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In this paper, we study topological properties and Hall conductivities in PbC/MnSe heterostructure under the
illumination of a circularly polarized light. At high frequency regime, energy gap, Chern numbers, and Hall con-
ductivities are studied based on the Floquet theory and Green’s function formalism, respectively. The interplay
between spin orbit coupling and light leads to topological phase transition between anomalous Hall states and
spin Hall states, which is related to the emission and absorption of two virtual photons. The anomalous Hall
conductivities are dependent on polarization of light, while the spin Hall conductivity is independent.
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1. Introduction

In the recent years, topological phases and topological phase transitions have been one of the most
important topics in modern condensed matter physics [1, 2]. The intrinsic anomalous Hall and spin Hall
effect have attracted enormous attention in the past decade [3, 4]. The quantum anomalous Hall effect
has been theoretically proposed [5, 6] and experimentally realized [7, 8] in magnetically doped topo-
logical insulator films. The quantum spin Hall effect was theoretically predicted [9] and experimentally
observed [10] in HgTe quantum wells. Li et al. [11] investigated the role of disorder in the topological
insulator, which possesses a pair of helical edge states with opposing spins moving in opposite directions
and exhibits the phenomenon of quantum spin Hall effect. The Kane and Mele model defined on a
hexagonal lattice can exhibit transition between quantum spin Hall effect phase and a simple insulator
due to Rashba spin orbit coupling [12, 13]. The quantum spin Hall insulator phase has been investigated
in the graphene system with a coexistence of Coulomb interaction, staggered potential, and intrinsic
spin-orbit coupling [14]. In two-dimensional photonic crystal, a conventional insulator phase, a quantum
spin Hall phase, or a quantum anomalous Hall phase can be realized by simply adjusting the geometric
parameters and magnetic field [15, 16]. Kort-Kamp [17] unveiled topological phase transitions in the
photonic spin Hall effect in the graphene family materials. The spin Hall effect can be realized in a
Bose-Einstein condensate of neutral atoms interacting via the magnetic dipole-dipole interactions [18].
A 1D dynamical version of the quantum spin Hall effect was implemented in an optical superlattice with
ultracold bosonic atoms [19]. Omnidirectional spin Hall effect was studied in a Weyl spin-orbit-coupled
atomic gas [20]. The edge state of quantum spin Hall insulators in topological Dirac and Weyl semimet-
als has been studied [21]. Recently, interaction-driven anomalous quantum Hall state was theoretical
predicted [22, 23].

Another interesting direction of topological states and and topological phase transitions studied in the
recent years arises from the nonequilibrium engineeringHall effect under the influence of a periodic drive.
An off resonant circularly polarized light has been found to induce a topological term in periodically
driven quantum systems to break the time-reversal symmetry. Based on Floquet theory, Chen et al.
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proposed a topological quantum phase transition to a quantum anomalous Hall phase induced by off-
resonant circularly polarized light in a two-dimensional system that is initially in a quantum spin Hall
phase or in a trivial insulator phase [24]. It has been demonstrated that in monolayer graphene [25] and
silicene [26], respectively, irradiated by an off-resonance circularly polarized light a topological phase
transition between different Hall states takes place. Laser-induced quantum anomalous Hall states in
honeycomb lattices have also been investigated [27]. Weyl semimetals showed a large anomalous Hall
effect controllable by illuminating an off-resonant circularly polarized light [28]. Previous studies were
mostly performed on steady states in systems with isotropic low-energy dispersions while Hall effects in
periodically driven heterostructures are still lacking.

In this paper, we use the Floquet theory to study theHall effects in PbC/MnSe heterostructure [29] with
spin orbit coupling under the illumination of an off-resonant circularly polarized light. PbC monolayer
grown on an MnSe (111) surface has a very large energy gap (about 244 meV), and the structure of the
system is mechanically stable. The half-metallic property owned by the heterostructure is protected by
the topology of the system and is robust against the variation of the chemical potential and strain. Due to
these prominent merits, PbC/MnSe heterostructure provides a novel platform to study the Hall effects.

The structure of this paper is organized as follows. In section 2 we present a brief account of the model
and a research method of PbC/MnSe heterostructures with a circularly polarized light, and discuss the
evolution of the energy gap. Based on the Floquet theory, we study the Chern numbers and Hall phases
in our model at high frequency in section 3. In section 4, we study the anomalous Hall and spin Hall
conductivities. In section 5, we summarize our results.

2. Model and method

We begin with the tight-binding Hamiltonian of PbC/MnSe heterostructure in momentum space on
the basis of | p+,↑〉, | p−,↑〉, | p+,↓〉, | p−,↓〉 near the Fermi energy around the Γ point, which is given by [29]

H0 =

©«
ε1(k) f (k) 0 0
f ∗(k) ε1(k) 0 0

0 0 ε1(k) f (k)
0 0 f ∗(k) ε2(k)

ª®®®¬ , (2.1)

where | p±〉 = (| px〉 ± i | py〉)/
√

2. | px, y〉 denote the orbital states in Pb, and ↑↓ represent the spin-
up (-down) state. Taking time-reversal symmetry and the C3v symmetry into consideration, one can
obtain f (k±) = ei 4π

3 f (±i 2π
3 k±) with k± = kx + iky . Therefore, f (k) will take the form f (k) = βk2

−, and
ε1(k) = ε2(k) is required. Finally, considering the atomic spin orbit coupling (SOC) interaction, the k · p
Hamiltonian for low-energy physics of the PbC/MnSe heterostructure is

Ĥ = αk2 + β
[
(k2

x − k2
y)σ̂x + 2kxkyσ̂y

]
+ sλσ̂z , (2.2)

where α and β are constant taking the symmetry into consideration. σ̂x, y,z denotes the Pauli matrices for
the basis | p±〉 = (| px〉 ± i | py〉)/

√
2. λ denotes SOC interaction for the spin up (s = 1) and spin down

(s = −1) subspace, respectively [30]. For simplicity, we take β as energy unit and set β = 1 throughout
the paper.

Considering the circularly polarized light irradiated onto the PbC/MnSe heterostructure, the vector
potential introduced into the Hamiltonian by substitution ®k → ®k + e ®A(t) is as follows:

®A(t) = A(κ sinωt, cosωt), (2.3)

where ω is the frequency of light, κ = ±1 denote right-hand and left-hand polarization of light, respec-
tively. A is the amplitude of the vector potential. Based on Floquet theory [31–33], the photon dressed
effective Hamiltonian with weak light intensity can be written as follows:

ĤF = Ĥ +
[Ĥ−1, Ĥ1]

~ω
+
[Ĥ−2, Ĥ2]

2~ω
, (2.4)
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Figure 1. (Colour online) Bulk band gap as a function of the light induced term λω = ∆ω |k=0 when
(a) κ = 1 and (b) κ = −1. The blue dashed and red solid lines denote spin-up and spin-down bands,
respectively. λ is set to be 0.1.

where

Ĥ±1 =
ω

2π

2π
ω∫
0

Ĥ(t)e±iωt, (2.5)

Ĥ±2 =
ω

2π

2π
ω∫
0

Ĥ(t)e±2iωt . (2.6)

Ĥ(t) is the time-dependent Hamiltonian using the substitution ®k → ®k + e ®A(t) in equation (2.2). Straight-
forward calculations show

ĤF = αk2 +
(
k2
x − k2

y

)
σ̂x + 2kxkyσ̂y + [sλ + κ∆ω]σ̂z , (2.7)

where

∆ω =
1
~ω

(
eA
~

)2
[
4k2 +

1
2

(
eA
~

)2
]
. (2.8)

We note that an extra light induced term (∆ω) is introduced, and its sign depends on κ rather than on
spin. This new term is clearly different from the intrinsic SOC term (sλ) and also different from the
conventional Zeeman term. For λ > 0 and ∆ω < 0, the overall value of the effective SOC (sλ + κ∆ω)
will decrease (increase) if s and η have the same (different) sign. The critical point λω is defined by
sλ+ κ∆ω = 0 at k = 0, where the λω vanishes and band gap closes. Consequently, the spin-up and -down
bands will have an opposite response to the circularly polarized light of the opposite κ. Figure 1 (a) shows
the gap as a function of the light induced term λω = ∆ω |k=0 for κ = 1 and λ = 0.1. When increasing
λω , the gap of spin-down component decreases while that of the spin up component increases. Then,
the spin-down gap closes and reopens. Figure 1 (b) shows that similar changes are found for κ = −1. It
indicates that a topological phase transition takes place. The topologically different responses arise from
the interplay between the SOC and light.

3. Chern numbers and Hall phase

For our system, the Hamiltonian can always be expressed in terms of the Pauli matrices as follows:

ĤF(k) = d(k) · σ̂ + ε(k)I , (3.1)
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where d(k) = (dx(k), dy(k), dz(k)), σ̂ = (σx, σy, σz) , and I is the rank-2 unit matrix. From the above
effective Hamiltonian, the Chern number is calculated as [34]

C(s) =
1

2π

∫
BZ

d2kΩ(s) , (3.2)

where Ω(s) is the Berry curvature in the momentum space over all occupied states of electrons with spin
s component, and it can be written as follows:

Ω(s) =
1
2

d̂ ·
(
∂ d̂
∂kx
×
∂ d̂
∂ky

)
, (3.3)

where d̂ = d
|d | . Straightforward calculation shows

Ω(s) =
2k2

[
sλ + κ 1

2~ω

(
eA
~

)4
]

[
k4 + (sλ + κ∆ω)2

]3/2 , (3.4)

and

C(s) = sgn(sλ + κλω) , (3.5)

where sgn is the sign function. One can see that the Chern number will change its sign with the varying
of sgn(sλ + κλω).

For α = λ = 0, the Hamiltonian [equation (2.7)] is similar to the bilayer graphene irradiated with
circularly polarized light [35–38]. In the bilayer graphene irradiated with circularly polarized light, the
light induces a term which is valley and polarization dependent. Therefore, the Berry curvatures are the
valley and polarization dependent, and the integration gives an integer nonzero Chern number per valley,
hence realizing a quantum valley-Hall state. In our system, a quantum spin Hall state probably exists due
to SOC.

In figure 2, we plot Chern numbers as a function of λω = ∆ω |k=0 for λ = 0.1 and κ = 1. When the
Fermi level lies inside the bulk energy gap, it can be found that the quantum state is a quantum spin Hall
(QSH) insulator when there is no circularly polarized light is absent, which is characterized by a nonzero
spin Chern number Cs =

1
2 [C(1) − C(−1)]. We have considered that the spin sz is a good quantum

number. With an increasing circularly polarized light intensity, the spin Chern number Cs changes from
sgn(λ) to 0, while the Chern number C = C(1)+C(−1) changes from 0 to 2κ with closure and reopening
of the gap. The nonzero Chern number C means that the insulating state is a quantum anomalous Hall
(QAH) insulator. Therefore, a QSH to QAH phase transition takes place, which is consistent with our
numerical results that the gap closes and reopens. It should be noted that the topological phase transition
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Figure 2. (Colour online) Chern numbers as a function of the light induced term λω = ∆ω |k=0 Cs

(dashed blue line) and C (solid red line) for λ = 0.1 and κ = 1.
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results from emission and absorption of two virtual photons (see equation 2.8) in this paper. In the next
section we will study the anomalous Hall and spin Hall conductivities to confirm our results. Thus, there
is a direct correspondence between the Chern number and the Hall conductance for two-dimensional
insulators (σxy = Ce2/h) when the Fermi level lies inside the bulk energy gap.

It should be noted that the first term in equation (2.7) in the revised manuscript does not modify the
eigenstates of our system. Therefore, we will set α = 0 to explore the Hall effects in the remainder of
this paper. Furthermore, the critical point is eA/~ = (2sκλω)

1
4 when the topological phase transition

take place based on the Hamiltonian (2.7). The atomic spin orbit is small which is responsible for the
opening of the gap. At high frequency regime, we have set ω = 6. Thus the light intensity eA/~ can
be tuned to be small, which can be realized experimentally. On the other hand, the number of the edge
state is characterized by Chern number, and topological phase transition is associated with the closure
and reopening of the energy of the gap. Thus, we can observe the closure and reopening of the energy,
the number of each edge, and propagation direction of the each edge to confirm the topological phase
transition experimentally.

4. Anomalous Hall and spin Hall conductivities

To better understand the topological properties, we studied the anomalous Hall and Spin Hall con-
ductivities in this section. Based on Green’s function theory [39, 40], anomalous Hall and spin Hall can
be expressed as follows:

σxy = σcI
xy + σ

cII
xy , (4.1)

σ
sz
xy = σsI

xy + σ
sII
xy . (4.2)

The first part is the contribution from the Fermi surface, the other part is the contribution from the Fermi
sea, and

σc(s)I
xy = −

e~
2

∫
dε
2π
∂ε f (ε)

∫
d2k
(2π~)2

Tr
[
ĵc(s)(k)ĜR

0 (ε, k)v̂y(k)
(
ĜA

0 (ε, k) − ĜR
0 (ε, k)

)
− ĵc(s)(k)

(
ĜA

0 (ε, k) − ĜR
0 (ε, k)

)
v̂y(k)ĜR

0 (ε, k)
]
, (4.3)

σc(s)II
xy = −

e~
2

∫
dε
2π

f (ε)
∫

d2k
(2π~)2

Tr
[
ĵc(s)(k)ĜA

0 (ε, k)Ĝ
A
0 (ε, k)v̂y(k)Ĝ

A
0 (ε, k)

− ĵc(s)(k)ĜA
0 (ε, k)v̂y(k)Ĝ

A
0 (ε, k)Ĝ

A
0 (ε, k) −

(
ĜA

0 → ĜR
0
) ]
, (4.4)

where f (ε) is the Fermi distribution. ĵc = v̂x and ĵs = 1
2 {v̂x, ŝz} are the charge and spin current density

operator, respectively. v̂x, y = (1/~)(∂H/∂px, y) is the velocity operator.

ĜR,A
0 (ε, k) = [ε − ĤF(k) ± i0+]−1 (4.5)

is the retarded (advanced) Green’s function in the clean limit.
Figure 3 shows numerical results of the spin Hall (σsz

xy) and anomalous Hall conductivities (σxy)
for both the left-hand and right-hand circularly polarized lights. As shown in figures 3 (a) and (c), the
system is QSH insulator with quantized spin Hall conductivity of e/2π when the Fermi level lies inside
the energy gap for both circularly polarized lights before the closure of the energy gap. However, after
reopening of the energy gap, the spin Hall conductivity is quenched to zero. This is because the Chern
number for both two-spin components is determined by the sign of sλ + κλω (see equation 3.5). We
can also find that the Chern number C = 2 and C = −2 for the QAH state under the left-hand and
right-hand circularly polarized lights, respectively, after reopening the energy gap. This is consistent with
the quantized anomalous Hall conductivity of e2/2h and −e2/2h for the two circularly polarized lights,
respectively, as shown in figures 3 (b) and (d). Consequently, a QSH to QAH topological phase transition
is realized, and it depends on the polarization of light.

On the other hand, σsz
xy [figures 3 (a) and (c)] drops promptly from the quantized plateau. This

behavior is independent of polarization of light. When the Fermi energy (|EF |) is outside the energy gap,
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Figure 3. (Colour online) Spin Hall and Hall conductivity in units of e/2π and e2/2π~, respectively,
under the irradiation of circularly polarized light. The red and blue solid lines denote the right-hand and
left-hand circularly polarized light, respectively. The typical parameters λω are set to 0.05 in (a) (c) and
0.15 in (b) (d).

the σsz
xy decreases with increasing |EF |. The σxy [figures 3 (b) and (d)] is drops/raises promptly from

the quantized plateau for the right-hand/left-hand circularly polarized light. When |EF | is outside the
energy gap, the |σxy | decreases with increasing |EF |. There is a link in σxy . The nonzero Berry curvature
of the band mainly distributes near its band edge, leading to this behavior of σsz

xy and σxy . Based on
equation (3.4), σsz

xy and σxy will always vanish at a higher energy.

5. Conclusion and summary

To conclude, we have analyzed a topological phase transition and Hall conductivities in PbC/MnSe
heterostructure under the illumination of a circularly polarized light. We have employed Floquet theory
and Green’s function formalism to compute Chern numbers and Hall conductivities at high-frequency
regime, respectively. The Chern numbers are determined by the interplay between SOC and light induced
SOC-like term. A photo-induced transition between quantum spin Hall state and anomalous Hall state
was observed. When the Fermi energy lies in the energy gap, the anomalous Hall conductivities are
dependent on polarization of light, while spin Hall conductivity is independent. Our findings provide a
way to control the topological phase transition and transport properties of the heterostructure. This is
also important for studying the effect of spin-orbit coupling in a heterostructure.
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L. Chen

Кросовер спiн-холлiвського ефекту до квантового

аномального ефекту Холла в PbC/MnSe гетероструктурах

Л. Чен
Вища школа фiзики та електронiки, унiверситет Тайшань, 271000Шаньдун, Китай
У статтi дослiджуються топологiчнi властивостi та холлiвськi провiдностi у гетероструктурi PbC/MnSe при
освiтленнi циркулярно поляризованим свiтлом. У високочастотному режимi дослiджуються заборонена
зона, числа Черна та холлiвськi провiдностi на основi теорiї Флоке i формалiзму функцiй Грiна, вiдпо-
вiдно. Взаємозв’язок мiж спiн-орбiтальною взаємодiєю i свiтлом приводить до топологiчного фазового
переходу мiж аномальними станами Холла та спiн-холлiвськими станами, що, в свою чергу, пов’язано з
випромiнюванням i поглинанням двох вiртуальних фотонiв. Аномальнi провiдностi Холла залежать вiд
поляризацiї свiтла, в той час як спiн-холлiвська провiднiсть є незалежною.
Ключовi слова: Холл, свiтло, теорiя Флоке, топологiя
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