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This paper investigates the synchronization of chaotic behavior in a model of Bose-Einstein condensate (BEC)
held in a 1D tilted bichromatical optical lattice potential by using the active control technique. The synchro-
nization is presented in the master-slave configuration which implies that the master system evolves freely and
drives the dynamics of the slave system. Also the numerical simulations are given to indicate the practicability
and the effectiveness of the used controllers.
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1. Introduction

Chaos is a well known nonlinear phenomenon in many scientific disciplines, ranging from physics
to engineering. A chaotic system has unpredictable and complex behaviors. Especially, there has been
an increasing interest in the study of chaos synchronization. Chaos synchronization has great potential
in physics, chemical and biological systems, secure communications, power electrical systems and so
on [1–8]. Carroll and Pecora first introduced the idea of synchronizing two chaotic systems in 1990 [1].
Due to the connection between control and synchronization, numerous control methods are used to
synchronize the chaotic systems. Among these methods, active control has been widely accepted as one
of the efficient methods for chaos synchronization [9, 10]. Especially, it is very attractive in studying
the control problems of the Bose-Einstein condensate (BEC) system due to its rich dynamics. The BEC
system in an optical lattice shows many good properties as a typical nonlinear system [11, 12]. It is
well known that the mean-field theory is a successful theory commonly used to describe the BEC.
This approach can quite accurately describe the static and dynamical properties of BEC. The relevant
model is a variant of the famous nonlinear Schrödinger equation, the so-called Gross Pitaevskii (GP)
equation [13, 14].

In this paper, first we introduce the GP equation with 1D tilted bichromatical optical lattice potential.
The differential equations system derived from GP equation is obtained by the use of a particular solution
similar to solve the nonlinear Schrödinger equation. Then, we focus on the synchronization of BEC system
via an active control technique in the master-slave scheme. In the master-slave scheme, the behavior of the
slave system is controlled with the operation of a master system, i.e., the master-slave configuration means
that the master system evolves freely and drives the dynamics of the slave system [15]. The controller
provides that the states of the controlled chaotic slave system exponentially synchronize with the state
of the master system. Furthermore, numerical simulations for synchronization of the BEC system are
performed to verify the results. In figure 1, the schematic representation of the master-slave configuration
is shown.
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2. Active control and synchronization

Active control method is one of the most frequently used approaches for synchronization between
two chaotic systems in the master-slave scheme [16]. If we consider a master system

da
dx
= Aa + g(a) , (2.1)

where a state vector and A is a constant system matrix, and g(a) is nonlinear function. And the slave
system

db
dx
= Bb + f (b) + u(x) , (2.2)

where b is state vector, B is a constant system matrix, and f (b) is a nonlinear function, and u(x) is an
active control function.

In the master-slave synchronization configuration, the error state is obtained from e = b − a. Thus,
the error dynamics is written as follows:

de
dx
=

db
dx
−

da
dx
= Ce + G(a, b) + u(x) , (2.3)

where C = B̄ − Ā are the common parts of the system matrices, the non-common parts and nonlinear
functions are gathered in G(a, b) as follows:

G(a, b) = f (a) − g(b) + (B − B̄)b − (A − Ā)a , (2.4)

and u(x) is the controller matrix. The feedback from the controller u(t) is designed to get the error e
to decay to zero. Thus, active controller should eliminate nonlinear terms and non-common parts. We
define the active control function

u(x) = −G(a, b) + τ(x) , (2.5)

where τ(x) = −Ke is a linear controller and K is a linear gain matrix. After substitution of equation (2.5)
into (2.3) we get

Ûe = Ce + τ(x) , (2.6)

we replace τ(x) in to equation (2.6)
Ûe = (C −K)e (2.7)

If the eigenvalues of matrix C − K are negative real or complex with negative parts, the system is
synchronized and asymptotically stable at the origin. The controller manipulates the slave system and the
controlled chaotic slave system exponentially synchronizes with the state of the master system as shown
in figure 1.

MasterSystemstart e(x)

SlaveSystem

Controller
+

- u(x)

Figure 1. The master-slave synchronization configuration.
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3. The Gross-Pitaevskii equation

In the ultra-cold temperature regime, the nonlinear Schrödinger equation, known as the GP equa-
tion [14, 17], models quite accurately the static and dynamical properties of BEC with the macroscopic
wave function Ψ = Ψ(x, t). There are many different methods of reducing the original three-dimensional
generalized GP equation to quasi-one dimensional GP equation. We consider a BEC described with
quasi-1D cubic nonlinear GP equation which is used in the regime of shock waves [18–21, 31], which is
in the form of

i~
∂

∂t
Ψ (x, t) = −

~2

2m
∂2

∂x2Ψ (x, t) +
[
Vext (x) + g′1D |Ψ (x, t)|

2]
Ψ (x, t) , (3.1)

where Vext ia an external potential confining the BEC, m is the mass of the atoms of the condensate, g′1D
describes the quasi-1D interaction between the atoms in the condensate and is given by

g′1D =
mωrg3D

2πa2
r

= 2as~ωr ,

where g3D = 4πas~2/m is the atom-atom ineraction and proportional to the as. as is the s-wave scattering
length between the atoms. The s-wave scattering length is positive or negative for repulsive and attractive
interactions, respectively. In our case, it is negative. wr is ground state of a harmonic frequency of
the oscillator. Taking an experimentally suitable frequency ω0 as the units of frequencies ω1, ω2 and
normalizing space, and the wave function with ω−1

0 , l0 =
√
~/(mω0), and 1/

√
l0. GP equation becomes

as follows:

i~
∂

∂t
Ψ (x, t) = −

~2

2m
∂2

∂x2Ψ (x, t) +
[
V (x) + g1D |Ψ (x, t)|2

]
Ψ (x, t) , (3.2)

Here, interaction is reduced g1D = 2ωras/(ω0l0) and the potential Vext is normalized by ~ω0. We use
parameters ωr = 19 Hz and ω0 = 250 Hz that are used in the experiments [22]. From these parameters√
~/(mω0) ≈ 3.3 µm for 23Na. The s-wave length is chosen 5 − 10 nm [23], therefore, g1D could be from

0.011 to 0.022.

4. Tilted bichromatic optical lattice potential

We choose the external trapping potential as follows:

Vext (x) = V(x) + Fx , (4.1)

where the constant force F describes F = ma. Here, m is the mass of atoms and a is the acceleration
wich generates a tilted optical potential as shown in figure 2, accelerates the atoms in the x direction with
linearly increasing flow density and leads to the atoms tunnelling out of the traps [24–27]. Moreover,
V(x) is the optical potential. In this study, the optical potential is given in the form of

V(x) = V1 cos2(ω1x) + V2 cos2(ω2x) , (4.2)

here, V1 and V2 are the respective amplitudes. In order to obtain a simple description and for a better
understanding of the BEC dynamics, we consider only the solution of equation (3.2) as below [27, 28]

Ψ (x, t) = Φ (x) e
−iµt
~ , (4.3)

here, µ is the chemical potential of the condensate and Φ(x) is a real function independent of time. Φ(x)
is normalized to the total number of particles in the system, i.e.,∫

|Φ (x)|2 dx = N, (4.4)
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where N is the particle number. Substitution of equations (4.2) and (4.3) into equation (3.2) , yields

µΦ (x) = −
~2

2m
∂2

∂x2Φ (x)

+
[
V1 cos2 (w1x) + V2 cos2 (w2x) + Fx + g1D |Φ (x)|2

]
Φ (x) , (4.5)

For simplicity, we rescale the wave function and present dimensionless parameters as υ1 = 2mV1/~
2,

υ2 = 2mV2/~
2, γ = 2mµ/~2, ζ = 2mF/~2, η = 2mg0/~

2. The system equation can be written in the
following form

d2Φ

dx2 =
[
υ1 cos2 (w1x) + υ2 cos2 (w2x) + ζ x − γ + η |Φ|2

]
Φ , (4.6)

Inserting Φ(x) = φ(x)eiθ(x) into (4.6) leads to two coupled equations which comes from separetly
analyzing the real and the imaginary parts,

d2φ

dx2 = φ

(
dθ
dx

)2
+

[
υ1 cos2 (w1x) + υ2 cos2 (w2x) + ζ x − γ + η |φ|2

]
φ, (4.7a)

d2θ

dx2 + 2
1
φ

dθ
dx

dφ
dx
= 0. (4.7b)

where φ(x) and θ(x) are real functions. The first derivative 2dθ/dx in equation (4.7b) shows the velocity
and φ2 = n is the number of density of atoms. Therefore, equation (4.7b) denotes that there exist a steady
current J which is obtained from the first integration constant of equation (4.7b) as below

J = 2φ2 dθ
dx

. (4.8)

Equation (4.8) represents a steady superfluid in the system. If we put J into equation (4.7a), we have
a nonlinear equation

d2φ

dx2 =
J2

4φ3 +
[
υ1 cos2 (w1x) + υ2 cos2 (w2x) + ζ x − γ + η |φ|2

]
φ. (4.9)

It is difficult to obtain the exact solution of eqaution (4.9) because of its complexity. Thus, numerical
solutions were performed. For numerical calculation, we reduce the system to the first-order by the
transformation

dx1
dx
= y1 , (4.10a)

dy1
dx
=

J2

4x3
1
+

[
υ1 cos2 (w1x) + υ2 cos2 (w2x) + ζ x − γ + η |x1 |

2] x1. (4.10b)

where φ = x1 and dφ/dx = y1. The superposition of two laser beams of different frequencies can generate
a bichromatic potential. Therefore, bichromatic potential can be referred to as double well potential. In
this study, we add an extra tilted force to the bichromatic potential. This causes an acceleration of bosons
in the lattice potential. Bosons can be allowed to jump from one trap to another.

Recently, the regular and chaotic solutions of the BEC system in 1D tilted bichromatical optical lattice
potential have been investigated by constructing its Poincare sections in phase space [29]. Moreover, the
dynamics of a Bose-Einstein condensate system under the Gaussian white noise has been studied [30].

5. Chaos synchronization in BEC

Chaos synchronizationmeansmaking two (or more) systems oscillate in the samemanner by using the
active control parameters [1]. Master-slave control technique is the most frequently used synchronization
approach used for the chaotic systems. In the master-slave scheme, the behaviors of the slave system
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Figure 2. Plot of the bichromatic optical lattice potential with the parameters ν1 = 1, ν2 = 0.8, ω1 =
2π, ω2 = 5π, (a) ζ = 0, (b) ζ = 0.1.

are controlled with the operation of a master system [15]. The master and slave systems are defined as
follows:

dx1
dx
= y1 , (5.1a)

dy1
dx
=

J2

4x3
1
+

[
υ1 cos2 (w1x) + υ2 cos2 (w2x) + ζ x − γ + η |x1 |

2] x1 , (5.1b)

and
dx2
dx
= y2 + u1(x) , (5.2a)

dy2
dx
=

J2

4x3
2
+

[
υ1 cos2 (w1x) + υ2 cos2 (w2x) + ζ x − γ + η |x2 |

2] x2 + u2(x) , (5.2b)

where φ = x2, dφ/dx = y2, u1 and u2 are the nonlinear controllers, so that two chaotic systems can be
synchronized. In this case, the error dynamics are e1 = x2 − x1 and e2 = y2 − y1. The error dynamics is
determined by subtracting equations (5.1a), (5.1b) from equation (5.2a), (5.2b)

de1
dx
= e2 + u1(x) , (5.3a)

de2
dx

=
J2

4x3
2
−

J2

4x3
1
+

[
υ1 cos2 (w1x) + υ2 cos2 (w2x) + ζ x − γ + η |x2 |

2] e1 + u2(x). (5.3b)

We write the error functions as below,

u1(x) = τ1(x) , (5.4a)

u2(x) = −
J2

4x3
2
+

J2

4x3
1
− η(x2

2 − x2
1) + τ2(x). (5.4b)

Substituting control functions into equation (5.5a) and (5.5b), the error system becomes,

de1
dx
= e2 + τ1(x) , (5.5a)

de2
dx
=

[
υ1 cos2 (w1x) + υ2 cos2 (w2x) + ζ x − γ + η

]
e1 + τ2(x). (5.5b)
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The system can be controlled with control inputs τ1 and τ2 as function of e1 and e2. These feedbacks
stabilize the system where limx→∞ | |e(x)| | = 0. We choose control inputs τ1 and τ2 as follows:[

τ1
τ2

]
= D

[
e1
e2

]
, (5.6)

where D =
[
a b
c d

]
is a 2 × 2 constant feedback matrix. The system can be written as follows:[ de1

dx
de2
dx

]
= C

[
e1
e2

]
, (5.7)

where C is is the coefficient matrix as below

C =
[

0 + a 1 + b
υ1 cos2 (w1x) + υ2 cos2 (w2x) + ζ x − γ + η + c 0 + d

]
. (5.8)

Based on the Routh-Hurwitz criterion [31], Lyapunov stability theory and active control strategy, two
identical BEC are synchronized. If we choose a = −1, b = −1, d = −1,
c = −

[
υ1 cos2 (w1x) + υ2 cos2 (w2x) + ζ x − γ + η

]
,

τ1(x) = −e1 − e2 , (5.9a)

τ2(x) = −
[
υ1 cos2 (w1x) + υ2 cos2 (w2x) + ζ x − γ + η

]
e1 − e2 . (5.9b)

Finally we get a slave system as below,

dx2
dx
= y2 + (−e1 − e2) , (5.10a)

dy2
dx
=

J2

4x3
1
+

[
υ1 cos2 (w1x) + υ2 cos2 (w2x) + ζ x − γ + η |x2 |

2] x2

− η(x3
2 − x3

1) −
[
υ1 cos2 (w1x) + υ2 cos2 (w2x) + ζ x − γ + η

]
e1 − e2 .

(5.10b)

6. Numerical simulations

In this section, we investigate the simulation results for chaotic synchronization of the systems (5.1a),
(5.1b) and (5.2a), (5.2b). In the numerical simulations, we have written a Maxima code that applies the
fourth order Runge Kutta algorithm which is used to solve the sets of differential equations related to the
master and slave systems with step size 0.1 and step length 3500. We selected the parameters of the BEC
system as ζ = 0.1, J = 0.4, v1 = 1, v2 = 0.8, w1 = 2π, w2 = 5π, γ = 0.5, η = −0.015, respectively. Shock
wave dynamics can be found in our recently published paper for these parameters [29].

For the numerical calculations, we choose the arbitrary possible intial condtions between −1 and 1. In
the chaotic regime, the velocity field and atomic density may not be determined exactly in experiment due
to fluctuations of the atomic thermal cloud [32, 33]. Thus, we choose possible intial conditions randomly
for numerical calculations. In figure 3 we plot the error functions from equation (5.5a) and (5.5b) for
two different initial conditions (a) (e1(0), e2(0)) = (−0.8, 1.3) and (b) (e1(0), e2(0)) = (−0.839,−0.97),
respectively. Control functions start at x = 0. As a result, the system rapidly tends to synchronization.
Figures 4, 5 and 6 represent the solution of master and slave systems. In figure 4 spatial evolutions with
the controller are given for the initial conditions (a) (x1(0), x2(0)) = (1, 0.2), (b) (y1(0), y2(0)) = (−1, 0.3),
(c) (x1(0), x2(0)) = (0.56, 0.279), (d) (y1(0), y2(0)) = (0.3, 0.67) and xmax = 30. We solve the master and
slave system from x = 0 to xmax = 3500 with the step size 0.1 in figures 5 and 6. According to spatial
evolution, the system shows chaotic dispersive shock-wave-like dynamics in the phase space [29]. In
addition, the system is synchronized along the flow.
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Figure 3. (Colour online) Spatial evolution of (e1, e2) with the controller activated at the x = 0 for (a)
(e1(0), e2(0)) = (−0.8, 1.3) and (b) (e1(0), e2(0)) = (−0.839,−0.97).
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Figure 4. (Colour online) Synchronized master-slave systems using the active control method for 0 ≤ x ≤
30, ζ = 0.1, J = 0.4, v1 = 1, v2 = 0.8, w1 = 2π, w2 = 5π, γ = 0.5, η = −0.015 (a) (x1(0), x2(0)) = (1, 0.2),
(b) (y1(0), y2(0)) = (−1, 0.3), (c) (x1(0), x2(0)) = (0.56, 0.279), (d) (y1(0), y2(0)) = (0.3, 0.67).

7. Conclusion

It is known that the chaos in BEC systems can undermine the stability of the condensates playing
a destructive role [26]. Thus, the studies on predicting and controlling the chaos on BEC systems are
quite important. An active control method can be used in time and space dependent systems. Recently,
synchronization of BEC via an active control method was investigated for the time dependence [34, 35].In
this study, we have studied the synchronization of the BEC system held in a 1D tilted bichromatical
optical lattice potential via the master-slave active control technique for real space dependence. We first
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(a) (b)

(c) (d)
Figure 5. (Colour online) Chaotic synchronization the master-slave systems using active control method
for ζ = 0.1, J = 0.4, v1 = 1, v2 = 0.8, w1 = 2π, w2 = 5π, γ = 0.5, η = −0.015 and the initial conditions
for master systems (a) x1(0) = 1 and (c) y1(0) = −1, slave systems (b) x2(0) = 0.2 and (d) y2(0) = 0.3.

(a) (b)

(c) (d)
Figure 6. (Colour online) Chaotic synchronization the master-slave systems using active control method
for ζ = 0.1, J = 0.4, v1 = 1, v2 = 0.8, w1 = 2π, w2 = 5π, γ = 0.5, η = −0.015 and the initial conditions
for master systems (a) x1(0) = 0.56 and (c) y1(0) = 0.3, slave systems (b) x2(0) = 0.279 and (d)
y2(0) = 0.67.

13001-8



Master-slave synchronization of Bose-Einstein condensate in 1D tilted bichromatical optical lattice

present the system under 1D tilted bichromatical optical lattice potential, and then we investigate chaotic
synchronization in BEC. The chaotic synchronization system consists of the master and slave system.
The control functions provide the situation when the states of the chaotic slave system exponentially
synchronize with the state of the master system with different initial conditions. The initial values
of the master-slave system are taken as (x1[0], y1[0]) = (1,−1) and (x2[0], y2[0]) = (0.2, 0.3) and
(x1[0], y1[0]) = (0.56, 0.3) and (x2[0], y2[0]) = (−0.279,−0.67), respectively, for numerical simulation.
The synchronization errors rapidly converge to zero. From the physical point of view, the technique used
is based on the Routh-Hurwitz criterion and is quite useful in the ultra-cold quantum superfluid atoms.
Numerical results verify the accuracy of the applied method, and the obtained results show that two
idential BEC could be synchronized by an active control method for real space dependence.
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Синхронiзацiя типу керiвний-керований конденсату

Бозе-Ейнштейна в 1D похилiй бiхроматичнiй оптичнiй

гратцi

E. Тосiалi1, Ф. Айдогмус2
1 Стамбульський унiверситет Бiлгi, професiйне училище медичних послуг, 34387 Стамбул/Шiшлi,
Туреччина

2 Стамбульський унiверситет, фiзичний факультет, 34134 Стамбул, Туреччина
У статтi дослiджується синхронiзацiя хаотичної поведiнки у моделi конденсату Бозе-Ейнштейна, помiще-
ного у потенцiал 1D похилої бiхроматичної оптичної гратки з використаннямметоду активного контролю.
Синхронiзацiя представлена конфiгурацiєю “керiвний-керований”, яка передбачає, що керiвна система
розвивається вiльно та запускає динамiку керованої системи. Представлено числовi симуляцiї, що пiд-
тверджують практичнiсть та ефективнiсть застосованих контролерiв.
Ключовi слова: синхронiзацiя, конденсат Бозе-Ейнштейна, рiвняння Гросса-Пiтаєвського, оптичний

гратковий потенцiал
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