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The quantum molecule consisting of three quantum dots that forms a triangle with its centers is studied. The
electron wave function in the nanosystem is written using the linear combination of orbital quantum wells.
The dispersion equation for numerical calculations of the electron stationary states in a quantum molecule is
found. A numerical calculation of the electron energy spectrum in the molecule formed by three quantum dots
of a spherical shape is carried out. The influence of the nanocrystal size, the distance between them and the
symmetry of the quantum molecule on the electron energy spectrum is studied. The cases of symmetry of an
equilateral and an isosceles triangle are considered.
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1. Introduction

The energy spectrum of charge carriers in ideal quantum dots (QDs) is presented by the set of
discrete levels. This is the reason why QDs are often regarded as artificial analogs of real atoms. The
presence of an atomic-like energy spectrum of charge carriers and the possibility of synthesizing such
electronic systems under the “individual order” make QDs heterostructures quite attractive in terms of
the creation of semiconductor lasers, photodetectors, single-electron and single-photon devices. Using
QDs as elementary “building blocks”, one cannot just obtain electronic systems with the least effective
dimension, but vice versa — it artificially increases the dimension by creating electron-linked single-
dimensional chains or two-dimensional layers of QDs [1].

If QDs are sufficiently close in the space so that coherent transitions of electrons are possible between
them through quantummechanical tunneling, then configurations associated with electrons, the so-called
artificial molecules, are formed. In such a system, electrons no longer belong to the specific quantum dot,
but form common molecular orbitals which are an analogue of a covalent bond in natural molecules. The
simplest example of an artificial molecule is the tunneling coupled QDs [2]. It is precisely this coherent
two-level system that is being considered at the moment as a quantum bit (qubit) of information for a
quantum computer. To implement the qubit, it is proposed to use either spin [3] or “charge” [4–6] degrees
of freedom, but only as the carrier of information (electrons, holes, excitons).

At present, molecules and arrays of bound QDs are the objects of increasing attention of researchers.
The formation of such objects greatly expands the set of energy parameters and physical properties
of nanoobjects. For example, the employment of the arrays of coupled QDs can greatly improve the
parameters and expand the spectral range of semiconductor QDs lasers [7]. The formation of the QDs
molecules changes the parameters of their exciton states and changes the optical properties. Methods of
self-organization that provide the production of molecules and arrays of QDs are currently well developed
and continue to be improved [8, 9].

Nanosystems consisting of three tunnel-bound QDs or triatomic artificial molecules make it possible
to study interesting phenomena associated with electrostatics and molecular states of triple quantum
molecules (QM). Experimentally, QDs molecules are intensively studied in [10–16]. There can be
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two [10], three [11–15], four [16], and more nanocrystals in the QM. The geometry of the molecule
(three QDs) can be linear [15, 16] or triangular [11–14]. It can be symmetric, when the distances between
quantum dots are the same and asymmetrical.

The theoretical works have shown that the base model of quantum molecules with three quantum
dots is a two-dimensional parabolic quantum well [17–20]. For the purpose of solving the Schrödinger
equation, the researches used the method of linear combinations of orbital quantum wells [17], the Gund-
Millikan method [18] and Heutler-London method [19]. However, these theoretical works do not take
into account the finite band offset at the boundary and the three-dimensional confinement of particles in
QDs.

The present paper is devoted to the study of the influence of the geometry of the three quantum
dots molecule on the electron energy and on the absorption coefficient of an electromagnetic wave as a
function of QD locations in the OQ molecule.

2. Formulation and solution of the problem

Let us consider a quantum molecule that consists of three identical spherical QDs. These QDs are
coupled due to the tunneling effects. We choose the coordinate system so that the centers of two QDs
lie on the OZ axis, and the axis origin (point O) lies in the middle between these QDs. The third QD is
placed on the OY axis at the distance d from the origin (figure 1).

Let there be one electron in the heterosystem. Then the Hamiltonian of this system in the effective
mass approximation is as follows:

Ĥ = −
~2

2
∇

1
m(r)∇ +U(r) , (2.1)

where

U(r) =
{

0 , if r runs over the matrix,
U0 , if r is in any QD. (2.2)

U0 < 0, m(r) is the electron effective mass for the corresponding region:

Figure 1. The model of the system.
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m(r) =
{

m1 , if r runs over the matrix,
m2 , if r is in any QD.

To solve the Schrödinger equation with Hamiltonian (2.1), we use the linear combination of orbital
quantum wells approximation. The wave function of the electron of the heterosystem can be represented
as a linear combination of electron wave functions of individual QD:

Ψ(r) =
3∑
i=1

Ciϕi(r), i = 1, 2, 3, (2.3)

where ϕi(r) is the wave function of the ground state of the i-th QD:

ϕi(r) =
1
√

4π

{
Ai

sin kri
ri

, for ri 6 R,
Bi

exp(−χri )
ri

, for ri > R,
(2.4)

where
Ai =

1√
R
2 −

sin(2kR)
4k +

sin2(kR)
2χ

,

Bi = Ai
sin(kR)
e−χR

,

r1 =
���r − a

2

��� , r2 =
���r + a

2

��� , r3 = |r − d|, a > 2R, d > R,

k =

√
2m1

~2
|U0 − Eone | , χ =

√
2m2

~2
|Eone | ,

a is the distance between the centers of QD, lying on the OZ axis, d is the distance from another QD to
OZ axis, R is the radius of any QD, Eone is the energy of one isolated QD.

Taking into account (2.3) and (2.4), the Schrödinger equation can be reduced to a system of three
algebraic equations: 

C1 (H11 − E) + C2 (H12 − ES12) + C3 (H13 − ES13) = 0,
C1 (H21 − ES21) + C2 (H22 − E) + C3 (H23 − ES33) = 0,
C1 (H31 − ES31) + C2 (H32 − ES32) + C3 (H33 − E) = 0,

(2.5)

where Hi j =
∫
ϕ∗i (r)Ĥϕj(r)d3r, Si j =

∫
ϕ∗i (r)ϕj(r)d3r, i, j = 1, 2, 3.

The system of homogeneous equations (2.5) has a nonzero solution when the determinant of this
system is equal to zero: ������ (H11 − E) (H12 − ES12) (H13 − ES13)

(H21 − ES21) (H22 − E) (H23 − ES23)
(H31 − ES31) (H32 − ES32) (H33 − E)

������ = 0. (2.6)

Equation (2.6) is the dispersion equation for the electron in three QDs molecule.

3. The energy spectrum of an electron in a molecule of three QDs

The specific numerical calculations weremade for GaAsQDs placed in the AlAsmatrix. The effective
electron mass in these materials is m1 = mGaAs = 0.063m0 and m2 = mAlAs = 0.15m0, where m0 is free
electrom mass. The confinement potential is equal to 560 meV. We consider the QDs of such dimensions
that have only one single electronic state. This requires 14 Å6 R 628 Å.

It is necessary to determine which parameters of the system affect the electron energy spectrum in the
molecule. If centers of QDs form a triangle, then their symmetrical placement deserves special attention
especially when they are vertices of an equilateral triangle. Then the energy spectrum will be influenced
by two parameters, i.e., the distance between the QDs and their size.
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3.1. Quantum dots are vertices of an equilateral triangle

The dependence of the stationary states of the electron on the distance a = 2R + naaAlAs, (where
aAlAs = 5.6611 Å, na = 2, 3, . . .) between the centers of the QDs of the same radius R = 4aGaAs,
(aGaAs = 5.6532 Å) is shown in figure 2. It is seen that the energy spectrum of an electron is determined
by two energy levels obtained as a result of the splitting of the electron level in an isolated nanocrystal.
Moreover, the ground state is not degenerate, but the first excited state is twice degenerate. If the distances
between QDs boundaries is 45.3 Å (na = 8), then the states merge into one, the value of which equals
the magnitude of the energy of the electron bound state in an isolated QD of the same size.

If the distance decreases, then the magnitude of the splitting increases. Thus, for a distance of
11.3 Å (na = 2), the difference between levels is ∆E1 = 35.3 meV. In this paper, we also study
this heterostructure numerically using the finite element method in COMSOLMultiphysics. This method
yields three energy levels, two of them being identical, for all considered na. In addition, the energy levels
found using the numerical method and the linear combination of orbital quantum well approximation are
different by no more than 2%.

In figure 3, we depict the energy of electron stationary states of a molecule of QDs for different
radii of QDs (R = nRaGaAs) if the distance between their boundaries does not change and is equal to
22.64 Å (4aAlAs). As we can see, if the size of nanocrystals increases, then the magnitude of the energy
splitting decreases. Thus, at R = 16.96 Å (nR = 3), the splitting value is 23.1 meV. For the value of R,
which corresponds to 5 lattice constants of GaAs, it is equal to 5.5 meV.

3.2. Quantum dots are the vertices of an isosceles triangle

Let us now consider the other geometry of the three quantum dots molecule. Let the triangle, which
is formed by the centers of QDs, be isosceles, provided that the altitude d (figure 1) is the same. Figure 4
shows the effect of changing the distance on the electron energy, provided d = 4aAlAs, R = 22.6 Å. In this
case, the heterostructure is characterized by three energy levels, which is explained by the decrease in the
spatial symmetry of the molecule. Even at large distances, there is a small split: it is about 5 meV between
the nearest states. The energy levels of the excited states monotonously decrease with an increasing
distance a. The magnitude of the energy splitting between the highest and lowest levels at the distance of
11.3 Å is equal to ∆E1 = 48.5 meV, and between the ground and the first excited state is ∆E2 = 41.3 meV,
and between excited states is ∆E3 = ∆E1 − ∆E2 =7.2 meV.

Figure 5 shows the dependence of the electron energy in amolecule formedwith three QDs as function
of nb (nb = 1, 2, . . .) at the fixed distance a between the centers of two QDs (a = 67.87 Å). The sizes
of nanocrystals are the same as in the previous case (R = 22.6 Å). On the abscissa, the distance nb (in

Figure 2.The electron energy in the QM as a function of the distance between nanocrystals with symmetry
of the equilateral triangle (the distance between QDs in a lattices constants AlAs, and their radii are equal
to 4 lattices constants GaAs). Dashed line denotes the energy level of an isolated QD.

13401-4



Optical properties and single-electron states

Figure 3. The electron energy of QM as the function of the nanocrystal size in the symmetry of an
equilateral triangle (the distance between QDs in a lattices constants AlAs, and their radii are equal to 4
lattices constants GaAs).

Figure 4. The electron energy in the QM as a function of the distance between two QDs when the third
QD is at the same distance to the axis of the other two at the symmetry of the isosceles triangle (the
distance from the third QD to the axis is 4 lattices constants AlAs, and their radii are equal to 4 lattices
constants GaAs). Dashed line denotes the energy level of an isolated QD.

lattice constants aAlAs) to the bounds of the other two QDs is presented. It is seen that the ground energy
level behaves the same way as in the previous case. For excited levels at d = 58.8 Å, there is observed
a degeneration, because in this case we have an equilateral triangle from the centers of QDs. It should
also be noted that the energy of one level is practically unchanged. However, it transforms from the first
excited level into the second one (the order of levels is changed). The magnitude of the same splitting
with a distance d = 11.3 Å between the highest and the lowest is equal to ∆E1 = 34.2 meV, between the
ground and first excited is ∆E2 = 21.7 meV, and between the excited states is ∆E3 = 12.5 meV.

4. The light absorption coefficient of the heterosystem with quantum

molecules

Let us find the form of the wave function of a particle in the heterostructure with three QDs located
at the vertices of the triangle. To do this, we use the system of equations (2.5). The wave function (2.3)
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Figure 5. The electron energy the QM as a function of the distance of one QD to the axis on which there
are two other QD at the symmetry of an isosceles triangle (the distance between two QDs is equal to 4
lattices constants AlAs, and the radii of all levels are 4 lattices constants GaAs). Dashed line denotes the
energy level of an isolated QD.

can be rewritten in the form:

Ψ(r) = [α1ϕ1(r) + α2ϕ2(r) + ϕ3(r)]C3 , (4.1)

where

α1 = −
α2 (H12 − ES12) + (H13 − ES13)

(H11 − E)
,

α2 =
[(H13 − ES13) (H21 − ES21) − (H23 − ES23) (H11 − E)]
[(H22 − E) (H11 − E) − (H12 − ES12) (H21 − ES21)]

.

Using the normalization condition, we find the coefficient C3:

C3 =
1√∫

|α1ϕ1(r) + α2ϕ2(r) + ϕ3(r)|2 d3r
. (4.2)

The light absorption coefficient caused by the interlevel transition is determined on the basis of the
formula [21, 22]:

α(ω) = ω

√
µ0
ε0ε

σ
��ρ1,2

��2 ~Γ1,2

(E2 − E1 − ~ω)
2 +

(
~Γ1,2

)2 , (4.3)

where ω is a wave frequency, ε0 is an electric constant, µ0 is a magnetic constant, ε is a dielectric
permeability of the QD, ~Γ1,2 is a relaxation energy due to the electron-phonon interaction and other
scattering factors (for calculations in this work it was taken ~Γ1,2 = 5meV [5, 6]), σ is density of quantum
molecules in the matrix; ρ1,2 is the matrix element of dipole momentum between states |1〉 and |2〉.

In order to determine the absorption coefficient, the linearly and circularly polarized electromagnetic
waves were considered. In figure 6 the dependence of the absorption coefficient on the energy of
the incident quantum for the case of symmetry of an equilateral triangle is presented. The system is
characterized by one peak that is responsible for the transition from the ground state to the excited one.
The symmetry of an isosceles triangle is considered in figure 7. Here, the system is characterized by
three states. For the polarization vector, which is directed along the altitude of the triangle (figure 7),
three transitions are possible: between the ground and excited states and between the excited states. The
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Figure 6. Dependence of the electromagnetic wave absorption coefficient on the quantum energy of the
light for the case of an equilateral triangle (linear-polarized light: the vector polarization is directed along
the altitude of the triangle).

Figure 7. Dependence of the electromagnetic wave absorption coefficient on the quantum energy of the
light for the case of symmetry of an isosceles triangle (linearly polarized light: the vector of polarization
is directed along the altitude of the triangle).

highest peak is responsible for the transition between the excited states, and the smallest is between
the ground and the first excited state. If polarization vector of electromagnetic wave is directed along
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the other axes, the corresponding absorption coefficient is very small. For circularly polarized light,
the absorption coefficient is very small too. When the distance between QDs increase, the absorption
coefficient (caused by the transitions between the denoted levels) decreases due to decreasing the level
splitting. The presented model can be expanded for the calculation of other forms of QD structures [23].

5. Conclusions

The molecule of three quantum dots placed at the vertices of a triangle has been studied. The form of
the wave function of the electron in the investigated nanosystem was written using the linear combination
of orbital quantum wells. A dispersion equation for numerical calculations of stationary states of an
electron in a molecule was found. The numerical calculation of the energy spectrum of an electron in a
molecule, which is formed of three QDs of a spherical shape, was carried out. The influence of the size of
the nanocrystal, the distance between them and the symmetry of the QM on the energy spectrum of the
electron was investigated. The case of symmetry of an equilateral and an isosceles triangle is considered.
In order to compare the results, the finite element method was also used to calculate the energy spectrum
of an electron in a system of three spherical QDs. Based on the electron energy and the wave function, the
absorption coefficient of the electromagnetic wave in a QM from three spherical QDs was investigated.
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Одноелектроннi стани та коефiцiєнт поглинання в молекулi,

що утворена з трьох квантових точок

I.В. Бiлинський, В.Б. Гольський, Р.Я. Лешко
Кафедра фiзики, Дрогобицький державний педагогiчний унiверситет iменi Iвана Франка,
вул. Стрийська, 3, 82100 Дрогобич, Україна
Дослiджено квантову молекулу з трьох точок, що своїми центрами утворюють трикутник. Методом лi-
нiйної комбiнацiї орбiталей квантових ям записано вигляд хвильової функцiї електрона в дослiджуванiй
наносистемi. Знайдено дисперсiйне рiвняння для чисельного обчислення стацiонарних станiв електро-
на в квантовiй молекулi. Проведено чисельний розрахунок енергетичного спектра електрона в молекулi,
що утворена з трьох квантових точок сферичної форми. Дослiджено вплив величини нанокристала, вiд-
станi мiж ними та симетрiї квантової молекули на енергетичний спектр електрона. Розглянуто випадок
симетрiї рiвностороннього та рiвнобедреного трикутника.
Ключовi слова: молекула з квантових точок, три квантовi точки
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