy = eata. (3.5)
~ The partition function of this system is
Zi(p) =1+ e~ (=T, (3.6)

Now consider the boson harmonic oscillator

Hy = ebth, (3.7)
with partition function l
Zig) = — Lt (3.8)
b(/"') T - 6_(6_,‘)/71' :

From (3.8) and (3.6) we see that

1 o
_e:l:i‘lre—(e—y,)/T - Zf(,u)

Zy(p £ inT) = -

and thus (3.4) is true.
It is interesting to note that correlation function of fermion and boson
subsystem are connected in the following way

({l+a)u = —(b0) pint (3.9)
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The formula (3.4) is also true for the case of non-interacting.electrons
described by the Hamiltonian (3.1) and non-interacting bosons described
by the same Hamiltonian, where aw,a?c', are replaced by boson operators

bw,b;';. This can be proved using the procedure of diagonalization. After
diagonalization (3.1) takes the form

Hy =3 E,Af, A, (3.10)

n,ao

It is obvious that the Hamiltonian of bosons satisfying (3.4) is
Hy =Y E.B},By.,. (3.11)

After returning to initial operators the Hamiltonian of bosons (3.11) takes
the form
Hy =) ebhbis+ > > Vijblbjo. (3.12)
io Y

Thus, the partition function of fermions described by the Hamiltonian
(3 1) and the partition function of bosons described by (3.12) are connected
via formula (3.4).

The correlation functions of fermion and boson subsystems satisfy the

following relation
<a’?;'a.1a> - <b10b70>p,:tz7rT (3'13)

This also can be proved using the procedure of diagonalization.

3.3. The supersymmetry representation for correlation functions

Using (3.4) for correlation functions of fermions we obtain
(A) = Z(p+ inT)SpsAe e/ THulisIT = (3.14)
— Spbe—Hb/T+}LNb/T:i:i7beSpfAe—Hf/T+uN;/T =
— SpAe—H/T+uN/T:i:'i7rNb7
where the full Hamiltonian is
H = H; + Hy, (3.15)

and the operator of boson occupation number is
— + 3.
=2 blobic,
1,0

N:Nf-{-Nb.

Note, that the full Hamiltonian is supersymmetrical one. It is obvious
in the case of a system described by simple Hamiltonian (3.5). Then

H =¢(ata+bth). (3.16)
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In the general case the full Hamiltonian
H =Y elal,aio +b},6i0) + D Vij(al,ai0 + b7,bj0) (3.17)
1,0 11.7

is also supersymmetrical one that can be seen after diagonalization.
The Hamiltonian (3.17) can be written in the form of supersymmetric
quantum mechanics

H=Q%Q +Q Q™. (3.18)
The generators of supersymmetry read
Q* =3 Tijal,bjs, (3.19)
]
Q™ =3 ) Tibj,aic, (3.20)
o i,j

where Hermitian matrix T satisfies the equatidn
(T?); = ebij + Vij. (3.21)

Therefore the Hamiltonian (3.17) is supersymmetrical Hamiltonian and
that is why the representation for correlation functions (3.14) can be called
the supersymmetry representation.

3.4. The configurational averaging

The supersymmetry representation is convenient for performing the con-
figurational averaging. Using (3.14) the configurational averaging can be
performed before the thermodynamical averaging

[A) = SpAexiNotuN/T-H/T (3.22)

where the result of configurational averaging can be presented in the follow-
ing form i
e~H/T = ¢~H/T, (3.23)

The effective Hamiltonian H does not contain random parameters. The-

refore H can be considered as the Hamiltonian of regular system. The ef-
fective Hamiltonian, generally speaking, includes the interaction between
bosons and fermions. Thus the disorder is reduced to Fermi-Bose interac-
tion. In fact, our problem now is to calculate the correlation functions of
Fermi-Bose interacting regular systems.

Unfortunately the effective Hamiltonian can not be calculated exactly.
Using the well known approximation in the case of high temperatures

e—H/T o—HIT+(AH)2[2T?

we obtain

(AH)?, (3.24)
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where H is the Hamiltonian (3.17) with mean value of random parameters

& and V;;. (AH)? contains Fermi-Bose interaction. For example, in the
case when only ¢; takes random value we have

(AH)? = ZE Ae; Ke; (afair + b;;b,;,)(a;;,aja, +0% b)) (3.25)

aa! 4]

where A¢; Ae; = D(R; - R;j).

Note, that even within tfle simplest approximation the effective Hamil-
tonian (3.24) is not simple and can not be solved exactly. But it is the
Hamiltonian of regular system and therefore the method developed for reg-
ular systems can be used.

3.5. Non-interacting bosons in random potential

It is clear that supersymmetry representation can be done similarly for
bosons in random potential. Consider the boson system described by the

Hamiltonian )
Hy =Y ebfbi+ Vibb;. (3.26)
7 i

In this case the result of supersymmetry representation for correlation func-
tions is the following

All notations here are the same as in previous sections. Note, that this
representation is similar to (3.14) and only N, is replaced by Ny.

The supersymmetry representation is convenient for investigation of
Bose condensation in random potential and this problem will be the subject
of special paper.

Conclusions

Thus, the main idea of present paper is to rewrite 1/Z, where Z is partition
function of system with Hamiltonian H, as a partition function Z’ of some
new system with the Hamiltonian H'. It is interesting to note that if initial
H is the Hamiltonian of Fermi system than H' is the Hamiltonian of Bose
system and if H is Bose Hamiltonian than H' is Fermi Hamiltonian. H'
describes non-realistic fictitious system. The introducing of this fictitious
system is to some extent similar to introducing of Faddeev-Popov ghosts in
quantum field theory. Note, that the full Hamiltonian H + H' is supersym-
metrical one and it describes non-interacting Fermi and Bose subsystems.
Therefore the proposed representation for correlation functions is supersym-
metry representation. Using this representation the configurational averag-
ing can be performed before thermodynamic averaging. In result we obtain
the regular system with interaction between Fermi and Bose subsystems.
Therefore, the methods developed for regular systems can be used.

In this paper we deal only with a non-interacting systems. The inter-
esting question is whether the supersymmetry representation for correlation
function can be done in the case of interacting systems. In order to answer
this question we must represent 1/Z for interacting system as a partition
function Z’ of some new interacting system. Even when we rewrite 1/Z as
Z' a question is whether the interaction does not break the supersymmetry.
All these problems need a detail investigation.
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CYNEPCUMETPIVHE ITPEICTABJIEHHA

KOPEJIAUINHUX OYHKIIN
HEBIIOPAOKOBAHUX CUCTEM

B.M.Tkauyk

OTpuMaHo cynepcuMeTpiiiHe NpefCTaBIeHHA 1A KOpeJIANHUX
gyﬂxuiﬂ c epuUHOl MOJeJIl Ta HEB3aEMOMIIOUOTr0 KBAHTOBOTO ra3y.
MKOpPVMCTOBYIOUM I MpeNcTaB/eHHA KOHGirypaliiine ycepenHeHHs
MoKe GYTH 3miiicHeHe Mepell TePMOIMHAMIYHUM i Tpo6ieMa pospa-
XYHKY KOH}IrypauwiiiHo ycepelHeHUX KOpeJALAHNX ¢yHKuin He-
BIIOPAIKOBAHO! CUCTEMH CIPOILYETHCA N0 PO3PAXYHKY KOpeENAllA-
HUX ¢ yHKUiX aas Gepmi-6ose B3a€MOIiI0U0]l peryJIApHOl CUCTEMMU.
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