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The investigations concerning the behaviour of the fluid near the
critical point still remain actual. In the previous papers, by using the
collective variables (CV) method, we have obtained the grand partition
function in the form, suitable for investigation in the vicinity of the
critical point.

The aim of the present paper is to describe the system both above
and below T,,to analyse a behaviour of the chemical potential u below
T. and to obtain a horisontal plateau on the plot for p corresponding
to the liquid-gas phase transition.

1. Introduction

A homogeneous classical single-component system of N pairwise interacting
particles in volume V at temperature T is considered in the vicinity of the
critical point. Interaction between every two particles we will suppose to
consist of two parts. The first one, denoted by ¥ descrabes inpenetrability
of the particles:
oo, r<o
U(r)= { 0, r>o0 . (1.1)
o is a diameter of the particles. The second part, described by the function
®(r) belonging to Ly class, characterses attraction. It is negative at long
distances r and possesses a potential well. For the Fourier transform one has:
min &(k) = ®(0) and ®(0) < 0.The shape of ®(r) for small r in the region
r < o is not completely defined. For the full potential V(r) = ®(r) + ¥(r)
at 7 < ¢ we have V(r) = oo, because of the ¥(r)’s bechaviour. This
uncertainity of ®(r) at r < ¢ one may employ to improve quantitively the
final results in further consideration of the theory.
For the starting form of the grand fartition function in the CV method

the following expression was obtained [1]:
E =522 (1.2)
where
- =
== Z ——'/exp [-B¥N]dT N
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is the grand partition function of the reference system (RS),which we sup-
pose to be known. Z¢ is an additional part with respect to RS. It is con-
nected with the contribution from the short wave density fluctuations, dis-

tributed according to Gaussian low. Values of the wave vectors | k | of these
fluctuations are greater than certain quantity B, which obeys the following
condition [7]:

M7E) > SAE() (1.3)
for all | k |> B, where My(k) is the RS’s bynary structure factor:
Ma(k) = Ma(ky, ko) = 6,z (1= 6z )(N)+ (1.4)
HUN) — (N0, 8, + (VY = D (k)

Here brackets (- --) meen the grand canonical averege over RS, 7 is the

Kronecker symbol, 42 (k) denotes the Fourier transform of the Bogolubov’s
pair correlation function of N particles:

W) = [ () - e Far, %/F{V(r)di’:l L)

As it was shown in [7]

—_ 1 27)?
Zo= [ewl-1 ¥ et - T2 3 Makoe_g) (16)
|k|>B \k|>B
v . |
(1 + Dy + ED% + - ) eXp{lQﬂ' Z prE} H dw’zdpic' ,
|E|>B |E|>B

where
—12m)™
DZ: Z ( m') Z Mm(kl,.--’km)w'i;l ...w}.c.m’ (17)
m>3 . El:'..)Emv|Eil>B

a(k) = g—ﬂé(k), N = (V)

The transformation

n (~1)m o
Dy—Dy=3  —i= 3. Mulknkn)g g
m23 By oo o ki | > B ky km

(1.8)

leads to the following results

Zox T1 [+ i(kjo(h]E =05 [0 1= gt (19
E|E>B
g%(r12) N(N —1)(N -2)

—*T)Fz(?‘m)dﬁz + /[(eg(ng) —1 - g(r12))x

3lv2
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(e!](’l'za) -1- 9(7"23))(65’(713) —1-g(m3)) + 3g(rlz(€g(723) — 1 = g(r23))x
(eg(m) — 1= g(r13)]F3(r12, i3)dMadiis + - -}
where
T 1 — k(=7
gri)=9(1 7 )= 3 pelk)e ™m0,
EJE>B
6 = ﬂ—l = kgT

M, (k) is renormalized binary structure factor:

Mz(k) = Mz(k) + E M4(k’ —k, kq, —k1)<wl‘c‘1W_ic‘l> ’

B1,|F1|>B

=

(wpw_g) = g(k) = ﬁ)ﬁ]\%{m is the Fourier transform of the screened

. potential.
Thus, for g(k) we get the equation

g(k) = ; (k) (1.10)
T+ a(t)[Ma(k) + 5 27, 7o 5 Malk sk, —k1)g(ho)
Within the first approximation one has
O(k
ok)= 1+ %go(k)2z1,|zl|>3g1‘(44zk,—k,k1,~k1)g°(k1) ’ (111
where
9°(k) = m%% (1.12)

is the zero approximation of g(k).
One of the most important part of the preliminary investigation of
the partition function’s starting form is the examination of the cumulants

M, (ky,---,kn) behaviour at small values of k [8]. In fig.1a the curves of

M, (k) are plotted for some values of fraction density n = %%03. The dis-

tance from the origin to the point B where ®(k) curve crosses the k-axis is
roughly inverse to the value of 7* which is an effective range of the attractive
potential ®(r) (see Fig.1b). As one can see from Fig.1, the interval k¥ < B
corresponds to relatively week dependence of My(k) on k, where for Ms(k),
can be used, for example, the parabolic approximation or even a constant:
Mj(k) = M»(0) for all k < B.

The same is true for higher cumulants M5, My. It allows us to replace
functions My (ki,- -+, k) for all k; < B,i = 1,2,---,n, by the constant
values as a zeroth approximation.

Thus, we can start with the explicit expression for =y, in (1.2) which is
the main part of the partition in the present investigation:

Ep= /(1 + Ds + ‘;‘Dg + - )Ws(p,w)(dw)V2(dp)VE . (1.13)
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Figure 1. Plots of second cumulant M;(k) (a) and Fourier transform of the

attraction part of the interaction potential i)(k) (b). The point B separates
the long- and short-wave density fluctuations. Curves 1, 2 and 3 corresponds
to the values n = 0.05,7 = 0.1 and 7 = 0.2, respectively.

Here
—12m)™ -
Ds=Y" (zi2m)” m') Y. Mp(Owp -owp (1.14)
m>5 C ke kB <B

W5 is the basic density measure in vicinity of the critical point. As it was
shown in [1]:

1 .
Ws(p,w) = expihpo - 5 Y. alk)pgp_p+i2r Y wpppt
k|k|<B E|kl<B

5 (—i2m)"
2 Y M0, g wp cwg ) o (L115)
=1 Eyyeefon, | B | <B

h= B o) + 5 Yalk)
E

3
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Following the above arguments, we have neglected in (1.14) and (1.15)
the dependence of My, (ky,- -, kn) on k;, as well as the renormalization terms
of My, due to integration over dwg, dpy for | k |> B, reducing M, (ky, - s kn)
for k; < B to M,,(0).

It is essential, that all odd cumulants My, M3, M5 in (1.15) possess factor

t. The convergency of the integralsin (1.13) is guarranteed by the containing
M4 term. Thus, to descraibe the main events in the vicinity of the critical
point it is sufficient to restrict the basic measure density by the fourfold
one, putting M5 = 0: .

1 .
Wi(p,w) — Wy(p,w) = exp{hpo — 3 Z a(k)ppp_p + 127 Z wrppt
k|kI<B k|F|I<B

4 .
(—i2m)"
2 n! 2. My (0)wg, - -wp, O, +---+1€n}_
n=1 Ei ok K| <B
Then the shift .
¢ v MB(O)
0 2T M4(0) ’

L, - My(0)Ms(0) | MZ(0)
po = s+ V(L Z 7 5, 3M2(0)

(1.16)

Wy = W

):p6+M1 s

where
Ma(0)M3(0) | M3(0)

W= VN TP 3a0))

transforms Wy to the form containing terms My, My and M, only. This
expression for W, corresponds to the Ising model in the external field.

After integration over pz,wg,| k |> B, the expression for =, contains

only sums over k with | k£ |< B. We can consider a set of k vectors, | E|< B,
as corresponding to the sites of a reciprocal lattice, conjugated to certain
block lattice {7‘}% with Np block sities in the periodicity volume V:

w89

62y

Ng = (1.17)

Therefore, one may consider the quantity B as the size of the first Brillain
zone of this block lattice.
Setting for the Kronecker symbol

1 Ehes
b PR

!

we obtain for Wy:

. 1 :
Wa(p,w) = exp{upo — 5 Y alk)ppp_p+ir Y wppp—
E,|k|<B . k,|k|<B
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o T (2m)? -
iQWMl\/Nwo — Mz(()) Z w]-c'w_l-c‘—-
kIRi<B
(2m)d | X
4'NB I M4(0) l ) Z* 6E1+...+E4w];1 T 'UJ&} ’ (118)
kl:"':k47|kiISB
M,(0) = My(0) + M(0) M4(0) = NgMy(0)
2 - 2 2M4(0) 3 4 - B 4 b2
M3(0 ~
W =VRh-a ,  a= VN 2O )i

| M4(0) |

After integrating Wy over all wy, we finally obtain the following form for
the grand partition function :

- = = -~ « 1
E= 20:8)Z(M2,M4)/exp{u po=3 Y do(k)ppp_p -

E|k|<B
s o CheeshlR PR ™ (119)
k1,,ke,|ki|<B
Here
do(k) = ag + a(k) , @y =V12| My(0) |72 K()
as= 6] Ma(0) | 170 N it 1)
a =6 M) | (), ¢ =y K= ﬂ[K%(O -1,
L(¢) = 6K*(() +4V(K(() -1
- V120 (N4
Z(Ma, My) = ?<|—m) e K(()
K%(C), F%(C) are Bessel functions of the imaginary argument,
=() _ = o Ms(0) | M(0)M3(0) M3(0)
=6 =Zeort-Mry o)1 " "2mz) TETMOF

1 ~ .
Qa(O)Mlz + " My }

Finishing the introduction let us now touch the question of separation
of the RS potential ¥(7) from the complete potential V(r) = ¥(r) + ®(r).
In the present paper we start with the Morse potential

Bpr(r) = e =" — 2e 2]

with parameters a, € and ro [10].

Its negative branch will be described by CV. Instead of its positive
branch we shall use an adequate hard spheres system and choose the di-
ameter of spheres providing coincidence of the binary correlation functions
of the hard spheres and that of the system with the positive branch only.
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So, one can perform a calculation of the hard sphere diameter & in a way
similar to that developed by Weeks, Chandler and Anderson in Ref. [2].
Equation of state will include a part corresponding to the hard there

system pressure, for which we adopt the Carnahan-Starling equation [3]:
PRV 14+t
NkpT =z = e (1.20)

where zg is the compressibility factor of the reference system, n = syoio
is a function of density and temperature. But in this paper we neglect the
dependence of ¢ on 7 and T, and put for ¢ the value corresponding to the
critical point:o = o (0., T¢). .

Equation (1.20) we can utilize for calculation of the chemical potential
of the reference system g as a function of a density . Thus, in our further
investigation g is supposed to be known.

For the remaining branch of the interaction ®(r) we have:

0, . (S
#0)={ G, 1Em ] (121)

Its Fourier transform is of the form

T *
q)(k) — /q)(r)e_’?di": EQBﬂem: { e a [(27‘ n
k 44 k%202 o
4 — k%a? . . 4kr* . 2 r*
TR ) sinkr® + (kr™ + e 5 ) coskr™] — H—kz—&—i[(gﬂ—
1-k%? . . 2ka .
m)smk?‘ + (kr™ + m)coskr 1}. (1.22)

®(k) is plotted in Fig.1b.Point B of its first crossing with k- axis separates
short and long wave density fluctuations. The condition (1.3) is satisfied at

| £ |> B and one can use the Gaussian measure density in integrals included
in (1.6).

Summarising this section, note that the grand partition function defined
in (1.2),(1.13) and (1.18) is now reduced to the functional integrals, specified
on certain block lattice. The coefficients of the functional are known [8,6].

2. Equation of state at 7' > 7.,

Consider a part of the grand partition function connected with the inte-
grals over {pz} for | k |< B. The way of calculation of such integrals was

developed in [4] for the case 3 — d Ising model.

The essence of the method consists in the subseqent integration over
the layers of CV'spase, starting from pg, corresponding to the short-wave
fluctuations. The aim is to obtain the distribution function of pg only. An
average value of py is connected with the order parameter. Variations of
the coefficients of functionals as a result of integration over p; in the n
subsequent layers in CV phase space are descraibed by recursion formulae,
which are derived in Ref.[4]. The main peculiarity is the sign of p2 term: it
is positive at T' > T, and negative at T' < T%.
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Let us first consider the case T > T.. In the interval [0, B] there exist
three characteristic regions [4]. The first one corresponds to the strongly
correlated fluctuations pg, their density measure is non-Gaussian one. The

_procedure based on the renormalization group symmetry is valid there. The
size of denoted by [By,, B] region is equal to

B—B,=B(1-|7]") , (2.1)

where 7 = (T = T.)/1. ,v is the correlation length critical exponents.

This is the critical regime (CR) region [1]. .

The second region 0 < k < By, is related to the fluctuations distributed
according to the Gaussian density measure. The sxpression for the disper-
sion of the density measure follows from the results of integration performed
in CR. The correspondent partial free energy denoted by Frgr is the free
energy of limiting Gaussian regime (LGR). .

The third region consists of one point k& = 0. Value pg is the macroscopic
one and corresponds to the fluctuations of the particle density in "external
field” denoted by u*. Because of a presence of u* the first order phase
transition occurs. We denote a contribution into the free energy due to third
region by E(po). E(po) is some analog of Landau free energy. The essential
difference consists in explicit and nonanalytic dependence on temperature
T.

Integration in (1.19) is performed along the following scheme.

The division of collective variables phase space into layers is carried out
using some parameter s > 1. The variables p; belong to the first layer, if

the subscripts k correspond to interval By <| k |< B,By = B/s. In the
second layer B, <| k |< B1, By = By/s = B/s*, and so on. For the layer
number n one has B,, <| k |< Bp_1,Bn1 = B/s"" ', B, = B/s".

As a result of integration over first layer of p; the number of the variables
under the integral changes from Npg to Np/s®, and them to Np/s", as a
result of the stepwise integration over n layers. ’

The coefficients of the functional will change: instead of initial da(k) =
ay + a(k), aq one subsequently obtains dgl)(k) = ap + a(k),agl); dgz)(k) =
at? + a(k), a%; and so one.

To factorize the integrals we replace in each layer the coefficient dgn)(k')
by the average value

- N -
drg(k) = dy = (J,g + (jY(Bn+1Bn) = ag - ﬁvq)(B‘l‘H-an) s

where ®(B,41B,) is an average value of the Fourier transform of the at-
tractive potential on the interval (B, 1B,). A way of the averaging in not
essential. :

The value of the coefficients are related by recurrent equations. Aplying
the fixed point method, one obtains the renormalization group type solu-
" tions. As the initial values do(k), a4, are known, these solutions are functions

of temperature and density. : .

After integration in every subsquent layer a factor (), which is a parti-
tion function of n-th layer, will emerge before the integral in (1.19). The par-
tial sume Q,, are expressed in terms of Bessel functions depending on argu-

ment z(® = %d‘{”z /a&n). Summing logarithms of ¢, overalln = 1,2,---,m,
where m is a number of the last layer, belonging to the critical regime, one
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obtains Fog- a free energy of the critical regime. Integration over variables

Py 0 <| k |< By, is performed in the Gaussian moments approximation. So,

the corresponding partial sum and a free energy of limiting Gaussian regime
can be calculated.
The complete expression for the partition function now reads

EL(T,n, ) = Bo2 Z( My, My) exp[~A(For + Fior) + E(po)] . (2.2)

The value Fog and Figgr are common for the system belonging to the Ising
class of symmetry. This is just the case we have here, when W, is used
for description of Zr (see (1.18) and (1.19)). Consequently, one can use
available formulae for Fop and Frgg from [4].

For(T,n) = ~NBkBT{—m'Ts"3mT Ins+
™+q 1

(1+s73™)[1.043 — 0.828 v 1 -
0.828(1 — E1/s%)™ /(1 — Eys™%)) Cl* (2.3)

Te

where m/ = m + 1,m is a number of the last layer in CV space belonging
to the critical regime region, B,, = B/s™,E; > 1 is the greater of two
eigenvalues of the recurrent equations matrix [4],and

Cy =1Ch, Ci=|a(0) | [1 =7+ RValw '+ | a(0) |} as R (wv/a) ™1,
(2.4)
™ =|a(0)|7 , wu*=a%(0)i- the fixed point coordinates,

RO
“—IZE; | «(0)

— 0 0 —1: -1
R= B[ a(0)] = 7 |

v

here
E; is the smaller of two eigenvalues and Ry, =| a | R}, R1;- are matrix
elements of the matrix in RG method;

E - B _
W= —————— =| a(0
BT L, q=|a(0)]|q
The quantities Ey, Eq,q, R}y, 7, 4, v, R, w, Ch, Ryy are universal function of
s. Their values for s = s* = 3.58 are the following: F; = 8.235,F, =
0.377,¢ = 0.612, Ry, = 3.837,7 = 0.6125,2 = 0.889,» = 0.605, R° =
0.562,w = 1.086,Cy = 0.818, B;; = 7.613 For s = s* the value of the
argument z(") = %(d£n)(Ban+1))2/ag") at fixed point is zero.
As a criterion which determines the size of critical regime interval, we
use the following speculations.
During the integration over layers of CV phase space the following rela-
- tions take place

(2)

< d (n)

( << oay

a2<a2 <

Therefore, the coefficient dg")(O) = ag")— | a(0) | is an increasing function
of n. It’s initial value is negative d3(0) < 0. So, a boundary of CR region is
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B,, = Bs~™, where m is a number of the last phase space layer, for which
dgm) (0) < 0. After integration over all variables of this layer one obtains

A0y = d™(0) =0, di""(k)>0, 0<k< B

So, for all integrals over pg,0 <| k |< By, we can use the Gaussian ap-
proximation.
Finaly, the result for Frgpr is:

1 d™ (k) + A
Frar = §kBTNm’T Z 1n[_u_)_

E,O(lEISBm!r

1=

m
1 —'Sm’ 1 2
ENB’CBTS {=2m,Ins +In(] a(0) | +A) — 3 + 2v—

!

Int — 2v%/2arctanv™/?} |
agmr)

| 2(0) | _om:
G S = e
" EJRISB oy

A=

v is defined from the self-consistence equation [1]:

3
v= Zﬂ,m{r(l — varctan v~ /2

From these results we obtain not only certain contributions to the free en-
ergy, but also the values of the critical exponents.

The last integral over pg is a peculiar one, because of the presente of
some "external field” in the form of the chemical potential. Here we have
to perform some special investigation, because this integral contains pecu-
liarities related with the critical point.

(m?7)
. a
exp[E(po)] = /exp{u po = Ap — i Potdpo =
*2 (m})
7r M 4y 4
\ 1- S 2.5

For 4= = 0 the problem is reduced to the case of Ising model in zero field
and corresponds to the second order phase transition. When p* # 0 it is
suitable to find the absolute maximum point of the integrand in (2.5). This
point obeys the condition

(m7)
* 4 3 _
pt—24po - m/’o =0 . (2.6)
Here A > 0 and agmlf) > 0. The discriminant
_ V.3 AV
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12AN,,, 6N, u*
9= _T'”WT‘ , w = - (7;;7,/; (28)
a; 7 ay T

is always positive. Equation (2.6) has one real and two complex roots. The

real one is
= 2V (T -V (2.9)

On the u* = 0 or @w = 0 surface the root equals zero. Near to the surface
p* = w = 0 it is close to value (see (2.5)):

(2.10)

For E(p;) one finds:

(m7) *2

4 4 M
4!Nm',

E(p1) = p*p1 = Ap} — (2.11)

=g

Thus, we obtain an explicit expression for the grand partition function at
temperature T > T,

My(0) | Ma0)ME(0) MO
[Mi(O)] " T 2ME0) T B[ MaO) P

Wty 5 | o(0) | 11 — 8(Fon + Fuar) + E(p)}. (212)

== Zg=gexp{~N|

Now let us calculate the chemical potential u* and after its substition into
(2.2) obtain the equation of state. We have:

dln=

op =N

N

il

Taking into account (2.11) and (2.12), this leads to

\/]—V_(Ml + p1) =N . (213)
p1 = A
A = VI - ¥ty = —y/ N2 OM(0 ) | M5(0) ] . (2.14)

| Ma(0)]  3MZ(0)

(for M, (0) see Table 1).

Here A depends only on density due to approximation which we have
adopted at the very beginning of the consideration. Substituting in (2.14)
expression (2.10) for p;, one obtains

L
*=24A ,  h=——(a; +24A) . 2.15
" \/_N(al ) (2.15)
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Table 1. The dependence on density of the cumulants M, (kq,---,k,) at
zero values of arguments k;.

7 M,(0) Ms(0) M4(0) M;5(0)

0.05 0.673 0.275 -0.0781 -0.181x10°5
0.1 0.456 0.0461 -0.0866 0.02038
0.15 0.309 -0.01597 -0.0283 0.0274

0.2 0.208 -0.0249 -0.0396 0.00964
0.25 0.141 -0.0198 0.00216 0.00181

Because of @ > 0, the chemical potential is a continious function of A in
the whole region T' > T.. For the equation of state we have:

P-P _ 1 R
© =InZg — B(For + Fror) — =N | a(0) | +pA% + —A* + 24NA,
kpT 2 N
(2.16)
where

_ IMs(0) N 4m)
8MF0) 4N *

o= 3la(0) - M'(0)-24], R

Py a pressure of the reference system, defined by (1.20). Here the total
pressure P is monotoneous function of density.

3. The critical point

At the critical point the critical regime, according to its definition [4,7] takes
place for all variebles pz. Therefore, the critical temperature may be deter-
mined from the solution of the recurrent equations, which are the renormal-
ization group type equations. Using the obtained in Ref.[4] we adduce the
formula

T - N $(0) 21 — 7 + RYy(Ru — E2) 'V _
¢ 4a4 RS _ . RVi '
MR v R e 9l N

The involved coefficients a; and a4 generally are some functions of density,
thus,T, = T.(n). Nevertheless, as it follows from the concrete calculations,
this dependence is quite weak in a wide vicinity of the critical point, so the
function T,(n) determines almost a plane, parallel to (u,7) plane. To find
the critical point coordinates, one needs two more equations. The second
plane is determined by the condition g* = 0. According to (1.18) we have:

(3.1)

w=vVNh—a1=0 , (3.2)

or 1
ﬁw—uw+§

S alk) = l—%% +a(0)(1-A) . (3.3)
k
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The third equation follows from the results (2.10) and (2.14):

/‘l‘* =M 3
which means that
A=0 . (3.4)

In accordance with (1.19), (2.5), the second order phase transition takes
place at 7 = 0 on the surface determined by (2.19). The intersection of

(2.17), (2.19) and (2.20) surfaces determines the critical point coordinates.
If one neglects the renormalization of cumulants connected with integrating

over pg, | k |> B, then the conditions (2.20) define a surface, parallel to

(T, n) plane. We shall have the crossing of two curves (see Fig. 2). The
point of intersection is the critical point of the system.

kgT.(n)/c

2.0

217
1.5 ( )

1.0°
~(2.20)
0.5

TTEJTITTTITTITTITTTTT

0.06 0.13 0.20

Figure 2. The critical point (7%,7.) is the point of intersection of curves
(2.17) and (2.20).

4. Investigation of the system below the critical point

We regard a small interval of temperatures very close to T (| 7 [< 0.01).

As well as in T > T, case, one should start from the integration over
pr by the layers of CV phase space for B, <| k [< B, where B, is a
boundary of the critical regime region. The same recurrent equations for
the coeflicients dgn)(()), ag”) as in T > T, case are valid here[4]. A minimum
of dgn)(k) curve is situated always at k = 0.

However, in T > T case after integration over p;’s, B,, <| k|< B, the
whole curve dg’”)(k) will be located below the k-axis. The boundary point
B, of the critical regime is defined by the following condition:

d“)(B,y=0 , d¥(k) <0, (4.1)
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for all 0 <| k |[< B,,; here B, = Bs™r and

In|7|] In|r-a0)|~_4
Hr == In E] In El Cl ’ (42)

iy is a number of the last layer of CV phase space, related with the critical
regime.
This means, that in every cell of a block lattice with spacing C,, =

7/B,, a non zero value of the order parameter exists. During the process

of the further integration over p; for k belonging to region 0 <| k |< By, a

shifted Gaussian measure dens1ty for fluctuations can be used. The calcula-
tions are performed applying the rules developed in [4,5]. Having integrated
over all variables p; excepting po, one finds:

Ep(7, 1y n) = exp{~B(For + Fiar)} / exp[E(p})]VNdpl . (4.3)

Here

—fBFcr = NB[—-,U,.,-ABU ks |3” Ins+(1- A¥ | T |3”)991 +

, |71 (1 =AY P D] (4.4)
— BFigr = NA¥ | 7 % (@3 + pr 10 s) ., (4.5)
w1 = 1.043 - 0-8281‘:/1;*(1 - %ln u,  pr = 0.828\%_:(1 - E1.53)“1 )
Pa = *%WM] + jT(f) 3 Tz(\/i)u+0 03450
A= " |é;(0) = T(z) = 3%~ a;gtanz

It was shown in [9], that the main contribution comes from last integral
over the macroscopic variables pg = pyvV/N. Let us write E(pg) in the form:

E(po) = N(u*po + Bpt — Gpj) (4.6)
(we omit prime near pg).
where
(ur)
L () ay 2
B=_1df"(0)] - - T(z)=Bo |7 |" ,
2 8| dy(0)|
(ur)
: ay 'N y
= = 4.7
J‘ . uﬂr C’l 2v
BO I Tur l (1 4 | T |2T($))[| o a(O) |] 3
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_ Nu,, ol y T | (0) |
Go = 4'Np [‘ r* — 0(0) I] ’ v Cy, I a(#r)(O) | ’

7., and u,, are coefficients of the block Hamiltonian for block lattice with
spacing C,,. The function —kgTE(py) is some analogue of the Landau
energy. Essential difference consists in that, first, we known the explicit de-
pendence of u*, B, G on the temperature 7, density n and chemical potential
i, and, second, the dependence of B and G on 7 is nonanalytic, namely,
B~ 1% G~ 1Y, At 7 — 0 both quantities B and G tend to zero, but the
ratio B?/G remains constant and the integral over pg exists.
Integral

I= / explE(po)]VNdpo (4.8)

can be calculated by the steepest descent method. We need to solve the
equation

patvpo+w=0 (4.9)
B w*
v = —%— s w = —E" .
and to find a point of the absolute maximum of E(pg). The discriminant
w v .
Q=3P+ () (4.10)

may be positive, equal to zero or negative. One has to examine all three
cases.

Surface Q = 0 separates two thermodynamic regions of (7,7, ) space:
the external one, which is the region of single phase states, here @ > 0,
and the inner region, where () < 0-it is the phase transition region. Surface
@ = 0 represents a coexistence boundary.

In accordance with (2.13), for both regions there exists the same de-
pendence between the point of maximum of E(pg), which is proportional
to the order parameter, and the function A(7n), namely, p = A. Therefore,
we call A the order parameter. It describes the density jump at the phase
transition. Our main aim is to find the dependence between p* and A.

We start with describing of the coexistence boundary. When @ = 0,
there are three real roots of cubic equation (4.9), two of which are equal.
We have to take the single root

x\ 1/3
=i ()" a

which provides an absolute maximum of E{(pg). From the equations p = 0
and ( = 0 we get equation for two boundary surfaces.

L= GAY (4.12)

pr=dm | M (4.13)

Isotherm plane | 7 |=| 7o | intersects both surfaces and forms a rectangle.
Its two sides have the coordinates

pr=—-m|r M
{ p* = +m I To '5/21/ ) (4'14)

|
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Our principal task is to plot the isotherm p = p(7p,4A). We start from
negative values p* and ¢ > 0. '

For two external sides we get the same form for single real root gy, which
gives us the relation between p* and A in external region

Al
*=4G - , 4.15
W= T g BT 19

here 8 = (3)°/(3).

For pu* < 0 we have A < 0 and for u* > 0 one has A > 0, too. When
B — 1,u* — GA?, which coinncidence with (4.15).

Now let us regard the inner region, < 0. Here we have three real
roots, pi, p2, p3:

p1=2 |3|cos§ ,
2
p2:2\/|——§—lcos¢—; T (4.16)
4
ps =2 l—-—lco Pt am ,
3
where
- _ w___ ¥
@ = arccost t-—2(—§)3/2-8G(~%)3/2 (4.17)

Near the coexistence boundary their argument ¢ is close to 1. Therefore, we
put cos = —1 4 & for p* < 0 and cosp =1 — 6 for u* > 0.

Then we see, that p; root approaches root p; when § and @ tend to
zero, u* < 0, and the root p; approaches root p, in the right side (see Fig.
3), when p* is positive.

So, we have found, that for negative values of u* we must take root pj.
For positive u* the root p; is the proper one. So, the extension of curve p*
from the point u* = GA3 is:

"= u"(pa(A)) = 2BA —4GA°, iy < p* <0

po=pt(pi(A)) = 2BA —4GA®, 0 <" < - (4.18)

/J’*'_'Oa - IUISASVIDI .

We have to take into account in (4.16) only root p for p* < 0 and only root
p1 for p* > 0, because only for these roots we have absolute maximum of
E(po), as it is shown in Fig. 4.

When p* tends to zero, we come to the point /| v | from the rigth side
and to the point —y/] v | from the left one. At point u* = 0 there is a

density jump of the magnitude 2/| v |.
Now let us evaluate the value

L M3(0)
A= VN RO+

o)
3| M4(0) |
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Figure 3. Schematic plot of the chemical potential jump. Q < 0 and Q > 0
corresponds to the region inside and outside rectangle, respectively.
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Figure 4. The position of the points of extremum of exp[E(py)] in depen-
dence on the value of p* (see Fig. 3) 1). p* = py 2).pu* = p3 3). p* = 04).
P =y =~ B)pT =y = —

Not very far from the critical point we can write
oA
A= Ac+(8_n)A“(n_nC): I(n—mn) . (4.19)

Value A = 0 corresponds to M3 = (0. In Table 1 the dependence of M,, on
density is given. We see, that M3 is the decreasing function of 5.

gy IMe=0 M4(0)p1,=0

I'=—( >0 . (4.20)

Thus, the isoterm for u* one may consider as function of n — ..
For the equation of state the following expression is valid for small A,

when we can neglect the terms proportional to A3, holding only linear on

A term: pP_p_p )
—Io—- 1 "
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where Py is defined in (1.20),
PV
Nkgl

and on the plot of P we shall have the jump similar to that the plot of u*
possesses.

In such a way the principal questions of the description of the liquid-gas
phase transition may be solved. ,

=InZg - B(For + Fiar) (4.22)
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OIIMC KPUTUUYHOI TOUKU MMPOCTUX PIIUH
B METOII KOJEKTHUBHUX 3MIHHUX

I.P.IOxuoBcbkmit, B.O.Konomiens, [.M.In3uk

HDocninxKeHHA HOBeNIHKY plIuH nmo6iu3y KpUTUYHOI TOYKU pi-
IWHAa-Ta3 BCe e 3aMIaloThCA aKTyalbHUMU. B nonepennix pobo-
TaX, BUKOPUCTOBYIOUM MeTO[l KOJEKTUBHUX 3MIHHUX 3 BUIJIEHOIO
CUCTEMOI0 BULJIIKY, HAMU OTPUMAHO, BUXONAYM 3 MEPIIAX MPUH-
LMIIIB, BUPa3 V1A BEJIUKOI CTATUCTUYHOL CYMH, IPUJATHIH 1JIA 10~
CHIXKEHb B OKOJI KPUTUUYHO]I TOYKH.

MeTa naHol po6GOTH — OIUC CUCTEMHU AK BUIIe, ‘TaK 1 HUxK4Ye T,
Ta aHaJli3 NOBeJIHKU XiMiYyHOro noTeHuiaay Huxue 1.



