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The van der Waals idea of pseudo associations and
the critical compressibility factor
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The dimensionless value of critical compressibility factor in the van der Waals theory of gas-liquid critical point
is a universal constant, Z. = 0.375. Experimentally measured values of this quantity for simple fluids are
considerably smaller than the theory prediction. Van der Waals once assumed that this discrepancy can be
removed by taking account of the impact of the molecular pseudo-associations on the fluid criticality but he did
not complete a proper modification of his theory following up on this idea. The communication is devoted to
the filling of this gap.
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1. Introduction

The van der Waals equation of state represented in the form of the law of corresponding states contains
a universal dimensionless ratio, the critical compressibility factor,

P
7. = TU = 0.375, (1

C

where P, T and v is the pressure, temperature and specific volume. Here, index “c” denotes quantities
evaluated at the critical point.

In his famous Nobel prize lecture, discussing the discrepancy between the predicted universal value
of the critical compressibility factor (I)) and its experimentally measured value for CO, (which is nearly
30% less), van der Waals assumed that it is necessary to take account of the formation of the transient
molecular complexes — “pseudo associations” — within the dense fluid in order to improve the equation
of state and the critical compressibility factor. The pseudo-associations were described as follows [[1]].

“Let the number of molecules that have combined into a complex be so large that it is possible to
speak of a molecule at the centre surrounded by a single layer containing almost as many other molecules
as is possible simultaneously. Then, for the surrounding molecules the attraction directed towards the
interior acts only to maintain the complex; and this part of its attraction is lost for the surface pressure.
Only the forces acting outwards from these molecules can contribute to the formation of the internal
pressure. But of course, for pseudo association as for true association the number of formed complexes
increases with decreasing temperature and volume. At the critical point, so I was compelled to conclude,
only a very small part of the weight is present as complexes. If pseudo association exists in a substance,
there are at least two types of molecules, namely simple and complex.”

The formulated problem was not properly solved by van der Waals. It is revisited in the present
communication.
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2. The van der Waals equation of state taking account of the hetero-
phase fluctuations

In fact, the problem formulated by van der Waals was partially solved by Frenkel in the theory of
heterophase fluctuations (the liquid-like droplets within the gas and gaseous bubbles within the liquid)
which he formulated considering the pre-transition anomalies of the coexisting gas and liquid far below
the critical point [2]. Identifying the liquid-like droplets within the gas as the pseudo-associates, one
obtains an improved equation of state. However, Frenkel’s theory is applicable only in the case of weak
heterophase fluctuations when the droplets concentration is so small that they do not interact with each
other (the droplet ideal gas). Frenkel has described the impact of the heterophase fluctuations on the
thermodynamic quantities far from the critical point.

Contrary to the van der Waals expectation (see above), near the critical point the concentration of
droplets is large, and their interaction cannot be ignored (see [3] and references therein). In this regime,
the coexisting nominal gas and nominal liquid phases are essentially the states of a heterophase fluid with
comparable values of the liquid-like and gas-like fractions (I- and g-fractions). Elementary constituents of
the I- and g-fractions are transient droplets and bubbles which have a mesoscopic scale comparable with
the range of short-range order in the fluid. These entities can be considered as statistically independent
species of the fluid. They are called 1- and g-fluctuons, respectively.

The nominal gaseous and liquid phases near the critical point are heterophase mixtures of mesoscopic
bubbles and droplets. Interactions between heterophase fluctuations lead to a modification of the van der
Waals equation of state.

The specific volume of the heterophase fluid,

U = Cglg + (U, 2)

is determined by the concentrations of molecules belonging to the bubbles and droplets, ¢, and ¢
respectively. Here, v, and v is the specific volume in the bubble and droplet, respectively.

Let us assume that the specific volume (2)) obeys the van der Waals equation of state while the 1- and
g-fluctuons are elementary disturbances.

The free energy per molecule of a homogeneous one-component simple fluid in the van der Waals
approximation has a standard form,

Fyaw(v,T) - T (ﬂ) : g’ 3)
N A3 v
where A is the thermal de Broglie wavelength, N is the number of atoms, b is the excluded volume, and
a is the virial coefficient.

To include the contribution of the heterophase fluctuations to the free energy at the coexistence curve
in a self-consistent manner we have to require that the chemical potentials of molecules within the 1- and
g-fluctuons are equal to the chemical potential of the van der Waals fluid. With this condition, the free
energy of the fluid gets contributions due to the interaction energy, &g int, and the mixing entropy, Sg.mix.
of the 1- and g-fluctuons,

Fa(v, T, o1)

N 1
= e T o) = Wﬁ (enint — Tstimix) = = [g2010¢ + T (o1lnoy + oy Inoy) |, (4
kq

where index “fI” denotes the quantities describing the fluctuons, Nj is the number of fluctuons, kq is the
mean number of atoms per fluctuon, oy and o, are fractions of the 1- and g-fluctuons (o + 0 = 1), and
parameter g > 0 quantifies the fluctuonic interaction.
The free energy accounting for the fluctuonic contribution is given by
FQ, T, o v—>b a
Fo.To) _ m( )

1
S il & [g2010¢ + T (o1 Inoy + o In o) | - )

The numb_er of molecules per I- and g-fluctuon, k; and kg, determine the mean number of molecules per
fluctuon, kq, B
kﬂ =0’1k1+0'gkg. (6)
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The specific volumes of the 1- and g-fraction are related to the mean specific volume v and oy and o as

follows:
ok + O'gkgl}g

= - 7
7. (N
This equation is equivalent to equation (2). Combining equations (3 and (7) one has
F(U,T,O'])_ _ v—>b a
LT S
v
+ +T (o1lnoy + ogIn . 8
ok + ogkgvg [gz(ﬂ(rg (O-l 1T O-g)] ®)
As seen from equation (8), the heterophase fluctuations affect the pressure,
of(v, T, o) T a
pP= = - +T (o1lnoy + 0, In
ov v—b 02 ok + ogkgv [gzo'lo'g (o + o O-g)]
= Pyaw(v,T) + Pa(T, 00). )
Here, Pyqw/(v, T1) is the van der Waals pressure and
1
PyT,00)= ———— [g20'10'g +T (o1lnoy + 0 In O'g)] (10)

okiv + ogkgvy

is the fluctuonic pressure.
The equilibrium value of oy is found by minimizing f (v, T, 07) with respect to this parameter. One

should find solutions of the equation
of v, T,o0) _

0, (1D
oo
that simultaneously satisfy the condition
9°f (T,
Yiwlo) (12)
do;

To this end, the Ising-type effective Hamiltonian, g,oi0g + T (0'1 Inoy + oy In a'g), should be mini-
mized. As known, it possesses the critical (bifurcation) temperature T, = g/2 at which o(7¢) = 0 (T¢) =
1/2. For consistency with the van der Waals theory we have to set

16 a
= ovaw = —— 13
92 evaw = 55 (13)
and, as it follows from equations (6), (7),
_ kic + kg, Ulc + Vg,
ke =——"5, ne=(1-gg) ————. (14)
2 2
Here,
k1 - kg I)g — U
= , = . 15
s kl + kg sv v+ Vg ( )

Let us note that fi(ve,7c) < 0. It means that the homogeneous fluid is unstable. It transforms
into a stable heterophase fluid consisting of the 1- and g-fluctuons. At the critical point, the fluctuonic
contribution to pressure is equal to

2 1 T.(In2-0.5 2 T
Pﬂ,C:—(—gz—Tclnz):— c (In ) =-0.193——. (16)
kl,cvl,c + kg,cvg 4 (1 - §'c§y,c) Ve + Vg kﬂ,cvc
Thus, the total critical pressure is equal to
T
Po= = 0193, (17)
27b ki cve
and the fluctuonic pressure impacts the critical compressibility factor
Peuc 0.193 0.193

Z. = = -—=0375- ——. 18
<= T ¢, VAW e e (18)
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3. Recovering Ef.,c from experimental data

_ It is seen that the fluctuonic correction in equation (T8)) depends on just one mesoscopic parameter
knc and reduces the critical compressibility factor. Assuming that the difference between Z. vqw and the
measured value Z exp, is due to the heterophase fluctuations, one can estimate kg ¢ using equation li

0.193

e (19)
Zc,VdW - Zc,exp

kﬂ,c =

Results for some fluids with London dispersion intermolecular forces are represented in table [T}

Table 1. Values of the parameter lzﬂ,c for fluids with dispersion intermolecular forces.

| Fluid | T, K [ Zeep = 5% | kne |
CoHs | 282 0.270 1.83
CO, | 304.19 0.275 1.93
Xe | 289.8 0.288 22
Kr | 209.48 0.288 22
CH; | 190.8 0.290 227
N, | 1262 0.291 227
Ar | 150.8 0.291 227
0, | 1546 0.292 232
Ne | 445 0.298 247
H, 332 0.304 27
Hes | 5.20 0.308 2.88
He; | 5.19 0.320 35

The obtained values of kg can be used for making specification of the parameters of mesoscopic
models of fluid [3]]. Let us note that the Lee-Yang lattice-gas model (LY-model) [4] is a partial case of the
lattice-fluctuon model (LFM) [3]] and that the last one reproduces the results of the LY-model at k; = 1,
ke = 0and ¢ = ¢, = 1. In the LY-model kqc = k1/2 = 1/2. In the LFM ¢, 5, < 1 and k < 2kq.
Therefore, k; < 3.66 for ethylene and k; < 7 for He3.

A growth of kg . for the quantum liquids H,, He* and He? correlates with an increase of the de Boer
parameter. Tabulated values of B can be found, e.g., in [5]]. For H,, He* and He?, the parameter B is
equal to 0.78, 0.99 and 1.76, respectively. Correlation between kq . and B can be interpreted as follows.
Since the 1-fluctuon radius is nearly equal to the correlation radius of the direct correlation function, it
increases with an increase of the parameter B that characterizes the molecule delocalization. In the Kac
model [6], the van der Waals equation is obtained for the system of hard spheres with the range of the
attractive force tending to infinity while its strength becomes proportionally weaker. The parameter B
increases with the growth of the attractive force range and tends to infinity. Therefore, the compressibility
parameter expectedly approaches Z. vqw and the accuracy of the van der Waals equation improves with
an increase of the parameter B.

4. Discussion and summary

The success of the law of the corresponding states urged van der Waals to look for a general physical
reason of the critical compressibility factor non-universality. This problem is a subject of permanent
interest. A number of recent papers are devoted to this problem (see [, [7, I8] and references quoted).
Considerations reported here show that the van der Waals conjecture on the role of pseudo associates is
reasonable. Moreover, it allows one to get an estimate of the number of molecule within the 1-fluctuon
which is useful while applying the mesoscopic models of gas-liquid transformations [3].
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To conclude, reformulation of the van der Waals equation of state taking account of the heterophase
fluctuations in the vicinity of the critical point allows one to associate the critical compressibility factor
with the mesoscopic parameters of the 1- and g-fluctuons. The formulated equation revives the idea of
the pseudo-associates impact on the critical compressibility factor.
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e Al

Ines nceBpoacouialii BaH gep Baanbca i KoediLieHT KpUTNYHOI
CTUCANBOCTI

0. bakaii

HavioHanbHWMIA HayKoBWI LeHTP “XapKiBCbKMIA Gi3UKO-TEXHIYHWIA IHCTUTYT”,
BYy/. AkageMiuHa, 1, 61108 Xapkis, YkpaiHa

Be3po3mipHuii KoediLieHT KPUTUUYHOI CTUCANBOCTI B Teopii BaH gep Baanbca KPUTUYHOI TOUKM ras3-piguHa €
yHiBepcanbHoW KoHcTaHTo, Z¢ = 0.375. EkcnepuMeHTanbHO BUMIpsiHe 3HaYeHHS L€l BEANYUHN AAs Npo-
CTUX NAVHIB € 3HAYHO MEHLLMM, HiX TeopeTuyHe nepejbayeHHs. BaH gep Baanbc 3pobus nepejdayeHHs, Lo
LA po36iXKHICTb MOXe BYTU YCyHYTa, AKLLO BpaxyBaTy BMANB MOMEKYASAPHOI NceBgoacouiaLii Ha KpUTUYHICTb
nauHy. MpoTe, BiH He 3aBepLuMB MoAndikaLii CBOEi Teopii BignoBigHO Ao uiei igei. Lis poboTta npucesyeHa 3a-
MOBHEHHIO L€l NporasnHu.

KnrouoBi cnoBa: BaH gep Baanbc, koe@iLieHT KpUTUYHOI CTUCANBOCTI, reTepogasHi ¢nyktyayii
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