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The fundamentals of a reference system approach, which is a renor-
malized perturbation theory in the terms of n-particle correlation func-
tions for the simplest system (reference system), are expounded in the
theory of electron liquid. '

Functional representation of the partition function, thermodyna-
mic and correlation functions, and one-particle characteristics for the
electron liquid model are represented. The results of energy, structure
and dielectric characteristic calculation in paramagnetic and supercon-
ductive states are given. :

Reference system approach has been used for the description of
inhomogeneous electron system. Also it has been generalized on mod-
els, which are closely spaced to electron liquid model: two-sort fermion
system model, fermion system model with a short-range repulsion po-
tential of interaction between the particles, fermion system model with
a manyparticle interaction potential, and so on.

1. Introduction

The problem of taking account of the correlation effects in the solids, plas-
ma, atom-molecule systems and in the collisions of the electrons with the
complex structure objects is one of the many vital problems in statistical
physics. As it is known, the correlation theory of a weakly non-ideal sys-
tems has been created in general in the 60-70s. So far, the strongly non-ideal
many-particle interacting system theory has not been built.

One promising line of many-electron system research is the reference
system approach, having been worked out in [1-5]. This method is the
renormalized statistical perturbation theory, which is formulated in terms
of n-particle correlation functions of some simplest model system. The
transition from the simplest reference systems to the complex ones permit
the most complex many-particle interacting systems to be described. Such
functional hierarchy of models can be realized in the theory of many-particle
interacting systems: the non-interacting electron model - the homogeneous
interacting electron model - the inhomogeneous interacting electron model.

Every previous model can be used as a reference system in this scheme.
Generally speaking, the most difficult scheme can be used (see chapter 9).

This paper is dedicated to a reference system approach in the electron
liquid theory, which is one of the fundamental models in the statistical
physics and the degenerate Fermi system models which is closely spaced
to it.
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2. Non-interacting electron model as a reference system in
the collective variable method

Naturally, the non-interacting electron model can be used as a reference
system under the electron liquid characteristic computation by collective
variable method. We consider a system of N electrons in the volume V in
the thermodynamical limit V,N — oo, N/V = const. The Hamiltonian,
being written by the second quantization representation, has the form

H=Hy+V, (2.1)
ﬁo = Zq((li:sak‘s,

k,s
o -1 + +
V =(2V) Z Vaq Z Z L 01 Chy 5o Pz 520Ky 5y
q#0 ki ky s1:92

Here e = h?k?/2m, Vq = 4me?/q?, af _, ay , are the Fermi operators, which
represent the state with wave vector k and spin s = +1/2.
Let us consider the partition function for our model (2.1) in grand canon-

ical ensemble N .
Z, = Tr{exp[-B(H — pN)]}. (2:2)

Here §3 is the reciprocal temperature, p is the chemical potential variable,

N is the operator of particle number.
As a matter of convenience, we use the interaction representation for the
depicting of the statistical operator

exp[~B(H — pN)] = exp(-BH,) - 5, (2.3)
s 0 )
S‘:Texp{/dﬂ’/.../dﬂl...dﬂ4H6(ﬂ’—ﬂi) x
0 0 =1
@) Ve X g (B (900, 1 (Be)atc s (0}
q#0 kikz,51,52

Here H, = Ho - pN, T is the ordering symbol of operators ay ,(8') and
af (B'). Apart from the usual properties (see [2,4]) it possesses the prop-

erty of reducing the Fermi operator products to a normal form, when the
arguments (7 = B, coincide

T{ay, o, (B1)af, ,,(B2)} = —af, ,,(B2)ak, s, (B1)- (2.4)
Let us introduce the system of functions of variable 3’ on segment 0 < 8’ < 8

v, (6" = B-1/2 exp(—ivf’) (2.5)

which satisfies the periodic condition ¥,(8') = £V, (8" + 8).
These conditions let quantize the frequency

). vp=2m871 2). vp=2n4+ D)8 n=0+1£2;... (2.6)
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Every frequency set originates system of functions, which satisfies the con-
dition of orthogonality and completeness

/ A8V, ()W (8) = b (2.7)
S 0)8.(8) = 60— o).

Using the second condition for representation of § -function in formula for
ax,s and integrating over §' variable, one can obtain following form of §
-operator

§ = Texp{ (26V)~ Z Vaheh -, } (2.8)

q#0v

Pz = Pqu = Z af('*_q’s(u* + v)ag (V7). (2.9)
k,s;v*

Here p, is the spectral representation of electron density operator and

B
(') = | s (B3 (845, (2.10)

o]

Here v is the difference of two initial frequencies and thus it is pair (v, =

2nwB71).

Let us consider one-particle Green’s function of a reference system, which
is built on the af (v*) and ay ,(v*) operators

- <T{ak1’sl(ﬂl)azzysz(ﬂ2)}>7-{u = G%lvsl(ﬁl — B2)bk; k0515 - (2.11)
Taking into account the bilinear expansion

Glo(Br = B2) = D G (VIm) ¥ (B1) V3 (B2) (2.12)
and transformation (2.9), one can prove that

— (T{ok, o, (WD)af, , ()}), =GRy o (B10)0k, dey O 5260 05, (213)

Hy

where

Gy (v l) = i - a + ) (2.14)

and 6 — 40 (see [6]). It is obvious that , the transformation (2.9) has been
built on the function set ¥} (8;) with odd frequencies.
The representation (2.7) transforms the partition function to the form

Z(u)=Zo(#)<T~exp‘{ (28V)” ZVqu‘P }> ; (2.15)

Hyu
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where

Zo(p) = Tr{exp[~FH,]} = exp(—BQ0o(n)) (2.16)

is the partition function of noninteracting electron system, {o(u) is its ther-
modynamical potential.

The formula (2.15) is convenient for writing of Z(u) functional repre-
sentation. For that we go over from the space of the second quantization
operators to that of the dynamic collective variables

Px = Pq,u = pa,u + ipa,z/ (217)
by the help of transition operator [1,3,4]
J(p—p)= H 6(pa, — Pa,v)- (2.18)
Claw)

The domain of variables C(q,v) includes half of the possible values of q, v.
The operator J(p—p) is the analogy of the transition function for the classi-

cal statistic systems (see [7]). Any operator F(p), being the integer function
of operator p, has such a form in the collective variable representation

Fp) = [Fo)ip-pdp), @)= T] dpsder. (219)
Cl(q,v)

After all following representation for the partition function can be obtained

2(n) = Zo(k) | (dp)Jo(p) exp {-(wvrl quprp_z} . (2:20)

where
Jo(p) = (T3 (o~ ), (2.21)

is the Jacobian of the transition to the collective variables. Let us use the
integral representation of 6-function, for calculating of Jo(p). We obtain

Jo(p) = /(dw)J(w]k) exp {iﬂ'szpz} , (2.22)

here w, = w¢ — iw? is a variable conjugated to the collective variable pz,

J(wl) = <T~6_m2, wzﬁz>H =exp Y Dn(wlp), (2.23)
" n>1
Dn(w|p) = B(n)~ " (=mi)" Z Way e Wap o (15 - Tnlpt)-
T1,.-Tn
where _ .
B(@1,. .y oali) = B (T pasay - Pan}),, (2.24)
m

are the semi-invariant correlation functions of a reference system. The sym-
bol (.. )%“ means statistical averaging over the states of the reference sys-

tem with Hamiltonian H,,.
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As one can see(2.15, 2.21-2.23), the non-interacting electron system is
the reference system. The Jacobian of the transition J(p) and the n -particle

correlation functions iQ(z1,...,z,|u) are the universal characteristics of a
reference system.
Integrating over w, variable in the formulae (2.21), one obtains

1 - .
Jo(p) = exp {bg(p) + Z = Z A C TR 0 73V .pzn} , (2.25)
n22 T ZL1y0Tn

where

s3(0) = n{ [ (@)}, (2.26)

by(z, —z|u) = b3(z, —z|p),
b3(z1, T2, T3|p) = b3(1, T2, 3| 1),
bi(xl,xz,xs,ulu) = bg($1,$2,$3,$4|ﬂ) -

3bg(zla _xllu)bg(x27 _xQIu)él‘l,Ia 5932714’
bg(zl, cen Tplp) =
-1
{ Jamiew} ™ [y, ..v., =

d exp{B3(s)}.

_1\ynp-1
R ETR )

The functional representation (2.20-2.24) of the partition function is valid
for any Fermi systems with any interaction potentials. Changing the order
of integrating over w, and p, variables, the following form of Z(u) in the
case of interacting electron liquid Vy > 0 is obtained

2= 7o) { @@} J@ @i, @20

1 -o {2 ).

The whole structure of representation (2.20), (2.26) corresponds to the
structure of configuration integral in the collective variable method for clas-
sical systems of interaction particles under.the basic consideration of short-
range interaction [7]. The correlation functions Gd(z1,...,z,|p) are the
result of quantum effects in reference system and are not subjected to inter-
action and particle structure. This functions depend not only on impulse,
but also on frequency v. It is a characteristic peculiarity of quantum sys-
tems that results from non-commutativity of kinetic energy and interaction
operators.

The straight calculation of 42(z1,...,z,|u) is the central point of ref-
erence system approach. By the way, the investigation has its own value
expanding physical characteristics of ideal systems.
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According to (2.23) and (2.12) - (2.13) we will represent 2 (z1,. .., Zq|u)
through Green functions in symmetrical form

Bo(z1, .o @al) = (=)™ (Bn) it tin 08qu +tan 0 X (2.28)
n

X E Z H Gok—pc],s(u* - UJJLU:),

k,spo*  11#n#E.Fin=1j=1

that represents their symmetry concerning their arguments. Here x; =
Qi +qi, + .-+ qi;,wj = Vi, + v, + ... + v, Functions B (1, ..., Tnlpt)
are subject to the thermodynamical parameters 3, 4, V. When u is equal to
chemical potential of reference system po = po(3, %), we obtain correlation
functions in terms of canonical ensemble.

In the (2.27) we always have that £, = 0,w, = 0. In the higher order
semi-invariant (n > 4) degeneration may occur, when x; = 0,w; = 0 takes
place at j < n—2. The simplest semi-invariant i3(z, —z|po) is the polariza-
tion operator in the random phase approximation. It is introduced in (q, )
representation in the paper [8]. In the works [9,10,11] parametric represen-
tation of static semi-invariant i%(zy,...,z.|po) for the case of T = 0K has
been introduced. [3(q1,92,93,0,0,0/u0) and A3(q1, —q1,492, —492,0,0,0,0
|uo) are represented in elementary functions. Simultaneously in the pa-
per [11] static semi-invariant of the third order is obtained. Dynamic
semi-invariants g2(z1,...,Zn|to) at n > 3 have been investigated in the
works [1,2,4,12] in the case of T = 0K . The functions i3(z1, z2, z3|po) and
@3(z1, =21, T2, —T2|po) are represented in elementary functions. In the case
of non zero temperature it is impossible to obtain functionsid(z1, . . ., Z3|¢o)
at n > 3 in terms of elementary functions. But the lower order of semi-
invariant may be represented in terms of Fermi integral of elementary func-
tions. For example, [13]

fa(z, —z|po) = (2.29)
) _ 3N
—2Re Z n(l)(,s(uo)(/l‘y + €k — €k+q) 1= Q—GF_IZ,O((L "I#Oa /B)a
k,s

o0
Ioo(g,ulio B) = [ dkniy (s, B)Ta(klg, w),
0

ﬂg(x17z27z3|/'1‘0) = 6Q1+QQ+Q3,05V1+V2+U3,0 X
{73($1, ~z3) + 73(z2, —23) + 73(Ts, —zl)},

va(e1,22) = .
—2Re 3 nd ,(Ho)(ivs + e — €ipqy )T (V2 + €k — Eyq) T =
k,s
3N T
IZYIRY) / dkkn?{(ﬂ'O’ /B)Fs(k’l(h, g2, U1, U2, t)a s
(2¢r) )

The dimensionless variables are used here: k = |k|kp', ¢ = la:lkF', wi =
vi(2epq) Y, e = h2k§,~/2m; t is the cosine of the angle between the vectors
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q: and q>2,
Y Lot '
Hema) = 0k (o, ) = { Lk expld (= )]}, (230)

assuming 3* = fep, py = ,unep . Functions T'y(...) for n = 2,3 are repre-
sented by the following expressions

u'+ (k+q/2)
uw? + (k= q/2)”

Ls(k|q1, q2; ui,uait) = (q1ga) "' Re {A(k)“l

Fg(lu'

g5w) = (20)7 In

8(k) + kA(k)}
ETDENGIA

6(k) =kt — &6, A(k) = {k(E - 1)+ &+~ 2t§1£z}1/2,

1 : . ,
& = S0 i = 1,2. (2.31)
The temper (LtlHP dependence of Lhe semi-invariants are illustrated by Fig.
la, 1b where a3(a, —z|po) and jij(z, —z,0|py) are represented in the case
of very low frequency (¥ = v(2ep)” - = 0.01 using different * € [0, 100]).
The chemical potential of the reference system p at given temperature 3
is obtained from
o0
/dkk’zng(,ug,/i) =

0

(2.32)

As we can see from Fig. la
function f5(x, —afpy) is mono-
tonously dependent on variable
p*. Function f3¢x,—z,0|u,) re-
veals the same dependence only in
the region of big wave numbers
and non-monotonous dependence
in the region of small wave num-
bers ( see Fig.lb). We can eas-
ily obtain the limit of the static
semi-invariants using Sommerfeld
method [14] assuming q; — 0:

e (2, — 2,/ o)

1.
0.0 -t e
Q 1

B0, .- Olpo) = N(2er)'™"
2 7
{ Rl 370 4 G ) (5707 [)"19 ) P }
Ri=1, Ry=Rs=3, R,=(-1D"32n-7)! at n>4,
Ci=1, C,=(=1)""T2u-3" at n>2,
D,=(-D)"12n+ 1)1 at n>1. (2.33)
In the case of degeneration in functions p)(x,...,z,|p) along with v, (a1,

..y T,_q) there are derivatives of p from 7,,(w1,...,2,,-;) of lower order,
that forms "anomalous” parts of these functions. So, in the common case

fin (@1, i) = g (Brs oo @alp) 4 gl o1, @), (2.34)

where £2 ((...)is a "normal” and u° .(...) is "anomalous” parts.
n,l n,2
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3. The functional representation of other characteristics
The functional representation of the structure (2.16) are valid also for inte-

gral, local and one-particle characteristics of the maodel. For example let us
do the representation for Fourier images of n-particle correlation functions

F"n(qlv . 'aqn) - Z_I(IL*)TP{irl(qlv . '7(171,) exp | — /H(I} - N*N)]} s

(3.1)
/ - ~t At o+ P ;
Ln(q1,...,9,) = E i, bar 01 Oataaos O dbqnion Penom + o+ Ok 515
kly-‘-;ku
51,80

where n > 1, and p* = p* %,ﬂ) is a chemical potential, that is certain for
temperature and particle density. The transformation in collective variables
leads to such representation [2]

ﬂn(qla ctty qn) = /Bl_n Z 6u1+...+u",()ﬂn(-”:l’ sy -77nlll'*)a (32)
Vi

Ve ¥

Py, ., UM ﬂnl<T§’>7_-£,1‘ <T{ﬁ’1p“"-’ <P, f}>u#. -

(175 @)} x
6"
/(dw)f(“’)awxl b,

n

J(w|p*).

Calculating a variation derivative of J(w|p*) in the strageht form we shall
find the equations for correlation functions of interaction system

-1
- Z.(-—l)” [(n - 1)!] Z (@1 e ey |00y (0, .oy,
n>2 T2y dn

M2((E13 1132) = ﬂg(;l'.la "‘1’71|,lt*)6;z,+z2,0 +

Z(—-l)" [(n - 2)!]_1 Z fo (@1, Tay ooy T | o n( g, . . 2 ) +

n>»>3 za,..,

-1
B 0 = Dim= D] S @ i) X
n,m>2 Z2ynin
ﬂf)n(,mf.” Yosv ooy y1n|/14*)bn.+m—2(z'2a e Zny Yze -l )a s
Y, 0¥m

Here we use the analogues of functions b2(zy,...,x,) thal are represented
by the equation '

ba(21,. .., 2n) = (m)" {/(dw)f(w)J(w“L*)}—lv X (3.4)
/(dw)f(w).](u,vh/,")u.)ml Wy,
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and are the many-particle effective interaction potentials. They may
be obtained in the form of series for reference system functions
f2(xy,. .. xn|p*). The other way is to represent b,(wy,...,2,) through
functions ,(&1,...,2.|p*) and to obtain the system of the integral equa-
tions. In the case of non-degeneration of the set x,,..., 2, we find that

ba(Zy. . oyan) = A7V Vo Vot |it). (3.5)
In the case of degeneration the following equations are valid
Vo
bo(z, —2) = —(BV)" 1V, {1 - —Vﬂ,uz(;zr,, —:rl)} , : (3.6)

e l
b4(.’L’1, =&y, da, —1172) = (/j‘/ ) 2‘/(!‘ ng{l — "/—, Z Vq'/.tg((l,‘i, —(13,:) +
i=1

-9 _
14 Vcnquﬂ“l(‘tla_wlva'27—x2)}7'"

Along with functions (3.2) it is useful to counsider semi-invariant correlation
functions

fin(@1y. .y an) = B (TS)H“. (T {ps, .. ps}>H : (3.7)

where we mean connection of the
operators p,. (3.7) is the analogue
of basic functions ji, (zy,..., 2,

w.

| )One-pa.rticle characteristics in
the refer-
ence system approach need a spe-
cial consideration. To such char-
acteristics belong the distribution
of the particles through impulses,
one-particle Green’s function, the
spectrum of single particle excita-
tions, the state density, etc.

s’ (x,—x,0,/ 1)

To calculate the mean
i, = (O x5 )H-pon = Z“l(/,L*)Tr{u:,,ak,, exp [— BA - /.L*N)]} (3.8)

we should substitute the operator of the number of particles a ,ax,, by the
variation derivative in function .. So

)
Nk, = —(2/3)—1—111 Z(/l’*) u* =const+ (-‘9)
6Ek

According to (2.26) we obtain

Ny s = (.‘10)
, -! , 0
g (w7) = )™ { [@o)ston @)} [t )zl =
1 b 0 *
n:)c,s(ll’*)_ 52(—1)n(n!)_1 Z bn(:l;l"","vn)'éz;/ln(zl?""’wn“” )'

ﬂzl T1y--4%n
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Let us consider Gireen’s function as another example

Gua(fr — ) = =27 ()T { T [as(B)af (B)e = =) L (311

~ Representing operators s (") through ay ((v*) and changing S-matrix
in terms of collective variables we obtain the representation

Guslh = ) = S GV (OB (312)
where
ot ') = { [l fratelin)} » (3.13)
/(flw)fw< {( Jexp [ - mzw]}>H

There ny ,(v*) = a,ts(z/*)ak’s(z/*v). Separating the connected parts of the

means and considering the (2.23) we shall get
(e s (V") exp [— i walia.])},; = | | (3.14)
(T s (V") exp [ T chlh] H.
)05 i i = "

Z(—l)"(n! - Z Wey - W g (01, - <o, 07K, 8, 0%).
T1, Ty

n>1

*),‘

By the definition
fio o1 (@1, ooy, Olptlk, s, 0%) = 71 <T {fe (V" )Py -« e, }>H‘ (3.15)

is a (k, s,v*)-component of (n + 1)-particle correlation functions of the ref-
erence system under the condition x,,4; = 0:

Al(xy, .. oanlp®) = Z (e, .tk s, v (3.16)

k,sp*

Substituting (3.14) in (3.13) we will obtain the analogy of Dayson equation

Gks(u*m* L)t (3.17)
/32 "(n!)~ Z b(@ry s @)y (X1, ymy, Ol [k, 5,07).
n>2 T1,.-Tn

The precise integrating of expressions (2.26), (3.2), (3.4) is impossible be-
cause of complex dependence of functions J(w|jt) on their arguments. Dif-
ferent variants of approximate calculations correspond to ditferent levels of
summing up of ordinary perturbation theory diagrams based on Coulombh’s
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potential V. For the simplest calculation it is necessary to extract from the
product f(w)J(w|p) such a factor P(w), which may be integrated precisely.
Then the factor f(w)J(w|u*)P~'(w) will be considered by moment method
over P(w) distribution.

The choice

P(w) = f(w)exp Dy(w|p) = exp{ A4 Zw w_ Vg { )}

Vo(z) = V/{PA("?) Vaeo 1(-”3)
go(®) = 1+ V™ Veiig(x, —|u) (3.18)

corresponds to the random phase approximation (RPA). The considera-
tion of factor exp 3_, 55 Dn(w|i) by the moment method results in quantum

group series by many-particle functions g2 (z1,...,z,pt) (n > 3). More dif-
ficult self-consistent and variation methods of calculation of suc functional
are proposed in works [3,15]."

One of comfortable form often used in different characteristic calcula-
tions is expression of free energy F with the help of pair correlation function

F=F+@2V)"' Y V/d/\uz(x,—-zl,\), (3.19)

v,q#0 0

where Fj is free energy of basis system, po(2, —2|\) a pair correlation func-
tion of the model with the potential AV,

4. Post-random phase approximation

Using (3.2) or system (3.3) and summing up series by functions p2(z,,...,
Z,|po) we obtain

-1
po(z, —2) = My(z, ——:L'){l + V= WyMy(z, —:z:)} , (4.1)
where pair polarization operator has form :
My(z,~z) = j3(x, —2|uo) + Z/\/in(a:,—u:), , (4.2)
n>1

and M,(z, —2) are based on n-particle correlation functions of reference
system and screened interaction potentials [3,4].
After substitution M, (z,—z) = 0 for n > 1 we obtain RPA for even
correlation function, that defines all characteristics in tlus approxxmatmu
The simplest dPVelopment of RPA is calculation of M, (z, —z) and Mz,

~z) which are defined by reference system correlation hm( t10n of third and
fourth order (Post RPA) [5].

MEFPA(e, —2) = (2, —2lpo) + Ma(, —2) + My(z, —2), (4.3)
M, (z,—z) = —(26V)™! Z Vol )pg(2, =2, 21, =21 |jt0),
My(z, —z) = (2V?)” ZV0($1 VO(»L + z1)ig(x, 21, —z — T | o) X

¥

fig(—2, —z1, 2 + 1| o).
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These formulae directly define polarization operator in terms of RPA. Po-
larization operator in this approximation when 7' = 0/ at the first time was
researched in works [5,16,17] in the wide region of non-ideality parameter
Ty = a3 '(3V/4x N)/3, where a, is Bohr’s radius.

By this basic correlation en-
ergy €cor(7s), chemical potential
u*, compressibility, pressure , bi-
nary distribution function and so
on were calculated in the region
0-< r, £ 10. The precision
of calculation may he controlled
by comparison of obtained €., (7,)
with the method. The deviation
is eqyal to 0,25% at », = 1, 1,0%
at r, = 2, 3,7% at r, = 5. These.
results are illustrated also by the
Fig. 2, where ¢, (r,) is pointed ,
in, RPA (curve 1), at taking into
account M, (z,—x) (curve 2) and
in approximation (4.3) (curve 3). Fig.2
The dashed curve is the result : ~"501Wm+mrm!"”wmmrrrrmt;:
from work [18]. In the Tab.1 the » " o
results of calculation ¢,,,.(r,) from
more authentic works of other authors are represented [18-24].

As one can see from calculation, approximation (4.3) is very well in the
region of weakly non-ideality.

ecorr('rs) L1077y
=
AY
A
N

|
oo
=3
T
X,
hY

~120

5. Local-field correction function

The next approximation is the diagram summation for the polarization
function and reducing of the obtained result to the form of a local-field
conception :

- —1 .
My(z, —2) = fi(x, —z‘|,u0){l =V Weas(x, —:z:l,uo)({(:zr)} , (5.1)

where G(z) is the dynamic Tocal-field correction function.
The expression for the two-particle correlation function has the form

,ug(x‘, -z) = /?g(m, —:zrl,uo){l + V‘”qu(l - (,;'(:z:))/'/,.‘_f(m, «:7:];;0)}_1. (5.2)

The local-field correction function is the universal characteristic of the in-
teracting many-particle systems. This function permits the integral and
local characteristics of a model to compute. But one-particle characteristic
computing demands the variation derivative of /(z) . For example, let us
write the particle momentum distribution for the electron liquid model. As
one can see(f.(3.9)) the expression for the particle momentnm distribution
has the form

L6 L) dﬂ(u*)}_ »
s = 5 g U )Iu*—g{—a——&:x*gﬁf = (53)
16
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W, + (@A) STV, / M1+ AL@)1 - @)} x

vog#d

5 _ - & o
{Eug(w, —z|po) + A(2)ji3(, —a;|/.t0)3;(r(:::]/\)} .

Here L(x) = V~'Vqad(z, —x|po)
and G(z|)) is the local-field correc-
tion function with the interaction po-
tential AV, and G(z|l) = G(2). In
such a manner, for some model char-
acteristic computing, the universal
function basis must be built. This ]
basis consists of (/(z) - the local- 1
field correction function and its vari- ]
ation derivatives -G(z), v Gl),

g,%—G(x). Unfortunately, the mod- + X Sl

ern local-field conception is limited ] T e

to the only function G(z), besides, ] e

as a rule in its static variant G/(q,0) 1 L=

[20,25-30]. 0 e e
For the first time the integral

equation set for G(2) = Gi(z) + G(z) has been obtained in [5,15]

Fig. 3

Cia(g,w)

Gi(z) + Z bi(z,21)Gy(z) = GRPA(R), i=1,2; (5.4)

Dy(z,21) = —(26Vy)™" [ﬂg(m, "-’1’|#0)] _-Vq,uﬂ,l(-'v, =, Ty, —T1|po);
y(z,2,) = —(20VVy)™! [,&g(m, —:L‘Iuo)] -‘VqlVO(:n +2;) X

[ﬂg(m’ml’ - - mll:uo)]z;

Gi(z)BPA = Zé;(z,xl)egl(zl).

The (q, ) representation of the local-field correction function was stud-
ied in [5,31,32]. As one can see, (/fF4(z) corresponds to a weakly non-ideal
system limit (Geldart-Taylor’s limit). This is the universal characteristic
which does not depend on the coupling parameter

; 1, _
Gia(z) = G4 (@) =0 = 74 X I73(g.u) x

1 () [e¥) +1
{-ﬂ/d(lﬂh/dui dt]:;,u(‘]»(ll;u, ’lh;t)}- (5-5)
0 0 -1

The dimensionless variables and functions are defined by the following
relations ¢ = |qlkp',u = (2erq)"'v Lo(q,u) = (BN)"2ep X i3z, —| ),
Is0 = (BN)~Y(2ep)*i3(2, —2, 1, —21|pto) The graph set of Giy(z) as a func-
tion of the variables ¢, u is represented in Fig. 3.”
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In view of the fact that G;(z) expresses from (/»(x), let us consider
the question of existence and unique solution to the equation (5.4) . This
equation belongs to Fredholm integral equations of the second kind [33].

Let us use the substitution

y(x) = Gy(a)Vyiin(z, —xlpe), flz)= GRPA()Vyias (o, —alpo).  (5.6G)

The function G,(«) satisfies the equation with the positive symmetrical
Fredholm kernel

y(z) + Z K(z,2))y(z,) = f(x), | (5.7)

. o 4
K(z,z) = (238V) 'Vi(z + ;1:,)[;13(:5, — x| o) (1, —I171l#o)] X
gz, 20, —a — 2y |po)ig(—a, —xy, T + x1|pme) > 0.

Tacing into account the definition and asymptotic of the function

AS(z, 21, —2 — 1|po), one can see the similarity of the function K(z,)
to the function

(28V)H3N)*Vy(z + :1:1){[1,3(3: + Ly, — — xl\,u(,)}z, (5.8)

and the equation (5.7) to the . = N
convolution-type integral egquation:

In this way, the corresponding homo- S ] Fig.s
geneous equation f(z) = 0 has only T
the trivial solution when the kernel is ©

* positive .

From the Fredholm theorem [34]
the unique non-trivial solution for the
equation (5.7) exists. In such a man- ]
ner, the equation system (5.4) has the ]
unique non-trivial solution. ]

The local-field correction function
was studied by the numerical method ]
for the case of weakly non-ideal sys- ] et
tems and the case of strong non-ideal ] ‘
ones (see [35]).. '

As one can see (Fig. 4) the strong ] ‘
dependence of G(x) on the coupling R AL s LA
parameter occurs. The form of the . i
function is obviously changed, especially near point ¢ = 2kp.

Taking into account the maximum value of the functions ag(x, @, —2 -
x| po) and @S, —2, 21, —21|fo) in the vicinity of the supersurface 2y +-2, =
0, the approximate solutions of the system (5.4) have been obtained in
quadratures (sae [32])

G(z) = {G‘{{PA(:L') + (i’pr(w)}{l + (/)(:L*:)(_w'?PA(‘:r:)}_l , (5.9)

where ¢(z) ~ 1. The dynamic local-field correction function in this ap-
proximation is presented in Fig. 5. An influence of the local-field correction
function on the binary distribution function computation under r, = 4, I8 is
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shown in Fig. 6. Curve 1 corresponds to the random phase approximation.
Curve 2 corresponds to the G;4(2) approximation. Curve 3 is calculated on
basis of the formula (5.9). The result of some model characteristic computa-
tions (correlation energy, COII]pIPbbibﬂity, and binary distr ibution function
F5(0) under T = 01\ and 0 < », < 10) is represented in tab.

The relative deviation of the correlation ener gy obtamed in [18] 6,(7,)
and 65(r,) in [36] fromn one obtained in the present paper is found

5i(r) = {eM — e}, (5.10)
Cblr) =Y ) | (5.11)

The small values of é;(r,) and é,(r,) prove that e.(r,), ¢/ *(r,), &/ ¥ (r,) are

calculated with high, almost 1dent1cal precision. The inter pnlatlon of Monte-

Carlo results (518] , presented in [%6] is the most precise analyti¢ form for the
electron liquid correlation ‘energy. The curve set of the binary distribution
function R

.

Fu(e) = 14 [N(N = 1)/3]—1 3" pol, —2) ekpliar), (5.12)

having been calculated on basis of the formula (5.9), is shown in Fig. 7.
The behavior of F,(r) on the small distance is very similar to that com-
puted in [37].
The variation derivative “;_(‘ is introduced in [33]). One obtains the

following form of %—Lfl on the basis of the equation system (5.4)

9(zfk) =

| g,(zlk) + Z(D (z, 11)gz(z1|k) = g,"PA z|k) — ng(wl);—k(I),-(w,zl).

1

2 Gi(e) = 0:(7) + 0a(2) (5.13)
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Here gfP4(z|k) = ;=GFPA(z). An
existence of unique solution to the
(5.13) system can be proved like in
the case of (5.4). The g(z|k) was
studied by the different approxima-
tions. This is a function of the four
variables (|q], |k|,t = (q,k)[gk]™*,and
v). The function of three variables

%
T(q, ulk) = &p—rs k3 / dQqg(z|k)

873

(5.14)
is needed for the ny , computation.
It was investigated both by the nu-
merical and the analytical methods
under T = 0K. The T';4(q, u|k) func-
tion singularities are 1epresented in T
Fig. 8a, 8b, were I4(q,ulk) = 0 4 rhy
I'(q,ulk) at r, —0.

This function is an universal characteristic of the reference system. In
[33] using G(z) and g(g,u|k) the residual Fermi surface variation of the
interacting electron liquid model under T=0K was studied in the wide region
of the coupling parameter.

A(T-’) = Nkp—5s5 — Nkp+é,s at 6 — +0. (5.15)

Fig.7

As it is known, the condition A(r,) > 0 violates from the random phase
approximation under r, > 8,7 (curve 1 in Fig. 9). Curve 2 has been
calculated on the basis of G(q,0), which is computed in [21]. As it is shown,
in the weak and medium non-ideality region taking into account G(q,O)
improves the RPA. But at big values of r, in this approximation A(r,)
becomes negative too. Curve 3 is obtained with G4(x) and its derivative
[ia(q,ulk). In this approximation A(r,}) < Agpa(r,) . The dependence
A(r,) on the coupling parameter at the exact account at GF74(g,u) and its
derivative gfP4(z|k) is shown by curve 4. Asymptotically at small values
of r, this curve coincides with curve 3. But it is of the different character
from curve 1 and 2. It leads to the constant value at r, — oco. Here A(r,) ~
~0.3.... Curve 5 is built in the following approximation: A(r,) is calculated
in (2. 12) approximation with the help of G{¥4(q,u) and Z=GTP4(q,u).

Curve 6 corresponds to (5.9) approximation for the local-field correction and
(5.13) for I'(g,u|k). In this approximation A(r,) has not become negative
in the strong non-ideality region.

6. Model characteristics at non-zero temperatures

As far as we know, the computation of the temperature dependence of the
model characteristics is a more intricate problem in comparison with the case
T = 0K. Up to the present, the temperature dependence of the important
characteristics has not been investigated very thoroughly. There are few
works in this field (see [38,39]). In this chapter we shall show the reference
system approach using for the temperature dependence characteristics of
the homogeneous interacting electron liquid model computation. Primarily,
we modify the partition function functional representation (2.27). Let us
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consider the interaction representation of the statistical operator on the

basis of the operator Hy — pyN, where gy is the chemical potential of a
reference system under T = 0K. -
Z(t) has the form '

_ __Zo(w) »w ol exp d 5 YL Ho)" N
0n

dn(w|pto) = Bt (0, ...y Olpo) + o Z D,y (wlpeo)- (6.1)
0

m>2

Taking advantage of equation

(B

Fig. 8

N = [p260)] " o 2e) (62

P

we can compute the chemical poten- 05
tial and write the statistical operator
by the canonical ensemble variables.
. Let us write the cliemical potential in
the form :

. 0.0
pE= g+ Ap + 8y, (6.3) ]
where Ap = Ap(ry) is the chem-
ical ‘potential = shift of the model.
Ap(ry) describes the interaction in .
the chemical potential behavior. The T M il T T -
following form for 6. has been obtained in the region of low temperature™
it is less than the degenerate one Ty = k'ep ) and in the linear approach
over o

6u = =2 [8(0,00p0)] " (A4 [(n - D™ (Adu(lpo))or (6.4)

n>1 .

where k is the electron liquid model compressibility, ., is the reference
system one under T = 0K,

Adp(w|p) = dp(w|po) = do(wlpo). (6.5)
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Here d2(w|po) is the d,(w|uo)
function limit under 7" = 0K. The
symbol (...)o means statistical av-
eraging over w variable with the
weight function f(w)J?(wlpe), which
does not depend on the tempera-
ture. This function has been ob-
tained from f(w)J%(w|ug) replacing
o (Z1y .-y Znlto) on its ”normal”
component under 7' = 0 K.

Let us confine the first term of a
series (6.4) in a weak non-ideality re-
gion. This situation corresponds only
to the low correlation functions con-
sideration. du as a function of the
variables r, (coupling parameter) and
T/Tr (dimensionless temperature) is
shown in Fig. 10.

Let us expand the free energy of

the model )
F=Qp")+ Ny (6.6)

as a function of the variable u* by Taylor’s theorem near the point pg =
Ho + Ap:

F = {Q0u5) + iV} + 80 {N + ()} + 50070 + o (67)
Taking into account the equation (6.2), we obtain the equality
N+ () = —uQ" () + ... (6.8)
In this way, the linear part over du is absent in the following expansion
F = {8206) + iV } - G007 5) + .. (69)

»

Let us use only the chemical potential, evaluated at T = 0/, for the transi-
tion with the grand thermodynamical potential to the free energy, because
Su ~ T? is in the low temperature region.

exp(=fBF) 2 Z(p + Ap) exp{ — BN[po + Aﬂ]} = (6.10)

-1
exp [ - B(8) + o) { [(@w)f@)}
0 (Ap‘)n d
(dw) f(w)JP(wlmo) exp § S~ ADn(wlmo) + 3 —r A n(Wlpo) ¢ -
n>2 n>1 '
The mutual compensation of the "anomalous” part of the correlation func-

tions and the chemical potential displacement Au occurred under T' = 0K.
The notation

ADq(wlpo) = Da(wlpo) = Dr(wlpa), (6.11)
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has been used. Here DS(w|pu,) = ﬁlim D, (wlpy). Let nus expand the last

multiplier in formula (6.10) by Taylor’s theorem, because Ady,(...) and
AD,(...)T?% are in the low temperature region. As a result, we obtain the
free energy in the formn s

F % Ey+ AF, (6.12)

where

o = {030u) + oV} = S [@) )} [ (o) ) Teluo) (6.13)

is energy of the model under 7' = 0K.

AF = Q(po) = Vo) — | (6.14)
1 Ap) " |

= 9D AADu(wlo))o + > G (Adp(wlp))o p + ...

s n>2 n>1 n!

is the temperature correction, which is caused by the temperature depen-
dence of the functions f(zy,...,%,|pe) where Qo) = /}ﬁm Qo(pe0)-
—00

7. Superconductive phase of electron liquid model

It is well known, that in the region of the strong non-ideality the electron
liquid is unsteady hecause its compressibility is negative and static dielectric
function has negative branch in the region of low wave vectors.

In works [40,41]it was noted, that it may be reasoned by the transition in
superconductive state. In the work [42] many-electron method was proposed
for the description of superconductive phase of systems, which include strong
non-ideal degenerated electron subsystem. The model of electron liquid
serves as a statistic basis in the description of systems of that kind. Ou the
other hand, the problem of superconductive phase electron liquid (SPEL) is
important itself, because it is a fundamental model of the statistic physics.

The basic method for description of SPEL is based on the assumption
about an active role of subsystem of electrons their wave vectors being
within a small region 8(k) near the Fermi snrface.

The subsystem of electrons with wave vectors k ¢ 6(k) is considered as
normal bne (paramagnetic). It plays a part of a medinm which forms the
state of the active subsystem. ‘ :

To describe an active subsystem of electrons Bogolubov’s (u,v)- trans-
formation [43] is used

U24k,s = uk”’k,%—s + 25'7ka:y;’+3, (71)

were ui + vi = 1. To organize a reference system the Namiltonian of quasi-
particles is introduced

=3 Beod o, kedk), (7.2)

k;0=0,1
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where E) is an unknown spectrumn. The subsystem of quasi-particles to-
gether with paramagnetic subsystem of electrons form reference system with
the Hamiltonian

Hy= M)+ Vp, i, = Z (g% — p)ag s + h, (7.3)
s kg3(k)
VP = (2‘/)—1 E Vq Z al-'c-l—q,s] aI.»-{rq,s,ak.nS:“klyh .

q#0 ki kz,51,82

and kq, ko, ki —q, ko+q ¢ 6(k). In the calculation of a partition function the
operator H — jiN — Hp ‘s taken ‘n‘o accoznt by ‘he moments method rela-
tively reference system. Its thermodynamical and correlative functions may
be calculated by methods which were elaborated for paramagnetic phase of
the model. Thermodynamical potential (u) is a functional of w, vk and
Ey. In the ideal case, when all diagrams of perturbation theory are taken
into account, () is invariant under their choice, that is

8QUp) _ o Q) _ ,,
o =% m " (7.4)

In practice Q(u) may be calculated only approximately and (7.4) are con-
ditions of the extreme, which define unknown functions.

In the approximation of first correlations of reference system and tem-
peratures, which are low as compared with superconductive transition tem-
perature T,, conditions (7.4) may be reduced to the following system of
integral equations

’U,k’UkEk = (2‘/)—1(’!],‘2{ - 'U;'i) Zuklvk,(l — 2"1:,)(2(1{» kl), (75)

ki

Ek = (ui - ’Ulzc){k + 2Uk’Uk’l)—l Z uklvk,(l - 2nkl )(J(k, kl),
ki

’1 . E . . .
Here ny = [l +exp(/3Ek)] is the momentum distribution of quasi-particles.

b =ex = p— (2V)! anﬂ,s(g(k, k+q)+ (7.6)

q,s

V—l Z Q(k’ kl) [ulhﬁ’kl + vklf)kl] -
k;

V)™ S 2up(al Bx + Eiya) + -
b |

Kernel Q(k,k,) is taken with the opposite sign screened potential of inter-
action
1

I Vierpp(s = kol B, 4 B)y (1)

Qs Ks) = ~Vie s {

Here up(q|E) is a retarded correlation function of paramagnetic subsystem

pr(qlE) = pf (v, ~z) at v — E. (7.8)
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If k and k; are close to kg, then E, and Ly, reach mininium and in such
case fip(ki — ko| Ex, + Ey,) is close to the model of electron liquid in the
paramagnetic phase (us(z,—2) when v = 0). Then under enough great
significance of coupling parameter Q(k,k;) is positive. When k and k, are
essentially different from kr then Q(k, k) is negative even when r, is great
enough. Thus, retardation effects are essential and the criterion of rise of
superconductive state has the form :

%Vkl—kg/LP(kl - k;_le‘k1 + Ekq) Z 1 at k],/u‘g ~ k‘p. (7.9)

The research of possibility of existence of system (7.5) solutions is (ul-
filled with the help of a simple model, where region 6(k) is a spherical layer

kp— 6, <k<kp+6. (7.10)
By means of standard substitution

vl = é {1 - & [5;{ + <:§]_1/2}, By = [6;3 + vi]m (7.11)

we come to new couvinient functions Cy, &, which satisfies within the model
(7.10) such a system of one-dimensional nonlinear equations

krp+d2

Ci = / KR (k, kallCy 6]) Ci, ®(Cln €0 )ilky = 0, (7.12)
kp—6,
kp+é8g

& + / k?q(k,kll[(]k,gk])gh,<1>((,'k1,§kl)(/,/.;, = E.
k-8

Here the following notation were used
o 2]~ 1/2 3., 12 : o
®(Cunte) =[G+ ci] e Slg ] )

q(kakl

+1
(00 &)) = (377" [ Qi ke,
=1
Besac—p+ V) Uk 1430l ] -
k, B
V7Y (Al B + Exyg) + .oy
q

and ¢ is cosine of angle between vectors k and k;.

Kernel q(k,kll[(l'k,ka is a functional of unknown (; and & but
its general form may be illustrated by the kernel of null approximation
qo(k, k) = q(k,k’,[[(/k,ﬁk]) when C = 0, & = £ where £/ corresponds to
the function £, in the normal state.
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In the Fig. 11 family of curves
qo(k, k1) = 0 was represented for some
significance of r,. Kernel is positive :
inside every "butterfly” and negative o e
- outside it. The first of equations
(7.12) belongs to the type of Hammer- 1001 -
stein equations [34], and an existence . T
and unique of its solutions is condi- TN
tioned by the positive form of the ker- 1Tl
nel and by the positively and limita- 1 O\
tion, of the functions C,®(Cy, & ). 1 \

As one can see in the figure, un- ] \
der great enough 7, the region 6, may ] ' \
be chosen so as to guarantee the ex-
istence of non-trivial (', solutions. ]

In the work [44] it was shown, that | Fe
where F, is the free energy of su- 018 T T T T
perconductive phase, Fp the normal N '
phase, and functions C} and & are v
solutions of equations (7.12) when p = p,, where y, - the chemical poten-
tial of paramagnetic phase of the model.

k'ke*

1 -1/2 BREVE 2
Fo-F<-s3 (- +ci] {lg+c] T —lal}. (719
5(k) :

The inequality (7.14) is true when the region 6y is small as compared with
the Fermi sphere. In Fig. 12 solutions of equation for (Y in the case of
absolutely zero temperature which were found by the general method are
shown. Here region 6, was defined by the condition of the minimum of value
AF =F, - F,.

The temperature of superconductive transition 7. is found on the con-
dition of disappearance of non-trivial solutions of equation for Cj (look
Tab.3).

-1

The peculiarity of superconductive
phase of the electron liquid model is the
strong dependence of its characteristics on
the value of coupling parameter. There- NN
fore the general physical picture, that is ob- s,
tained by means of basic method looks like o TN N
the model BCS [45]. i ™\

Under very great values of the coupling T
parameter the separation of the model in
two subsystems loses the sense and the won
basic method stops to be effective. Un- cal
der such conditions one-component Bo- i
golyubov’s model must be used [46].

F CuEw

8. Reference system approach in the inhomogeneous elec-
tron system theory

Spatially inhomogeneous electron liquid model is considered as the basic in
modern microscopic metal theory.
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The method of the density functional is one of the many approximate
methods for the description of inhomogeneous electron systems [47]. The
construction of the density functional with many-particle correlation ac-
counting is the vital problem in the theory of inhomogeneous electron sys-
tems. To solve this problem the reference system approach has been con-
sidered in [48). Having suggested the correct taking account of the inhomo-
geneity, let us consider the simple model, in which the interaction between
the electrons and the positive charge is described by lncal potential. The
model Hamiltonian has the form

H=H+V,+V,+C. (8.1)

in the second quantization representation. Here H is the Hamiltonian of
the homogeneous electron liquid model. Operator

Vi=V71 ) Vi(@)S-q ) af o, (8.2)
q k,s '

describes the interaction between the electrons and the inhomogeneous com-
ponent of the density of the positive charge

Sq = /dr [p+(r) - %J exp(iqr) = /drAp+(r) exp(iqr), (8.3)

and Sq=¢ = 0. V, is the operator of the electrostatic interaction, which is
caused by inhomogeneity of positive charge

Vo= (V)7 3 Va(@){SaS-q = N }. (5.4)

q#0

The constant C' is determined by deviation of interaction potentials with
Coulomb interactions in a homogeneous system

C = @V) N {Va + 2Vi(a) + Va(@) flamo- (8.5)

The frequency representation will be used for the model (8.1) partition
function computing relatively the electron variables (see section 2)

Z(w) = Tr{exp | = B(Ho — pW)|T[5(2)3,(0)] fexp [ - A(C + V)] (5.6)

Here $(v) is defined by formulae (2.15) and

S1(v) = exp {—V'1 E Vl(q).‘f‘qp”q,o} . (8.7)

.

Using the homogeneous electron liquid model as a reference system (all
thermodynamical characteristics and the correlation functions of this model

are known) let us represent the partition function Z(x) in the form

Z(w) = Z(u)(Suw)nexp [ - BC +Va)]. (8.8)
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Here Z(p) is the partition function of the reference system, which is defined
on the basis of formula (2.15). The symbol (...}, means statistical averaging
over the states of the reference system.

Expanding the operator 5;(r) in a paper series, averaging each of this
expansion and representing the result in the form of the exponential func-
tion, we obtain the thermodynamical potential of the inodel (8.1) in the form
of expansion in the static n-particle correlation functions of the reference
system

Qu) = —[lj InZ(p) = Q) + C + Va + Q, (1), (8.9)

11 ) | ]
Q(p) =D (-1) lmw > Bn(an . anle) [ $1(q0),
: q1,--9n

ny>2

=1

where Si(q) = Vi(q)Sq. (u) is the thermodynamical potential of the
reference system

<

e = S0 (T{ 800 TTaef) - a0

H,

Let us calculate the free energy F = Q(u*) + * N of the model in variables
B3,V, N, where u* is the root of equation

d

= dp*

Q(u*). | (8.11)

Let us write the chemical potential in the form p* = p + Ay, (where p is
the chemical potential of a reference system) and expand Q(;*) by Taylor’s

theorem near the point p,. This allows us equation (8.11) into algebraic
form to transform

- n—1
> |- 1(Au)"-?{Almn(O) —(n- 1)@"_191(_,,,)} =0. (8.12)
n>2
Here &
M,(0) = —d'unﬂ(u) (8.13)

is the static limit at qi,...,q9, — 0 of the polarization function. Solving
the equation (8.12), we obtain the result in the first iteration

A/J’ = M;l(o) Z(_l)n-—lv-—n Z ﬂn+1(q1a LRS! (lnaol//’)H Sl(_qi)-
i=1

n>2 qr---49n
(8.14)
Now let us separate the contribution of inhomogeneity Fito the free energy,
and write

F=F+FR+C+V,, F=F(n)=p)+pN,

(8.
Fy=F[S]=%w+Y (A(l:l)";‘ {nd‘f:_l Oy (u) - A,U,Mn(())} :
< (! _

15)
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Here F(n,) is the free energy of the homogeneous electron liquid with the
density ny = N/V. The model characteristic computation based on repre-
sentation (8.15). For example, let us consider the unary distribution func-

tion
A) =14 fi(r), fi(r) =" fila)expligr), (8.16)
q#0

Representing the Fourier transform of fi(q) as a variation derivative, we
obtain

1 . 8 |
== 5-=VN'{‘ 0 } = (8.1
fl(q) N<kz’8ak+q,s“k, >H éb’l(q) (/l ) » ( 7)
1 (_l)n—l e _ n .
N V Z :u%(qvq%'--vqnllt)H‘sl(_Qi)"‘
n>2 [(” - 1)!] ENRN 1=

1 (-t N
| fin (q’qv"-aqnvoﬂ' X
NMQ(O) n>2 [(TL e 1)'] qgg,:qn i ’ I )

n ’ ‘ _1 m—1 ~
II51(-a) )] (—V)m_ Yo (@ dy e dl ) X
i=2

m>2 L UPTPRN. L

I15:(=d;)+ ...
j=1

The component F\[54] is the functional over S, which describes the ingo-
mogeneous. We limit our treatment only in the weak non-ideality region

fila) = =(NV)™'Vi(Q)Sqfia(q, —alp) + ... (8.18)

Using the iterating method and (8.18) as a zeroth iteration let us solve the
equation (8.17). We obtain

V7ISVi(a) = —fo + 35" (a, —qlp) X (8.19)
~1 n
2 [(" - 1)!] Yo (@) ] {fq, — 7151 (Qi, —qq|pe) x
n>3 a2;.-,9n i=2
) ~1 ~ , m i
S =10 S i@y sdluli) < [T f + } -
m>3 By j=z

M5 O)iz (@, =aln) T [ni(m = 1)!] " x

nmp>2

E Z ﬁn+1(¢l1,---7q7n0|ﬂ)x

a1;-An qf,...q},
n m
ﬁm+1(q’ q12’ ey q:nv OIH‘) 1-_[ .fq.' H fq’j + ..
i=l ji=2
Here fq = fi(q)Nji; '(q, —qp). Substituting the value of Sq in formula
(8.15), we obtain the expression for F, as the functional of fi(q)

F=F+4Fy+Y FOIf] (8.20)

j22
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The electrostatic interaction energy is extracted
Fc, =C+ (8.21)
{vz SaS-q + 2Vi(Q)NS_afi(@) + N*Vofil@) fi(-a)} =

5//‘11'1031'2{‘/2(1'1 — 12)p4(r1)py(r2) + 2Vi(ry — ra)py(r)n(rs) +
V(r; — r2)7z(r1)71,(r2)}.

The components FU)[f;] are represented in the form of an expansion in
the reference system correlation functions.

FOf) = Zfl (-a)M;'(q,—q (8.22)

z:(’ll')_l Z ﬂn((h, ] qn|/L H fq.

n>3 Qi

— Z [ n—1)(m— 1)‘] Z Z a iy ooes Wonl ) fqu fago X
nm>3  d1,., ar q,..., i

fqn—l fq;a ey fq’,nﬂ;l(qm _QHIN /‘m(_qnv qz, ees qgnl/‘) +

Representing every term of the series (8.22) in the form of a sum of the n
elements, let us make the transformation of the effective n-particle potentials
for summing of these series:

M;'(q,—q) = M;'(0) + [M5 ' (q,—a) — M5 '(0)], (8.23)

3 -1
fis(q1, q2, (lnl,u){ H fiz(qi, _(117'/‘)} = 6<11+q-z+<13,0{A/[-"‘(O)M'z_d(o) +
i=1

3
[Z Ma(qi, —q;, 0) My (0) M5 *(qi, —qi) — 31\/[;,(0)M._,"'"((J)] +

t=1

3
[Ms((h, q2,93) H Mz_l(q,-, ~q;) —

1=1
3
> Ms(qi, —qq, 0) M5 (0) My *(qi, —qs) + ZM;;(O)M{”(())” yeo
=1

As a result the first element does not depend on the vector g, the second
one depends only on the vector q;, the third one depends on the two vectors
q; and qj, etc. Let us represent }(*)[fi] in the form of series

F2)fi] = iﬁ}(”, (8.24)
j=1

2) . . . . Y ey .
where Fl( ) is the series sum and is built on components (8.23), which does
not depend on q. F(2), is the series sum, built on components, which
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depend on q; and q;, etc. Traditionally the theory of inhomogeneous models
has been developed mostly in R-representation

FaF® / drgo(r),  go(r) = n(x)f.(m), (8.25)

where f.(ng) = N7'F[no] is the [ree energy per one particle of a reference

system with density ny. In this way, the element F|” brings us to the
local density approximation [47]. Other terms of the series (8.24) can be
represented in the form

9 1 ,
Fj(“) = ﬁ/.../dr, codrjAn(ry) L An(r) xo 0  (8.26)
~ ' j—l
Z Ki(qy,-. -aq]'—1|”'(rj)) exp{i Z(qm’ Py — rj)}'

qi1,-.-qQ5-1 m=1

The kernels of (8.24) are determined by mauy-particle polarization functions
of the reference system in the local approximation. Let us represent the

expressions of the lower order kernels Ky(q, —q|n) and Ks(qi,qs, —q, —
qz|n)

Ky(q, —q|n) = Ky(q, —q|n) — K4(0,0[n), (8.27)

a(

. _ | ~ N . -1,
Ky(q,—qln) = M, (q, —q|n) = [;Lg(q, —q|n)} - V4V 'G(q|n),
1\3(%,(12, —q) — Chln) = K3(q1,92, —q, — qo|n) + 2/43(0,0, Ojn) ~
Ks(qi, —a1,0[n) — Ks(q2, —q2,0[n) — KN3(qi + a2, a1 — @2, 0n),
Ki(q1,q2,—q, — qa|n) = -VZN (d1, 92, qs|n) x Oy taaatas,0 X

3
H fiz H(qi, —qin).
i=1

In such a manner, the free energy of the inhomogeneous model can be
represented in the form

F=F,+ glnl, (8.28)

where g[n] is the universal density functional of a reference system, which
does not depend on the potential Vi(r):

g[n) = /(lr(/(, )+ Z F( ) (n] + . (8.29)

i>2
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The kernels K;(qi,...,q;|n(r)
have been studied in [50]. The expan-
sion K;(qi,...,q;|n(r) in the powers
of variables q, occurred on the small
and medium value region wave vector.
This expansion originates the gradi-
ent expansion [49]. But these expan-
sion takes place only in the segment
la.| € 2kp. The kernel K,(q, —q|ng)
and its approximation are shown for
the case r, = 0 in Fig. 13. The ex-
traction of the kernel part method has .
been proposed in works [49]. REESNPSEC

Using the asymptotical expansion [
of functions ﬂggq,—qlu) and local- o
field correction function, let us show 7 Fig. 13
it by the example of the kernel K»(q, ST SN ————

—q|ng) , q

[ +~
A aaaaalaa

~
N

L

K:(q,—q/ 1) 3ng (2ep)

]

Y(no)g* + a(n,)g* + B(no)g® + 6(no)d® + ..., ¢ < 1,

G(q|ne) — Gl
Gloolne) + = 2;2 o) t.oog> 1,
(8.30)
where ¢ = |q|k7'. The asymptotic
= £ 32 4re? N
Ky(q, "Q|"0)q'f§o[{2(q, ~q|n) = ﬁ [ff - -1—5] + W’y(no) (8.31)

enables to use the numerical method for its Fourier transforin computing,.

Let us extract the singularity in the f(z(q, —q|ny) and represent it as a sum
of two elements

Ez((h *CI|"0) = Ry(q, —Q|“0) + ®5(q, ~qlno), (8-32)
®2(q, —q|no) = Ka(q, —q|ng) — K5(0,0]|n0) — Ra(q, —q|ne).

The residual kernel ®,(q, —q|n,) is shown for the r, = 0,4, 10 in Fig. 14.
It has the regular asymptotic

2 2 Adr,
A [_ _7.3M] g [7 LBt ... g,
3ng 5 T 3wy
P <D2(q’ —q,7l0) -
2ep 179  4r, |
~7 105t G| £ 0>

(8.33)
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and corresponds the negative screen
potential in the region of large q. The
sign of the expression can exchange at
the region ¢ < 1 under the different value
of coupling parameter r,. The detailed
characteristic of this kernel is the deep
minimum near the point ¢ = 2kg. The
Fourier transform can be calculated by
numerical method for the ®,(r|n,) in the
‘orm: {8.32)

05 1

P T L Lo n s Ak
s
e LAt
f e
i

el

104

Po(q, —q 10) 31 (Rep)

1 .
®,(r|ny) = 7 Z ®,(q, —q|ng) exp(iqr).
q

(8.34)
As one can see (Fig.14) ®3(r|no) has the ] L Fig 14
character of an attractive screen poten- 28 Frrrrr e )
tial with Coulomb asymptotic at small 0 2 ¢ q

distance 906 4r.
Ep T 7,Go(n
(Dz(rlno)_ __l_.__{loo JTr—,,]())}—F

k
The oscillations are caused by the divergence of ®,(r|ny) near the point

q = 2kp. The divergence component Ry(r|n,) has the following analytical
form

(8.35)

4dmng

R2<r|no)={ (v - ok ]+%iv(no)}ﬁ<r1—rz). (3.36)

In this way, F2(2)[n] consists of the two components: the correction to the
local density approximation and two-particle component

Y = (8.37)

m 10 l/d ; 2)2/3 n2/3
g\//drldrg Awn(ry) A n(ry)Rsy (r1 — rofn(rsy)).

L

The three-particle kernel I;'d(ql,qq,q3|n has heen studied both by the
gradient expansion method and by the divergence component extracting
method in [49].

9. Generalization to related models

Reference system approach, which was developed for electron-liquid the-
ory, can be simply generalized for the case of a Fermi-system with a local
interaction between particles [51-53]

The model with many-particle local interaction was investigated in paper
[2]. Any system of one-particle functions {¢,(r)} is used. On this basis the
Hamiltonian has the form

H=Hy+V, Hy= ngaj’,am,, (9.1)
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V=> ()"
n>1

+ o+ +
E Voo, .. .,('rn)a,,l’“a.c,w2 S P S

O1, 0,y 81,.,8n

Fermi operators a,, correspond to functions ¢.(r) and spin- projection
= +1 and V,(o1,...,0,) are the matrix elements of n- p.uticle interac-

tlon potentlals on thl.‘: ba515 For representation S-matrix in the collective
variables we shall use Fourier series for interaction potentials. As a result,
we obtain the spectral representation of particle density operator

= Z E Ry, o (q)af (v 4 v)a,, . (v"), (9.2)

s,v* 01,02

R‘fl,dz(q) = /Soal(r)eiqrﬁpg.z(l‘)dl‘.

The partition function in terms of the collective variables can be repre-
sented in the form

2(8) = Zo(w) [ (dp)I(p) exl=V (o), (9.3)
V(p) = Z(n!)-—l(ﬂv)l—n Z 6V1+--»+Vn,0Vn(q17 ey qn)Pru cees Prye
n>1 L1,...,Tn

Here ZO(,u) is the partition function of the reference system with Hamilto-

nian H,. The transition Jacobian is determined by the relation (2.22) and
function J(p) is formed on the operators (9.2).

In the work [53] the dependence of a local field correction function on
type of the interaction potentlal between particles has been investigated on
the example of the fermion model with a short range interaction potential. It
was modelled by the Yukawa potential V(r) = Ae’r~'exp(—£r/ay), where
parameters A and £ have the quantum- mechanic sense, but not statistical.
The electron-liquid model is the partial case of such model at A = 1,&€=0.
The Fourier-component of the potential in this case is equal zero at ¢ = 0.
Being the ratio of an averege potential energy of a particle to its kinetic
one, the coupling parameter in that model has the form

(Ber) " & [arvie—e)Fitn) - 1] = (9:4)

5
2rA%e®* N 10A27',m* .
/drrexp{ —ér/ag} = —f(£),
3ep f'

F€)= (&) {L - [L + &exp(-€)}
Here r, = ry/ay is the coupling parameter for the non-ideal electron liquid,
&= 5—'— Ep = h—kﬂ, ro = (3V/4w N3, m* = m/mq (M- is a mass of the
electron), F“”(r) is the binary dlbtlblltlon function of ideal Fermi system

(without interaction), Rp = kz' is the correlation function radius of the
degenerate ideal fermion system.

In order to obtain the equation for local field correction function we
must replace in (5.4) Fourier-image of the Coulomb potential with

-1

Vy= 47!'62/1{(.12 + (§/a0)2} . (9.5)
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For the case of weakly non-ideal system we have the following local field
correction function representation

(:’(J)) = —% {q2 + (%)2} Lﬂ,}?(q, w) X (9.6)
oo oo 41
/dqqu/ (lu/dt]4,1(q,q1;'u,,u1;t) X
0 Q -1
£r,

1
{qf+( ; )'“’+47rAan,o(quul)} :
a, = r(minp)~L, = (97/4)'3,

The coupling parameter 7, in the electron liquid model is slightly formal.
It has only statistical sense and is defined at T = 0 by the particle density.
The model with a short-range potential has both r, parameter and two
other parameter A and £&. We.can realize the limit of weakly non-ideality
through this parameters, assuming A — 0 . In this way for the model with
Yukawa interaction potential we may realize three weakly non-ideal limit
by three different pathways

1). r,—=0 at A,{ = const,
2). A—0 at r,& = const, (9.7)
3). & — > at A,r,=const...

In the first case G( ) is equal to the local field correction function (;4(z)

~7 ]
Q.; | 3_: Fig. 16
N &
N 2
¢ ©
—
,//)
N ]
] 0.4 15
.0
0
.0
q 0.0 15 3.0 q

for the electron liquid. In the second case the dependence on the paramn-
eter £ remains and only by the following transition r, — 0 function G/(z)
set to Gyg(x). In the third case G(z) = 1/2 is independent on potential
parameters, but it is completely different from (;'(:c) in the region of the
small momenta. This peculiarity of function (;’(;1:) is illustrated by Fig. 15,
16. The results of numerical calculation G/(x) in the approximation (5.9)
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are demonstrated in Fig. 17, 18, 19. As is known, local correction function
for electron liquid has the following asymptotic [25,26,27]:

J = Y(u,7)(q/kr)* at q < kp,
G(g,u) {Gm(r.,) at g > k. (9.8)

Local correction function for model with sort range potential has slightly
other asymptotic

- * 2 *\2 at A
o= (L L < o

The potential character causes a distinc-
tive behavior of G(2) in the small wave

vectors region: (/(z) tends to non-zero
value around the point ¢ — 0. In the
region of medium and great wave vec-

tors G() is similar to the local correc- , ]
tion function for an electron liquid. The ] .
short-wave asymptotic G(z) increases 06 9 /
with the rise of r, and A parameters and ] 4
is irrespective of £ parameter. ] /f"

In the paper f53] the dependence of 047
ground state energy and binary distribu- ]
tion function on model parameters was

investigated on the basis of G(z).

The generalization of the reference
system approach to the case of many-
electron Fermi-system models is obvious.
Let us consider, model with the Hamil-
tonian

Fig. 18

G(q.w)

(=)

e

A

A8 |\\‘
(Y
i
|

L 0 B TTTTrrTT

H=H,+V, H,= Y ectecy,, (9.10)
ks 1<asM

V=02V)"'Y Y Y Ve (@G, O O O

ay, 2 kg ka,s1,82 q

where €2 = hk*/2m,, and Cg, are the second quantization operators in the

plane waves basis for a-species Fermions. The transition to the frequency
representation is the same, as in the case of one-species system, but the
particle density operators for each sort we are to be taken into account

pr=3 Ce (v + )0 (v, (9.11)

k,s;v*
a8
20 = [E(BCELB)
0

As a result, we have such representation of the partition function in the
collective variables

zw=TI 2z [ I x (9.12)

1<alM
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Here Z§(u) is the partition function of a reference a-subsystem, and J(p)
is the partial transition Jacobian

Jp) = /(dw)J"(w“La)exp {iﬂ'Zw;'p;’} , (9.13)

T (wlia) = exp{ 3 DE(wla) b,

n>2

Dy (wlpe) = B(n!)™! Z Wy eeewy (T, T ),

15T n

where [i%(z,...,2,|ts) are the correlation functions of the reference -
subsystem

In the work [51] the functional representation for partition and distri-
bution function of two-sort Fermi system are received. The general relation
are illustrated on the example of the simple electron-hole liquid model in
semiconductors. It consists of N electrons and N holes with static screen
Coulomb interaction V,,(q) = Vy(q) = Vo, Valq) = —Vaer! (Vy

2
47;; ).

The typical scales for this models are exiton’s Bohr-radius a,, = eoh” x
(ne?)~! and exitow’s Ridberg E., = e*(2¢yp)™" = ue*(225%)1 (here
p~t = m7' + m>') [54]. In the region of low temperature both subsys-
tems are degenerated and their Fermi-impulse are the same. In contras! to
electron liquid two-component system has three dimensionless parameters
m; = m./my (¢ = ¢,p) and coupling parameter

3V \'/°
= (m) a.; = rou(€gmg)t, (9.14)
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where mg is a mass of the free electron, r, is the coupling parameter for the
electron liquid at the same particle density. Asit is known, the concentration
of the electron hole pairs in such semiconductor as Ge or Si corresponds to

=1+ 2 [54]. In view pomt of the electron liquid theory such model is
weakly non ideal. However, in (5.16) the fact, that the system has two-
component is not taken into account. As it is Shown in work [51], the real
coupling narameter is

P = ri(me 4+ my ) (memy,) (9.15)

In this way, r* > 4r}, therefore the electron-hole liquid is strongly non-ideal
and local-field effects play an essential role.

Integral characteristics of a model are determined through the pair cor-
relation function ”charge - charge”, which caused by charge symmetry of
model. In particular, for the free energy we have the following representa-

tion

&r

1
F = Fy +(26Veo)™! q/u; ©, —|A)dA. (9.16)
0

Here Fy is the free energy of electron’s and hole’s basis subsysteu,
py (z, —z|A) is the mentioned earlier correlation function of the model with
interaction potential Av.,.,(q)

1 . . .
pg (z, —z|A) = E<Rx3—x>m = /3<T N (TSR R_o Y s
Sy = exp {—(2/31/50)‘1/\ ZVqufz_m} : (9.17)
= 3 (V" + P)ae (7) = B (7" + )0}
k,s,v*

In so doing ay , are the electron operators and by ; are the hole operators.

Similar to the electron-liquid model in work [51] the local-field correc-
tion function of two-species model which determined the function (9.19) are
introduced

‘ -1
bz (2, —al1) = iz (2, —2) = Ma(, —2) {1+ T2 Mol —0) - =
~0 -1 ~0 "y -1 o3
(2, —x|to) {1 + (Veo)™ Vigfin(x, —|p0) [1 - (:ep(:t:)]} . (9.18)

The local correction function is determined through correlation function of
reference system, which are.built up on ”sort” functions

BTy, Talte) = AE(Ty, ooy malpe) + (1) (ry o lpp). (9.19)

Function G, () is shown in Fig. 20a, 20b in Geldart-Taylor approximation.
As one can see the dynamic correction of two- sort model is essentially
different from that of an electron liquid. It has two maximum, which are
caused by the efective masses of the elecron and the hole (§ = my/m7).

In Geldart-Taylor approximation (7.,(z) depends only on eﬂ(?(t}ve partlr,]es
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Fig. 20b
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mass and is independent on coupling parameters. We have the following
asymptotic at great values of wave vector

) 1 ;
Gep(z) = 3 [(m;)z + (m:)z] [m; +m2]"2, (9.20)

and at static long wave limit

9

Gep(z) = QZ [(m;)z + (77z:)2] [y +m}]~7, (9.21)

In the work [52] the function G.,(z) in the approximation similar to
(5.10) is investigated. The results of this calculation are shown in Fig. 2la,
21b, where (G.,() is illustrated as a function of wave vectors under given
frequencies or under given effective masses.

The energy of metal phase of the model at T = 0K is shown iu the
traditional form

E=NE.r); €)= e(r?)+enr(r’) + (+7). (9.22)

Where €o(r;) = 27%(r;)=2 is the reference system energy pair in Rydberg
Ry; exr(ry) = —21(r7)~" is the Hartree-Fock energy which is independent
of the particle mass, ¢.(r}) is the correlation energy (energy of Coulomb

correlations).
In the ordinary RPA we obtain the following expression for the correla-
tion energy (when M,(z, —2) = i3(z, —z|u)) ‘

RPA(r) = — P (r) (L4 67 x (9.23)
[ dad® [ au{xta, 1) = w1+ xia 102},
] 0

x(¢,u™16) = 4r;™ (7)™ ¢ H(1 4 6) Lo 0(q, u”) + 6 Iy0(q, 6u™)].
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Here ¢ = |q|kf', u* = um}, u = v(2epq)~" are the dimensionless variables,
er = W’k /2m,. The correlation energy and other model characteristics in
Geldart-Taylor approximation [52]

My(z,—z) =
(@, — i) — 28V o)™t 3 Vil (2, =, 0, — o),

(9.24)

and on the basis of the local field correction function are investigated. These
results are represented in Fig. 22. (in Rydberg per pair). The dotted
curve correspond to RPA, the dashed curve to approximation (9.24). The
correlation energy, calculated on local correction function basis, is shown as
solid line. The metal phase in this approximation exists at ¢ > 20.

Conclusion

Caused by Pouli’s principle, strong many-particle correlations in the degen-
erate Fermi systems are the physical reason, which affords the effective use
of the reference system approach. Being formulated in terms of n-particle
correlation functions of a reference system, this approach permit the infe-
gral, local and one-particle characteristics of the interacting many- particle
system models to be computed. The principle of the correlation attenuating
decreases the higher order correlation effects influence which are connected
with the high group of particles and affords the expansion in the reference
system correlation function convergence.
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The reference system approach per-
mits many mathematical difficulties to
bypass, which are created in the inter-
acting system characteristic by the or-
dinary perturbation theory having been
formulated in the one-particle character-
istic terms.

Having been worked out in the elec-
tron liquid theory, the reference system
approach has been generalized to some
models. Generally speaking, this univer-
sal method can be used for the descrip-
tion of interacting many-particle systems
with the local interaction potential.

If the reference system is chosen, this
approach immediately could be used for
the description of the spatially inhomo-
geneous and limited system models. It
gives the chance for correct obtaining of

Fig. 22

the density functional of a reference system in the case of the different phase

states.

Unfortunatly there are indefiniteness of a reference system choice what

is disadvantage of this method.

A reference system approach, operating with the most difficult ob jects -
many-particle correlation functions, can be used only in the symbiosis with
the modern computers. In this symbiosis it is the powerful method for the
solving of the vital problems of the statistical physics.

Rs 1 2 3 4 5 6 10
RPA | 157.6 | 123.6 | 105.5 | 93.6 | 84.95 | 78.24 | 61.32
[19] | 124.0 | 92.0 | 75.0 | 64.0 | 56.0 | 50.0 | 36.0
20] | 112.0 | 89.0 | 75.0 | 65.0 | 58.0 | 52.0 | 35.0
21) | 1174 | 86.7 | 71.1 | 61.0 | 53.8 | 48.3 | 35.0
22] 1125.0 | 91.9 | 74.3 | 62.5 | 544 | - -
23] | 123.0 | 91.7 | 75.1 | 64.4 | 568 | - -
24] | 122.0 | 90.4 | 73.8 | 63.4 | 56.0 | 50.5 | 37.0
18] 1200 | 90.2 | - - 1563 | - | 372
* [ 1288 [102.6 | 87.7 | 78.5 | 72.6 | 66.7 | 53.4
w | 119.7 | 89.3 | 72.9 | 62.1 | 54.2 | 48.0 | 326
(5] |120.0 | 90.3 | 74.4 | 64.1 | 56.6 | 50.9 | 36.7
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Rs | 8 | 9 | 10| 11 12 | 13 14 15

TK|24]|248]|609.1]|158.4 | 258.0 | 391.0 | 505.0 | 660.0

Tabhle 2.

Rs 'IOBEcorr ZI”/”—"() F 61 LB

0.25  190.733  0.958057 = 0.4227 0.0013
0.50 | 153.942 | 0.915262 | 0.3625 | 0.0012 -
1.00 | 119.956 | 0.827466 | 0.2733 | 0.0007 | 0.0041
1.50 | 101.697 | 0.737089 | 0.2108 | 0.0002 -
2.00 | 89.5792 | 0.644442 | 0.1639 | -0.0002 | 0.0066
2.50 | 80.6987 | 0.549751 | 0.1297 | -0.0004 -
3.00 | 73.7980 | 0.453219 | 0.1022 | -0.0004 -
3.50 | 68.2223 | 0.354972 | 0.0816 | -0.0004 -
4.00 | 63.5892 | 0.255191 | 0.0652 | -0.0003 -
4.50 | 59.6575 | 0.153945 | 0.0526 | -0.0002 -
5.00 | 56.2654 | 0.051345 | 0.0426 | 0.0000 | 0.0013

5.50 53.2996 | -0.052539 | 0.0349 | 0.0003 -
6.00 50.6781 | -0.157639 | 0.0287 ! 0.0006 -
6.50 48.3395 | -0.263870 | 0.0241 | 0.0009 -
7.00 46.2369 | -0.371187 | 0.0204 | 0.0012 -
7.50 44.3338 | -0.479524 | 0.0174 | 0.0015 -
8.00 42,6011 | -0.588832 1 0.0148 | 0.0019 -
8.50 41.0158 | -0.698954 | 0.0157 | 0.0022 -
9.00 39.5583 | -0.809946 | 0.0109 | 0.0026 -
9.50 38.2138 1 -0.9215%0 | 0.0097 | 0.0030 -
10.00 | 36.9660 | -1.033848 | 0.0092 | 0.0033 | 0.0068
Table 3.
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BA3VCHUM NIOXIO B TEOPIT
EJIEKTPOHHOI PIIUHU

M.Baspyx, B.lacnaschruit, O.Baakuenen sy

Buxiageno ocHoBu Gazuchoro mimxomy B Teopll ejleKTpOHHOI
PioMHM, AKMI ¢ peHOpPMAaJi30BaHOIO Teopielo 36ypeHL B TepMiHAaX
D-9aCTUHKOBUX KOPeNAUHUX (GYyHKUi neskoi Tpocriuoi mMomesi
( 6asmucaoi cuctemu). Ilpuseneno gyuxuionanpui npencTaBiieHHA
CTATUCTUYHOl CYMH, TEPMOIMHAMIYAUX Ta KODeJAnIMHUX GyHKI,
a TaKOXK ONHOYACTUHKOBMX XapPaKTEPUCTMK MOIeJi ej1eKTpOHHOL
piayn. [lomano pesymbTaty pospaxyHkis eHepreTUYHUX, CTPYK-
TYPHUX Ta [leIeKTPUYHMX XapPAKTEPUCTHK Yy NapaMarHITHIA Ta
HANNpPOBIAHUX Ppazax. Basucuuit mxxin 3acTocoBanmuit no ONHUCYy He-
OIHOPIMHUX €NeKTPOHHMX cUCTeM. BiH y3arafbHeHWi TakoK Ha
cropifiHeni Mogedi ( ABoCopTHI BUPOLKeHI CHcTeMNM bepmionis, Mo-
Ielb (pePMIOHIB 3 KOPOTKO CIKHOIO BLILITOBXYIOUOIO 113a6MOISIO,
CHCTEMU YACTUHOK 3 GaraToMacTHHKOBUMM H3a&MOIiAMM, TOMIO ).



