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In previous work we developed a new statistical method for calculating the individual activities of ions including
the association of ions. Here we study multi-particle electrostatic interactions connected within higher cluster
integrals and identify the ionization constants of the mass action law of associating ion clusters. In contrast to
Bjerrum and Fuoss, our concept of association is not based on spatial criteria, but instead on the strength of
interactionmeasured in powers of the Bjerrumparameter (𝑒2/𝐷0𝑘B𝑇𝑎 ; 𝑎 is contact) and definedby asymptotic
properties of the cluster integrals. For ion pair formation our mass action constant is the classical counterpart
of Planck’s famous hydrogenic partition function. As a rule, the new association constants are smaller than
traditional expressions, e.g., by Fuoss and Kraus, in the interesting regions of interaction parameters about fifty
percent. Several examples including CaCl2, MgCl2, Na2SO4, K2SO4, LaCl3 and a model of seawater are studied.
For several associating electrolytes and seawater, reasonable agreement with experiments and Monte Carlo
results is achieved.
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1. Introduction

The problem of individual ionic activities, osmotic coefficients and ion association are key problems
in the theory of electrolytes [1–8]. Usual approaches to association effects in electrolytes with multiple
charged ions are based on the classical concepts of Bjerrum, Fuoss and Kraus [1], which define pairs and
triples as special spatially defined configurations. Our concept of electrostatic association is completely
different from that, we do not use spatial criteria, but the strength of interaction measured in powers of
the parameter 𝑏0 = (𝑒2/𝐷0𝑘B𝑇𝑎) (𝑎 is contact distance of ions). We follow the concepts of Onsager,
who stated in 1968 at a conference in Montpellier: “Bjerrums choice is good but we could vary it
within reason. In a complete theory this would not matter; what we remove from one side of the ledger
would be entered elsewhere with the same effect” [3]. In our concept for the definition of pairs we use
this freedom and assume that pair-associates are formed by higher order (negative) contributions of
binary charge interactions 𝑏𝑛0 with 𝑛 ⩾ 4 to the pressure and other thermodynamic functions. Triple and
quadruple association is generated by (negative) contributions of three or four charges with opposite signs
contributing higher orders in 𝑏0 to the pressure. Such a definition of association may seem less transparent
in comparison with spatial definitions, although it is easier in the light of statistical thermodynamics.
The background of the present work are the cluster expansions for systems with Coulombic interactions
based on the fundamental papers of Joseph Mayer since 1949 which were developed in the 50th and
60th by E. Haga, E. Meeron, H. Falkenhagen, G. Kelbg, I. R. Yukhnovskii, H. Friedman and others.
Note that the cluster expansions were developed in two versions, based on density and those based on
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fugacity expansion [9, 10]. Both versions are connected with diagrammatic expansions with respect to
the interaction strength 𝑒2 or in the case of hard charged spheres with the Bjerrum parameter 𝑏0 =

𝑒2/𝐷0𝑘B𝑇𝑎. An important role played personal meetings in Rostock and Lviv between H. Falkenhagen,
G. Kelbg, I. R. Yukhnovskii, H. Friedman and the present authors who witnessed these discussions.

The basic concepts which we use here were presented first in [4, 5, 11–15] and were developed later
in [6, 16–18]. These concepts are mainly based on a mathematical analysis of the cluster functions of the
Mayer-theory of ionic solutions [4, 5, 7]. This basic theory of ionic solutions led to cluster expansions,
which were rederived and generalized on the basis of collective variables by Yukhnovskii [8] and Kelbg
[14]. The connections between cluster expansions and association theory were established in [4, 11, 12].
The main idea of this concept is that the contributions of ion pairs and ion triples are given by certain
relevant parts of the second and third cluster integrals in the pressure expansion. The parts relevant to
bound states are in the low temperature asymptotically large and negatively definite, this way strongly
decreasing the pressure. These contributions are of higher order in the interaction parameter 𝑒𝑛, e.g.,
𝑛 ⩾ 8 for pairs. These concepts lead to quite transparent definitions of the ionization constants for pairs
and triples as we showed in the foregoing work [4, 5, 18, 19]. Alternative concepts of electrostatic
association were considered in many works [4, 24, 29–33, 39, 40].

The influence of electrostatic pair and triple association of ions is of high relevance for many
problems where electrolytes with higher charges such as MgSO4, MgCl2 or Na2SO4 play a role, e.g., in
seawater research [1]. In recent works [18–20], the present authors summarized the existing theoretical
knowledge on the activity coefficients and the individual conductivities of electrolytes in such systems. We
responded this way to urgent needs for extending and deepening the knowledge on the physico-chemical
properties of the components of seawater and other complex natural and technological electrolytes which
include higher charges. For example in seawater in addition to univalent ions, such as Na+, K+, Cl−
also the double-charged ions Mg2+, Ca2+ and SO2−

4 are of importance for seawater properties. In many
technologies several multiple-charged ions like the vanadium ions are becoming of substantial interest,
e.g., for modern battery development. Here, we develop a new look at the analytical theory of ions
with higher charges, where the differences between the individual and the mean activities are large
[1, 2, 6, 18, 26]. We devote special attention to the consequences of charge asymmetry and higher charges
to the individual ionic activities. In previous work, triple association was mainly neglected, while here
we give a more systematic approach. In our statistical approach we use the ion densities 𝑛𝑖 (in particle
numbers per cm3) or the molarities 𝑐𝑖 (in moles of ions per dm3 = liter) as the basic primary quantities.
For seawater we also use the chlorine molality (𝑚Cl, in moles of chlorine per mass of pure water), and
the salinity (𝑆𝐴 is the mass of dissolved sea salt per mass of seawater). Using the 𝑛-scale, the activity
coefficients are denoted by 𝑓𝑖 and the so-called practical (or molal) activity coefficients 𝛾𝑖 are defined
using molalities, 𝑚𝑖 [6, 7] where the molalities 𝑚𝑖 are measured in moles per mass of solvent [7]. Further
we use the partial osmotic coefficients 𝑔𝑖 derived from the osmotic pressures 𝑃𝑖 of species 𝑖. We use
standard methods for estimating individual activities and osmotic coefficients as the virial expansion of
the thermodynamic functions [4–7, 18, 27, 28, 43]. The approach given here is restricted to ion association
problems, where less than about 1/4 of the ions are in associated states. This is due to our quasi-linear
approach to the mass action law and to the first order approach to rational pressure expansions. The idea
behind our approach is that a complete physical description of any higher interaction orders includes
everything and in particular the chemical effects. The problem is, however, to identify the responsible
higher order terms and work out these contributions relevant for association. We have described this
here in some detail for pairing effects and in less detail for triple and quadruple association effects. A
restriction of our method is that the nonlinearities contained already in a simple mass action law, are
included in our procedure only in a quasi-linear way. As shown in figure 1 for a simple model, the
results for the degree of ionization of individual ions using our simple method which is half way between
physical and chemical description, is for weak association in reasonable agreement with the complete
mass action law. The price to pay for the simplicity of our method is that we have to stay in the region of
weak association effects, say that the degrees of ionization are higher than 75 percent.
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2. Interaction potential and association functions

We follow here basically the concepts developed in [18]. First we define the potential of the mean
force between the ions 𝑖 and 𝑗 in the solutions as 𝜓𝑖 𝑗 . The average potentials and forces are split into a
Coulombic and a short-range part

𝜓𝑖 𝑗 = 𝑉𝑖 𝑗 (𝑟) +𝑉 ′
𝑖 𝑗 (𝑟). (1)

The electrical part is given by Coulomb’s law

𝑉𝑎𝑏 (𝑟) = 𝑘B𝑇 · ℓ
𝑟

; ℓ𝑖 𝑗 = 𝑍𝑖𝑍 𝑗ℓ, ℓ =
𝑒2

𝐷0𝑘B𝑇
; 𝐷0 = 4π𝜖0𝜖𝑟 , (2)

where 𝜖𝑟 (𝑇, 𝑝) is the relative dielectric constant of pure water and ℓ the Coulomb length (also called
Landau length or with the pre-factor 1/2 the Bjerrum length). Both are functions of temperature and
pressure.

In what follows we perform all calculations for the temperature 𝑇 = 298.15 K (i.e., 25 degrees
Celsius). and assume for the relative dielectric constant the value 𝜖𝑟 = 78.36. Then, we get for the
Coulomb length ℓ = 715.4 pm. In our model this is the only parameter which is temperature and pressure
dependent, so the transition to other values of 𝑝, 𝑇 is reduced to changing ℓ. The short range forces are
of hard-core type, where 𝑅𝑖 𝑗 are the contact distances. These are the most important key data in our
approach. Several values for the contact distance are given in table 1. Most of the values were given
already in [18]. We are of opinion that the most important data about contact distances may be obtained
from MC and MD simulations as presented, e.g., in [22, 24]. We have added a few not so well studied
ions as La and Cd. The crystallographic radius for Cd2+ is with 95 pm just a few pm higher than that for
Mg2+ which is 86 pm. Therefore, we may assume that the contact distances in solution are also close,
we took 𝑅CdCl = 420 pm. For La3+, we know that the crystallographic radius is smaller than that for
Mg2+. Following canonical MC simulations by Valisko and Boda we assume for those ions in water
𝑅LaLa = 430 pm and 𝑅LaCl = 270 pm corresponding to a quite large Bjerrum parameter bpm = 7.95. The
pair association constants given in table1 stem from an earlier theory, the triple association constants
from new calculations.

The definition of a mass action constant introduced above applies to all charge-symmetrical ionic
associates including, e.g., Mg2+-SO2−

4 . More difficult is the question how to define the association
constant for triple associates as (+)(−−)(+) and (−)(++)(−). We search first for the maximum binding
energy of 3 ions, e.g., Cl-Mg-Cl or Na-SO4-Na one of them double charged. The biggest energy has the
linear configuration (−)(2+)(−) or (+)(2−)(+) in the linear arrangement of the ions in contact. A simple
estimate of the energy of 3 ions in contact gives us

𝐸−(2+)− = 𝐸+(2−)+ = (7/2)𝐸+− . (3)

Consequently, we expect the asymptotic

𝑘−(2+)− ∼ exp[3.5|𝐸+− |/𝑘B𝑇] . (4)

This result corresponds to the estimates proposed by Friedman and one of these authors [15] by using
the results of mathematical studies of cluster integrals [7, 11]. Including the pre-factors, this estimate of
the asymptotic reads [7, 11, 15]

𝑘𝑎𝑏𝑎 ≃ 8π2𝑅6
𝑎𝑏 · exp[(2ℓ𝑎𝑏/𝑅𝑎𝑏)]

[(ℓ𝑎𝑏 + ℓ𝑎𝑎)/2𝑅𝑎𝑏]
· exp[(ℓ𝑎𝑎/2𝑅𝑎𝑏)]

(−ℓ𝑎𝑎/2𝑅𝑎𝑏)
. (5)

This estimate was obtained in Kelbg’s early work [11] by using the assumption that the integrands have
a cusp at contact, which provides the asymptotic. A qualitative procedure to treat triple association of
the type (− + −) or (+ − +) is the method of effective charges as known from the treatment of helium
formation as bound state of two electrons and one two times positively charged alpha-particle. The bound
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state energy of an electron-alpha pair is 𝑍2𝐸𝐻 where 𝑍 = 2 is the charge of the He-nucleus and the
corresponding pair association constant is

𝑘2 ∼ exp[𝑍2𝐸𝐻 ] . (6)

In one of his latest but quite important works, Max Planck showed that for Coulombic systems, here for
hydrogen-like bound states, the exponential function should be replaced by a cropped exponential, where
the first two terms of the exponential are cropped

exp[𝑍2𝐸𝐻 ] → exp[𝑍2𝐸𝐻 ] − 1 − 𝑍2𝐸𝐻 . (7)

Plancks partition function begins with the order 𝑒8 similar to the Falkenhagen partition function [4]. For
a pair of single charged ion and a Z-fold charged ion, the Falkenhagen theory provides with 𝑏0 = ℓ/𝑅+−
the expression [4]

𝑘2 = 8π𝑅3
+−𝑚(𝑍𝑏0); 𝑏0 =

ℓ

𝑅+−
; 𝑚(𝑥) =

∞∑︁
𝑚=2

𝑥2𝑚

(2𝑚)!(2𝑚 − 3) . (8)

The arguments which lead to this series on the Bjerrum parameter are completely different from Plancks
arguments. Therefore, we consider the relations between the quantum theory of Planck and the classical
approaches by Bjerrum and Falkenhagen [4] more in detail. The fundamental work of Max Planck
published in 1924 is notoriously difficult to understand, which is the reason why this work is not so often
cited as the earlier papers by Planck. In order to apply Planck’s ideas to classical systems, we come back
to our own paper, which is an exercise about Planck’s work with more detailed calculations [13]. The
question to be studied in detail is, how the definition of the Falkenhagen partition function equation (8)
is related to the Planck concept equation (7). In Planck’s quantum statistics, the basic assumption is

𝑘2 = 4π
∞∫
0

d𝑟𝑟2𝑆+− (𝑟; 𝑏), (9)

where 𝑆+− (𝑟; 𝑏) is the bound state part of the quantum pair probability. This term is proportional to
the sum of probabilities to find an opposite charge in a bound state around the central charge, which is
expressed here by the diagonal part of the density matrix. In order to find the classical counterpart of
this function first we find the probability density that a pair (+−) is in distance 𝑟 in states with negative
relative energy

𝑆+− (𝑟; 𝜖 < 0) = 4π
(2π`𝑘B𝑇)3/2

𝑝0∫
0

exp[−𝛽𝑝2/2` + 𝑔(𝑟)], 𝑔(𝑟) = ℓ+−/𝑟. (10)

Here, 𝑝0 =
√︁

2`𝑍𝑒2/𝜖𝑟 is the momentum where the pair energies change the sign from negative to
positive values (` is relative mass). Carrying out the integral over all momenta 𝑝 < 𝑝0, first we get an
integral over the error functions and then explicitly the following series [13]

𝑆+− (𝑟; 𝜖 < 0)) = exp[𝑔(𝑟)]𝜙(
√︁
𝑔(𝑟)) − (2/

√
π)
√︁
𝑔(𝑟) = 2

√
π

∑︁
𝑠=1

[2𝑠𝑔(𝑟)𝑠+1/2

(2𝑠 + 1)!!

]
. (11)

The integral over the distances of this complicated function is divergent, so we have to omit according to
Plancks arguments the first two terms which correspond to states close to 𝜖 = 0 and treat them together
with the free states. Since 𝑔(𝑟) ∼ ℓ, these first terms correspond to low orders in the interaction 𝑒2. The
remaining higher order terms 𝑔(𝑟)𝑠+1/2 with 𝑠 > 2 provide us with the wanted bound state contribution

𝑆+− (𝑟; 𝑏)) =
2
√
π

∑︁
𝑠=3

[2𝑠𝑔(𝑟)𝑠+1/2

(2𝑠 + 1)!!

]
. (12)
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The integral over 𝑟2d𝑟 is now convergent and gives a finite integral which is the direct classical counterpart
of Plancks equation (7). Investigating this integral over the radial coordinate in detail, we find out that it
has a special property [13]

4π
∞∫
0

d𝑟𝑟2𝑆+− (𝑟; 𝑏) = 2π
∞∫
0

d𝑟𝑟2 [exp(𝑔) + exp(−𝑔) − 2 − 𝑔2/2] . (13)

We may conclude for the same integral with the lower limit 𝑅+−:

𝑘2 = 4π
∞∫

𝑅+−

d𝑟𝑟2𝑆+− (𝑟; 𝑏) = 4π
∞∫
0

d𝑟𝑟2𝑆+− (𝑟; 𝑏)

= 2π
∞∫
0

d𝑟𝑟2 [exp(𝑔) + exp(−𝑔) − 2 − 𝑔2/2] = 8π𝑅3
+−𝑚(𝑍𝑏0). (14)

From the point of physics, this result is remarkable, since it says that Falkenhagen’s mass action constant
which originally was based on more mathematical arguments than simplicity, is indeed a complete analog
of Planck’s famous hydrogenic mass action constant. Further this result means that equation (9) is valid
in the classical as well as in the quantum-statistical case, i.e., the approach is equivalent for the classical
as well as for quantum Coulombic pairs.

For the formation of He-like triples, the mass action constant in zeroth order, according to the idea of
effective charge, can be approximated by a product

𝑘3 ∼ exp[2�̃�2𝐸𝐻 ] ∼ [𝑘+− (�̃�)]2, (15)

where �̃� ≃ 1.8. The decrease of the charge from 2 to 1.8 is due to the screening of an interacting
charge pair by the third charge in the triple. Here we transfer this effective charge approach from the
helium theory to the 2–1-association problem, assuming an effective charge of the double-charged ions
of about �̃� ≃ 1.8. The method of effective charge also works for electrolytes and provides a simple
semi-quantitative approach to triple ionization, which provides a bit more flexibility and is in reasonable
agreement with the other approaches.

We start here our investigation from the free energy in a physical description of the ions by the canoni-
cal ensemble [11, 18]. General expressions from statistical thermodynamics for the cluster contributions
𝑆
(𝑘 )
𝑖

to the negative free excess energy of hard charged spheres read [5, 7, 8, 11, 12]

𝐹ex = 𝐹DH + 𝐹2 + 𝐹3 + ... = −𝑘B𝑇𝑉
[ ^3

12π

∑︁
𝑖 𝑗

Z0
𝑖 Z

0
𝑗 𝑅(^𝑅𝑖 𝑗 ) +

∑︁
𝑖,𝑘

𝑆
(𝑘 )
𝑖

]
, (16)

where 𝑅(𝑥) is the so-called ring function in Debye-Hückel approximation and Z0
𝑖

the Onsager relative
screening factors defined by

𝑅(𝑥) = 1 − 3
4
𝑥 + 3

5
𝑥2 − . . . ; Z0

𝑖 =
𝑛𝑖𝑒

2
𝑖∑

𝑗 𝑛 𝑗𝑒
2
𝑗

. (17)

The corresponding chemical potential is

`𝑖 = −
𝑍2
𝑖
ℓ^

2

∑︁
𝑗

Z0
𝑗𝐺0(^𝑅𝑖 𝑗 ) + . . . ; 𝐺0(𝑥) =

1
1 + 𝑥 . (18)

The sums are to be extended over the species of ions 𝑖 and all orders of clusters 𝑘 . The strong coupling
contributions of ions 𝑖 read in the cluster order 𝑘 = 2, 3, 4, ... [5, 7, 8, 11, 12, 40]

𝑆
(2)
𝑖

=
1
2
𝑛𝑖

∑︁
𝑗

𝑛 𝑗

∫
dr 𝑗

[
𝜓𝑖 𝑗 −

1
2
𝐺2

𝑖 𝑗

]
, (19)
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𝑆
(3)
𝑖

=
1

2 · 3
𝑛𝑖

∑︁
𝑗𝑘

𝑛 𝑗𝑛𝑘

∫
dr 𝑗dr𝑘

[
𝜓𝑖 𝑗𝜓𝑖𝑘𝜓 𝑗𝑘 + 𝑔𝑖 𝑗𝜓𝑖𝑘𝜓 𝑗𝑘 + 𝑔𝑖𝑘𝜓 𝑗𝑘𝜓𝑖 𝑗 + 𝑔 𝑗𝑘𝜓𝑖 𝑗𝜓𝑖𝑘

]
, (20)

𝑆
(4)
𝑖

=
1

2 · 3 · 4
𝑛𝑖

∑︁
𝑗𝑘𝑙

𝑛 𝑗𝑛𝑘𝑛𝑙

∫
dr 𝑗dr𝑘dr𝑙

[
𝜓𝑖 𝑗𝜓 𝑗𝑘𝜓𝑘𝑙𝜓𝑖𝑙 + . . .

]
. (21)

Here the strong coupling function 𝜓𝑖 𝑗 which is of higher order 𝑂 (𝑒4) in the interactions is defined by

𝜓𝑖 𝑗 = exp[𝐺𝑖 𝑗 − 𝛽𝑉 ′
𝑖 𝑗 ] − 1 − 𝐺𝑖 𝑗 ; 𝐺𝑖 𝑗 (𝑟) = −𝑍𝑖𝑍 𝑗ℓ

exp(−^𝑅𝑖 𝑗 − ^𝑟)
(1 + ^𝑅𝑖 𝑗 )

. (22)

We use here the so-called nonlinear Debye-Hückel approximation for charged hard spheres proposed
by Onsager and Fuoss and developed by these authors [3, 18, 21].

Figure 1. (Colour online) Left-hand panel: The range of validity of our semi-chemical, i.e., using a first
order rational polynomial approximation, (red curve) in comparison to the full nonlinear mass action
law for ion pairing (blue curve). For a simple model, our approach stops working if more than about 25
percent of the ions are associated i.e., 𝛼𝑖 < 75. Right-hand panel: The activity coefficients for the solution
of MgCl2 calculated within the present approach. We show from below the activity coefficients of Mg2+,
then the mean activity of MgCl2 and then the activity of the ion Cl− . The upper curve (turquoise) shows
the log of the degree of ionization ln(𝛼).

The contributions of the cluster theory given here including a nonlinear DH-screening contain the full
2nd virial coefficient in good agreement with available HNC data. Including the third virial coefficient
for associating electrolytes, e.g., for MgSO4 with 𝑅 = 420 pm brings the theory even to a quite good
agreement with MC data up to nearly 1 mol/liter [18]. An earlier comparison of our approximation with
MC calculations [35] also gives a rather good agreement. The present approximation gives the values for
the free energy which are close to MC results up to about 𝑐 ≃ 1 mol/liter [25]. This way we see that the
contributions provided by the 2nd and 3rd virial coefficients are quite relevant for describing two- and
three-particle association effects. The idea behind our physical theory of association is as follows: we
connect the definition of the associates with the convergent, and in the asymptotic for strong interactions,
dominant parts of the cluster integrals. Correspondingly, we define the degree of ions of kind 𝑖 bound in
pairs or triples as the asymptotic convergent strong coupling parts of the cluster integrals which lead to
big negative contributions to the free energy:

𝛿
(2)
𝑖

=
∑︁
𝑗

𝑛 𝑗 𝑘
(2)
𝑖, 𝑗

(𝑇); 𝑘
(2)
𝑖, 𝑗

(𝑇) ∼ asy
[ ∫
conv

d2𝑆 (2)
𝑖

]
,

𝛿
(3)
𝑖

=
∑︁
𝑗𝑘

𝑛 𝑗𝑛𝑘𝑘
(3)
𝑖, 𝑗𝑘

(𝑇); 𝑘
(3)
𝑖, 𝑗𝑘

∼ asy
[ ∫
conv

d2d3𝑆 (3)
𝑖

]
. (23)
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Asymptotic and convergent means here that the given integrals should be treated as follows: the integrals
should be extended over relative coordinates and performed after identification of the convergent and
(at strong association) dominating positive definite parts of the cluster integrals. The results of these
operations depend only on the temperatures and provide the corresponding association constants. We
underline that this is the central point of our concept of association. The problem is that the asymptotic
part is not uniquely defined. We have some asymptotic freedom. However, at this point we may use the
freedom which gives us Onsagers statement, that in the ledger of the theory only the observable sums
of mass action effects and long range interaction effects are fixed and controllable by experiments [40].
We note that a systematic approach to the derivation of mass action constants from cluster integrals was
developed already in [41] on the basis of the grand canonical ensemble.

Here, we will explain our concept on examples. An essential part of the concept is that for Coulombic
association, the classical exponential factors, appearing, e.g., in equation (6) should be replaced by some
kind of cropped exponential functions which do not contain the first two terms. This will be demonstrated
now. For the case of pair formation, we get the estimate of Falkenhagen given already above [4–6]

𝑘
(2)
𝑖 𝑗

(𝑇) = 8πℓ3
𝑖 𝑗𝑛2(b𝑖 𝑗 ) = 8π𝑅3

+− · 𝑚(b+−), (24)

𝑚(b) = 1
2
· (𝐾04(b) + 𝐾04(−b)) =

∞∑︁
𝑚=2

b2𝑚

(2𝑚)!(2𝑚 − 3) . (25)

Here, the pair association function 𝑚(𝑥) is related to the 𝐸𝑖(𝑥) functions and to the so-called Kirkwood
function [4, 5]. More difficult is the question how to define the association constant for triple associates
as (+)(−−)(+) and (−)(++)(−). We follow mathematical approaches to the pair and triple cluster
integrals [15, 35]. The idea behind the so-called constant factor approach is as follows: one or more
factors 𝜓𝑖 𝑗 (𝑟𝑖 𝑗 ) in the integrands of the relevant clusters belong on the case of associating clusters to
repulsive interactions. For these factors 𝜓𝑖 𝑗 , the exponent is positive expressing the repulsion of two
equally charged ions. The essential point for the integration is that repulsive ions on average cannot come
closer than certain minimal distance 2𝑅+− for triples. In any case, these factors expressing repulsion are
slowly changing. Fixing the values of the repulsing functions at the most probable values, we may take
the factors out of the integral. For triple clusters, we find, e.g., assuming a double charged ion 𝑎 at 1 and
and two single charged ions 𝑏 at 2 and 3, the estimate

𝑆aba(1, 2, 3) ∼ 𝑆𝑎𝑎 (2, 3)𝑆𝑎𝑏 (1, 2)𝑆𝑎𝑏 (1, 3), (26)

𝑘aba ≃ 8π2𝑅6
+− · [exp(−ℓ𝑎𝑎/2𝑅𝑎𝑏) − 1 + (ℓ𝑎𝑎/(2𝑅𝑎𝑏))] · [𝑚(b𝑎𝑏)]2 . (27)

We consider the association constant of a triple consisting of two univalent ions 𝑗 , 𝑘 with a multiple
charged ion 𝑖 imbedded in between. The repulsive factor in the cluster integral for 3 ions may be
approximated by the first term in the Taylor expansion (ℓ−−/2𝑅+−)2 which including a steric 𝑟2 provides
just a constant factor. Further, in order to have more flexibility, we may introduce an effective charge �̃�
in agreement with previous studies of the properties of the triple cluster integrals [11, 12, 35]. For 2-1
associates, we have �̃�2 ≃ 3.5; �̃� ≃ 1.8. We see that our definition of mass action constants does not
contain contributions in lower orders of 𝑒2, the pair association constant starts with 𝑒8. The contributions
of lower orders are missing since otherwise, we would have conflicts between contributions from the mass
action terms with the screening contributions, in particular with the extended Debye limiting law [17].
The degree of free ions of kind 𝑖 which is that part of the ions which are not associated in pairs, triples,
quadruples etc., is defined as the relation between the number of free ions to the total number of those
ions

𝛼𝑖 =
𝑁 free
𝑖

𝑁 free
𝑖

+ 𝑁asso
𝑖

=
1

1 + 𝛿 (2)
𝑖

+ 𝛿 (3)
𝑖

+ . . .
. (28)

This is the typical mathematical structure we have in the semi-chemical approach suggested first by
Justice et al. [31–33]. The 𝛿 (3)

𝑖
and 𝛿 (4)

𝑖
we find in our approach as the asymptotically big negative
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definite contributions from the 3rd and 4th virial coefficients providing relevant contributions to triple
and quadruple association. According to our estimates in the previous work, the pair contribution is
of order b4, the triple contribution is of order b10 [19]. The corresponding thermodynamical functions
as, e.g., the activities have, as a rule, a typical structure of rational functions which stems from the
nonlinear Debye-Hückel and MSA theories. One way to arrive at these structures is an extension of the
first corrections to the limiting law for the activities which reads [18]

ln 𝑓 𝑒𝑙𝑖 = ln𝛼𝑖 −
𝑍2
𝑖
ℓ^

2
·
∑︁
𝑗

Z0
𝑗

1
1 + ^𝑅𝑖 𝑗

,

Z0
𝑗 = ^

2
𝑗/^2, ^2

𝑗 = 4πℓ𝑛 𝑗 𝑧2𝑖 , ^2 =
∑︁
𝑗

^2
𝑗 . (29)

As already mentioned, there is a close relation to an approach developed by Justice et al. [31–33]. Note
that instead of the relative screening factor Z0

𝑖
, used already by Onsager (however, denoted by the letter

`𝑖), we worked in some earlier papers [20] with the half quantity Z 𝑗 = Z0
𝑖
/2. For a binary electrolyte, the

calculation of the Z1, Z2 is particularly simple

Z0
1 =

𝑛1𝑒
2
1

𝑛1𝑒
2
1 + 𝑛2𝑒

2
2
=

|𝑧1 |
|𝑧1 | + |𝑧2 |

, Z0
2 =

|𝑧2 |
|𝑧1 | + |𝑧2 |

. (30)

We use here Onsagers notation, but changing his letter `𝑖 which we use for the chemical potential. For
for some examples of binary electrolyte, the calculation of the Z1, Z2 give, e.g., for MgCl2, CdCl2 the pair
(1/2, 2/3) and for LaCl3 the pair (1/4, 3/4).

We use here, in the simplest approximation for the zeroth order, the Debye-Hückel-approximation;
more advanced possibilities are the Mean Spherical Approximation (MSA) and the related Henderson-
Smith approximation (HSA). The nonlinear Debye-Hückel-approximations (DHA) take into account the
first- and second-order terms𝐺1(𝑥), 𝐺2(𝑥), �̃�1(𝑥), �̃�2(𝑥) [20]. We will not explain the extension of this
theory to the MSA approximation in detail and refer to other works [43, 45, 47–49]. Our favorite approach
is based on a generalization of the Henderson-Smith formula for the pair distribution to arbitrary contact
distances [18]. According to this approach, the transition from the DHA to the MSA consists formally in
replacing the Debye-Hückel parameter [ by [18]:

[𝑖 𝑗 = ^𝑅𝑖 𝑗 → 𝛾𝑖 𝑗 =
1
2
·
(
^𝑅𝑖 𝑗 +

√︁
1 + 2^𝑅𝑖 𝑗 − 1

)
. (31)

Note that the more advanced expression 𝛾 includes higher orders in ^ and that this way programs written
for DHA may be easily extended to the Henderson version of the MSA. The central point in our theory is
taking into account the differences of the diameters of the ions, since the differences between the individual
activities and conductivities depend strongly on the differences between the contact distances [18, 20].
The degrees of ionization as well as the conductivities depend mainly on the contact distance of oppositely
charged ions.

3. Association theory using rational pressure expansions

In the second section we identified the association contributions as the big positively definite terms
in the virial expansions leading to negative contributions to the free energy. In an alternative approach
based on virial expansions of the osmotic pressure, we construct now rational representations of the
pressure, where the negatively definite terms in pressure expansions are moved to the denominator of
rational expressions. We do not need here explicit definitions of mass action constants. For the partial
osmotic pressure contributed by the ionic species 𝑖 we get, by introducing the distribution function into
the virial formula,

𝑃𝑖 = 𝑃
𝑖𝑑
𝑖 + 1

3
𝑢𝑒𝑙𝑖 + 𝑃ℎ𝑐

𝑖 ; 𝑃ℎ𝑐
𝑖 =

2π
3
𝑛𝑖 ·

∑︁
𝑗

𝑛 𝑗𝑅
3
𝑖 𝑗 · exp

[
b𝑖 𝑗

(1 + ^𝑅𝑖 𝑗 )

]
. (32)
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The electrical energy density can be expressed by Euler functions [18, 20]. We define weakly and
moderately coupling, separated from strongly coupling and hard core parts of the osmotic pressure

𝑃𝑖/(𝑛𝑖𝑘B𝑇) = 𝑔𝑖 = 1 − 1
6
𝑧2𝑖 ^ℓ ·

∑︁
𝑗

Z0
𝑗 · [�̃�0 + �̃�1] ([𝑖 𝑗 , b𝑖 𝑗 ) + 𝑔sc

𝑖 + 𝑔ℎ𝑐𝑖 . (33)

The contribution of weak coupling 𝐺0 is given by a Debye-like osmotic function and 𝐺1 is a correction
for asymmetric ionic systems [18].

�̃�0(𝑥) =
1

1 + 𝑥

[
1 − 𝑥

2(1 + 𝑥)

]
; 𝑔sc

𝑖 = 𝑔sc2
𝑖 + 𝑔sc3

𝑖 + 𝑔sc4. (34)

The G-functions represent the different orders in [ and b𝑘
𝑖 𝑗

[18]. The first correction �̃�1 is relevant for
asymmetric ionic systems and leads to logarithmic terms

�̃�1(b𝑖 𝑗 , [𝑖 𝑗 , Z𝑖) =
b𝑖 𝑗

18(1 + [𝑖 𝑗 )3 ·
[
𝑒1(2[𝑖 𝑗 ) − 3[𝑖 𝑗 Z𝑖 exp(−3[𝑖 𝑗 )

]
. (35)

The strong coupling contributions to the pressure 𝑔sc
𝑖
= 𝑔sc2

𝑖
+𝑔sc3

𝑖
+𝑔sc4+ ...which are all strictly negative,

stem from the second, third, forth, etc. virial coefficients obtained from the virial expansion as derivatives
of the free energy cluster contributions in the virial formula given above [18, 34].

The strong coupling contributions increase strongly with 𝑒2 since 𝜓𝑖 𝑗 = 𝑂 (𝑒4). As a result, the
pressure may eventually become negative which would be unphysical. Quite formally we may, in order to
avoid negative values of 𝑃𝑖 , transform the expression by replacing 1 + 𝑔sc

𝑖
which can get negative values

by the strictly positive Padé-like expression 1/(1 − 𝑔sc
𝑖
) which would correspond to a geometric series

and leads to

𝑔𝑖 =
1

(1 − 𝑔𝑠𝑐2
𝑖

− 𝑔𝑠𝑐3
𝑖

− 𝑔𝑠𝑐4 − ...)
− 1

6
𝑧2𝑖 ^ℓ ·

∑︁
𝑗

Z0
𝑗 · [�̃�0 + �̃�1] ([𝑖 𝑗 , b𝑖 𝑗 ) + 𝑔ℎ𝑐𝑖 . (36)

The first term is now interpreted as the bound part of the ions of species i, which means that in the present
approximation there appears, as a degree of ionization, the expression

�̃�𝑖 =
1

1 + 𝛿 (2) + 𝛿 (3) + 𝛿 (4) + ...
, 𝛿 (𝑘 ) = (−𝑔𝑠𝑐𝑘) > 0. (37)

The 𝛿 (𝑘 ) are interpreted as degrees of association of 𝑘-clusters. This leads finally to a rational virial
representation of the osmotic pressure

𝑃𝑖

(𝑛𝑖𝑘B𝑇)
=

1
(1 + 𝛿 (2) + 𝛿 (3) + 𝛿 (4) + ...)

− 1
6
𝑧2𝑖 ^ℓ ·

∑︁
𝑗

Z0
𝑗 · [�̃�0 + �̃�1] + 𝑔ℎ𝑐𝑖 . (38)

This way without changing the accuracy in the linear order in density 𝑂 (𝑛), we arrive at an mathe-
matically equivalent but in the context of association theory quite useful rational expressions for the
pressure. We note that we may construct more powerful Padé-like rational expressions by including the
higher association coefficients in nominator and denominator [50]. Finally, we note that the terms in the
denominator may be interpreted as the effective degrees of association,

𝛿
(2)
𝑖

=
1
6
𝑧2𝑖 ^ℓ ·

∑︁
𝑗

Z0
𝑗 · [�̃�2(b𝑖 𝑗 , [𝑖 𝑗 )], 𝛿

(3)
𝑖

=
1
6
𝑧2𝑖 ^ℓ ·

∑︁
𝑗

Z0
𝑗 · [�̃�3(b𝑖 𝑗 , [𝑖 𝑗 )] . (39)

Here, we included all contributions of higher order (not only their asymptotic) into the expression for the
degree of association, which makes some difference to the results of the previous section. Consequently,
the expressions for 𝛼𝑖 and the new here �̃�𝑖 as well as the old 𝛿 (𝑘 )

𝑖
and the new 𝛿

(𝑘 )
𝑖

are not identical,
although they are in effect very close and converge to each other at small densities, the differences
being within the “Onsager freedom in a ledger”. We remember the statement that chemical species are
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not uniquely defined, but depend weakly on the context, i.e., on the imbedding into a theory [40]. The
expressions for 𝛿𝑖 have a quasi-chemical meaning, since they may be interpreted as degrees of association.
Formally, these new expressions may be obtained by a nonlinear extension of the canonical ensemble
expansions assuming that these terms are part of a geometric series. The correctness of such an extension
is justified by the studies within the grand-canonical ensemble [15, 50].

The terms �̃�2, �̃�3 stemming from second, third virial terms are here included into the strong coupling
𝑔sc
𝑖

since they describe the association effects and give in our new approach the “degree of association”
of pair formation

𝛿
(2)
𝑖

= 8π
∑︁
𝑗≠𝑖

𝑛 𝑗𝑅
3
𝑖 𝑗 · (1 + [/3)

(
(b/(1 + [))4

24(1 + 3[) + (b/(1 + [))5

120(2 + 4[) + (b/(1 + [))6

720(3 + 5[) + ..
)

(40)

Here, the circle is closing since in the lowest approximation restricting to b4-term, we get a result close
to the previous result for a weak binding:

𝛿
(2)
𝑖

= 8π
∑︁
𝑗≠𝑖

𝑛 𝑗𝑅
3
𝑖 𝑗 ·

(1 + [/3)
(1 + 3[) (1 + [)4

b4

24
. (41)

For small densities, we find by summing up the series in b, an expression valid for both versions of
𝛿
(2)
𝑖

-definitions for the pair formation which provides the degree of low-density ionization:

𝛼𝑖 = �̃�𝑖 =
1

[1 + 2π
∑

𝑗≠𝑖 𝑛 𝑗ℓ
3
𝑖 𝑗
· 𝑛2(b𝑖 𝑗 )]

; 𝑛2(𝑥) =
∑︁

𝑘=1,3,5,..

𝑥𝑘

𝑘 (𝑘 + 3)! . (42)

This means that we have at low density a full agreement with the results of the previous section. We
remember that 𝑛2(𝑥) was previously discussed and expressed by 𝑚(𝑥) and the Kirkwood function. An
application of the expressions (40) and (41) to a 6-component model of seawater is given in figure 2.

The pressure approach leads to alternative expressions describing a weak pair association. It does
not include assumptions about symmetries of the charges and may be applied to any neutral mixture of
charges. For symmetrical systems, the odd terms cancel out and we get back familiar expressions used
in many papers [4, 29]. The theory presented so far does not include triple and higher association. For
MgSO4 in standard seawater, the degree of association was measured based on the attenuation of sound
by Fisher [51]. Based on these data, Fisher concluded that about 9.2 percent of the total Mg in seawater
exists as MgSO4. Kester and Pytkowicz estimated the mass action constants and for found for Mg, Ca a
degree of association of about 10 percent [52]. Our calculation gives for normal ocean salinity for Mg a
degree of association of about 12 percent, for SO4 about 9 percent and for Ca about 4 percent. Looking
at the uncertainties of the experiment and the theory, the agreement seems to be satisfactory.

Now, we propose a similar procedure for calculating the degree of association of triples 𝛿 (3)
𝑖

. The
easiest way to find an estimate for the 3-particle association function is the effective charge method. For
the special case of a (+)(2−)(+) or (−)(2+)(−) triple association, we find the degree of association of
triples just as a product two - particle terms modifying the charge. Further corrections arise by introducing
some factors for the interaction of equal charges. For example, for triples formed by an ion 𝑖 is with some
higher charge 𝑍𝑖 and the effective charge �̃�𝑖 . In the lowest weak binding approximation, which includes
only the terms of order b10:

𝛿
(3)
𝑖

= 2π2ℓ2
∑︁
𝑗≠𝑖

𝑛 𝑗𝑅
2
𝑖 𝑗

b4
𝑖 𝑗

24(1 + [𝑖 𝑗 )4
(1 + [𝑖 𝑗/3)
(1 + 3[𝑖 𝑗 )

·
∑︁
𝑘≠𝑖

𝑛𝑘𝑅
2
𝑖𝑘 ·

b4
𝑖𝑘

24(1 + [𝑖𝑘)4
(1 + [𝑖𝑘/3)
(1 + 3[𝑖𝑘)

. (43)

We note that in the order b10 this new pressure approach is compatible with equation (27). According
to this estimate, the triple association is as a rule, e.g., for seawater electrolytes, only a small correction,
and the pair association dominates. A first application of our model to the triple association of ions in
sea water was presented also in figure 2 (right-hand panel). We estimated the degree of triple association
in seawater for the triples MgCl2 and Na2SO4. We find, according to out estimates, that the formation of
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Figure 2. (Colour online) Seawater: Left-hand panel, degrees of ionization of ions as a function of salinity.
The curves describe (looking at salinity around the minima from below): Mg2+, SO2−

4 , Ca2+, Na+, K+,
Cl− . Right-hand panel, degree of triple association for the triples Mg Cl2 (red) and Na2 SO4 (blue)
depending on salinity.

triples in seawater is rather seldom. The predicted degrees of association to MgCl2 and Na2SO4 obtained
from our estimate equation (43) are in the range of 10−4 to 10−3. Qualitatively, the shape seems to be
reasonable. The maxima or minima, respectively, located as a rule near salinities between 10 and 15,
demonstrate the typical screening effects. A stronger screening destroys Coulombic binding.

In the next section we are going from our extended physical approach as given by equations (40–43)
where association constants do not appear in explicit way, to an alternative semi-chemical picture where
association constants 𝑘𝑖 𝑗...-s are used explicitly.

Summarizing, we developed here an “extended physical description” of electrostatic association based
on rational expressions including higher cluster integrals. This way we also include "binding effects" in
some order and find agreement with the semi-chemical formulae found in the last section. Our recipe is
in brief as follows:
(i) Identify in the usual virial expansion of the pressure the “binding contributions” of plus-minus
interaction which provide big negative and for big 𝑏0 asymptotically dominant effects. As we have
shown such contributions are contributed by terms of order b4

+− for pairing and by b2
−−b

8
+− or b2

++b
8
+− for

corresponding triple formation.
(ii) Bring the “binding contributions” to the denominator anticipating that the corresponding geometric
series stem from the grand-canonical ensemble [9, 15, 50].

We mention that the relation between the representations in the canonical and in the grand-canonical
ensemble, which is not discussed here in detail, is one of the keys for a deeper understanding of binding
and non-binding contributions in cluster expansions. The idea is that strong attracting contributions
are better represented in the grand ensemble and repulsive contributions are better represented in the
canonical ensemble. The term “better” means here, that the convergence of the series is improved [50].

Here, we were able to treat association without defining any mass action laws and mass action
constants. Further, the present method predicts degrees of ionization 𝛼𝑖 and degrees of association for
pairs 𝛿 (2)

𝑖
and triples, etc., for each of the ions. This allows us to describe a variety of electrolytes with

multi-charged ions including models of seawater. A comparison of our theory for the corresponding
activities with MC calculations by Ulfsbo et al. [42] shows a reasonable agreement. As a comment, we
mention that the meaning of the word “extended physical description” is here that we specify in a physical
description the main higher order contributions which are responsible for binding effects. Our idea is that
a complete physical description includes everything and in particular also chemical effects. However, the
problem is in this view, to identify and work out the contributions relevant for association or chemical
effects. We have described here this approach in some detail for pairing effects. An extension to triple
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Figure 3. Energy-rich configurations of ionic triples.

formation cannot be given at the same level of rigor due to the lack of detailed studies of the 3rd virial
coefficient. Our comparison with the existing data provided some hints to the existence of triples. We
found that triples may be responsible for some corrections up to a few percent.

This new approach allows us to go further in improving a semi-chemical description and to formulate
the mass action laws. We will not go here the full way up to a complete chemical description. Instead, we
go the half way to a more simple semi-chemical description which works with simplified mass action laws
and is comparable or even equivalent to our extended physical description. Our simplified semi-chemical
approach is an approximation which works for the case that association effects are weak. The treatment
of strong association in a fully chemical approach without simplification of the mass action law was
discussed in [16, 29].

4. Semi-chemical treatment of pair and triple association

Here, we show that the extended pressure approach suggested above is indeed half-way to a chemical
description. We study again only the model of charged hard spheres and follow the concepts developed
previously in [4, 5, 11, 15, 29, 31–33].

The main effect of pair and triple association is the decrease of effective ion numbers from 𝑛𝑖 to 𝛼𝑖𝑛𝑖
where 𝛼𝑖 is the degree of ionization. The following associates are of the main interest

(+−) (−+) (+ − +) (− + −) (+ − +) (−(2+)−) (+(2−)+). (44)

Examples of configurations of 3 ions in the plane which show high Coulombic energies are shown in
figure 3. As some interesting examples we look at the possible Coulombic associates of Cl− ions with
Mg2+ ions and with La3+ ions (see figure 3).

The standard definition of a mass action constant applies to charge-symmetrical ionic associates
including, e.g., Mg2+–SO2−

4 . More difficult is the question how to define the association constant for
triple associates as (+)(−−)(+) and (−)(++)(−). First we study the maximal binding energy of 3 ions
in linear order, e.g Cl-Na-Cl, Cl-Mg-Cl or Na-SO4-Na possibly one of them being double charged. The
biggest energy has the linear configuration (−)(++)(−) or (+)(−−)(+) in the linear arrangement of the
ions in contact. A simple estimate of the energy of 3 ions in contact gives us

𝐸−+− = 𝐸+−+ = (2 − 1/2)𝑈0 = 1.5𝑈0; (45)
𝐸−(2+)− = 𝐸+(2−)+ = (4 − 1/2)𝑈0 = 3.5𝑈0; 𝑈0 = ℓ/𝑎. (46)

These estimates show that we should not expect the formation of triples in the case of univalent ions,
since the formation of two separate pairs gives a lower energy than the formation of one triple. However,
in the case of divalent ions, the formation of triples is of advantage. For the mass action constant of such
triples, we expect the asymptotic

𝑘−(2+)− = 𝑘+(2−)+ ∼ exp[7𝑈0/2𝑘B𝑇] . (47)
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These results correspond to early estimates proposed by Kelbg, Friedman and these authors [11, 12, 15] by
using the results of mathematical studies of cluster integrals [7, 11, 34, 35]. This estimate was derived by
using the assumption that the integrands have a sharp cusp at ion contact, which provides the asymptotic.
This is an approximate approach to triple ionization which gives at least the correct asymptotic.

We consider now the configurations of 4 ions like in MgCl2 solutions. In the case of quadruple
formation, we estimate an amount of 8 negative energy units stemming from 4 attractive Mg2+-Cl−
interactions. Positive contributions come from the repulsion of the equally charged ions on opposite
edges which are approximately at a distance

√
5𝑅+− . This estimate shows that these 4 ions would get in a

solution more energy namely 4𝐸0 by forming two pairs instead of a quadruple due to the loss by positive
repulsive contributions. A first estimate of the energy of a LaCl3-quadruple with La in the center and 3
Cl at the edges gives

𝐸LaCl3 ≃ (9 −
√

3)𝑈0 ≃ 6.3𝑈0. (48)

Evidently, the formation of this triple is of some advantage in comparison to forming a pair with energy
3𝑈0 or a triple with energy 6 − (1/2)𝑈0 = 5.5𝑈0 .

For a transition from a chemical to a semi-chemical approach, we first discuss the pair association.
In the standard approach [4, 5, 18, 29], the degree of ionization 𝛼 is given by the classical mass action
law which we write in a form which is appropriate for iterative solutions

𝛼 =
1

1 + 𝛼𝑐( 𝑓±(𝛼))2𝐾 (𝑇)
. (49)

The semi-chemical approach works with the first iteration following the zeroth approximation 𝛼 (0) = 1

𝛼 (1) =
1

1 + 𝑐( 𝑓±(1))2𝐾 (𝑇)
. (50)

The range of validity ends if more than 1/4 of the ions are associated (see figure1). This is a strict
assumption which still leads to a great simplification of the mathematics and is justified for many
interesting systems as, e.g., seawater. For the activity coefficients 𝑓± which appear in the mass action law,
we use the standard expressions for the electrical parts

ln 𝑓± = ln 𝑓 𝑒𝑙± = − 𝑧+𝑧−
2

^ℓ

(1 + 𝛾±)
. (51)

We use here the so-called opposite-charge approximation (OPA), which is a specific property of Coulom-
bic systems, based on the fact that in the region of stronger interactions (larger Bjerrum parameters),
the encounter of opposite charges dominates [50]. The main effect of pair and triple association is the
decrease of effective particle numbers which leads to a decrease of the osmotic coefficients and the
conductivities. We solve the MAL given above by iteration beginning with 𝛼 = 1. Our first and linear
approximation, which works only for the regions where 𝛼 is close to one, i.e., we are close to a full
ionization, is equivalent to the expressions in our semi-physical approximation. This interesting result
means that physical and chemical expressions meet here at half way. In case the association includes
more than two ions, the MAL for the degrees of ionization looks as follows:

𝛼𝑖 =
1

1 + 𝛼𝑖
∑

𝑗≠𝑖 𝛼 𝑗𝑎 𝑗 (𝛼 𝑗 )𝑘 (2)𝑖 𝑗
(𝑇) + 2𝛼𝑖

∑
𝑗 ,𝑘≠𝑖,𝑘 𝑎 𝑗 (𝛼 𝑗 )𝑎𝑘 (𝛼𝑘)𝑘 (3)𝑖 𝑗𝑘

(𝑇)
. (52)

Again, the first order solution may be obtained by iteration starting with 𝛼 𝑗 = 1 in the denominator.
This way, by extending our treatment of pair formation to higher association in first semi-chemical
approximation, we get the general expression

𝛼𝑖 =
1

1 +∑
𝑗≠𝑖 𝑎 𝑗 𝑘

(2)
𝑖 𝑗

(𝑇) + 2
∑

𝑗 ,𝑘≠𝑖,𝑘 𝑎 𝑗𝑎𝑘𝑘
(3)
𝑖 𝑗𝑘

(𝑇)
, (53)
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Figure 4. (Colour online) The pair association functions 𝑛2 (𝑥) and the triple function 𝑛3 (𝑥) in dependence
on the largest Bjerrum parameter for the (+−) interaction. For 𝑛2 (𝑥) we use an approximation by a
polynomial valid for 𝑥 < 11 (in red). The lower curves show two approximations of the triple association
functions, the effective charge approximation (in green) and the constant factor approximation (in blue).

where the 𝑎𝑖 are the activities in electrical approximation:

𝑎𝑘 = 𝑛𝑘 𝑓
el
𝑘 . (54)

The definition of a mass action constant introduced above, applies to all charge-symmetrical ionic
associates including, e.g., Mg2+-SO2−

4 . We have shown above that the association constant of pair
formation starts with the order 𝑒8 and for triple formation with 𝑒20. The restriction to these lowest orders
gives the so-called weak binding constants of one multiple charged ions 𝑍 > 1 with univalent ions

𝑘
(2)
𝑖 𝑗

(𝑇) = π

3
ℓ3𝑍3b+−; 𝑘

(3)
𝑖, 𝑗𝑘

(𝑇) = π2

242 𝑍
4ℓ6b4

+− . (55)

These results correspond to the findings within our pressure approach in the previous section. We
see that both approaches agree in the lowest approximation. Introducing a new association function
𝑛(𝑥) = 𝑚(𝑥)/𝑥3, we may write down the results from the second section for triples in constant factor
approximation

𝑘
(2)
𝑗

(𝑇) = 2πℓ3
𝑖 𝑗𝑛2(b𝑖 𝑗 ), 𝑛(b𝑖 𝑗 ) = 𝑚(b𝑖 𝑗 )/b3

𝑖 𝑗 , (56)

𝑘
(3)
𝑗 ,𝑘

(𝑇) = 8π2 [ℓ3
𝑖 𝑗𝑛2(b𝑖 𝑗 )] [ℓ3

𝑖𝑘𝑛2(b 𝑗𝑘] [exp(b 𝑗𝑘/2) − 1 + (b 𝑗𝑘/2] . (57)

We study now some properties of the association functions useful for practical calculations [19].

𝑛2(𝑏) ≃
𝑏

24
·
(
1 + 𝑏

2

90
+ 𝑏4

8400
+ 𝑏6

530000

)
if 𝑏 < 11, (58)

𝑛2(𝑏) ≃
𝑏

24
· exp

(
𝑏2

54

)
if 𝑏 > 11. (59)

The mass action function 𝑛2(b) which determines the connection between the interaction parameters
b𝑖 𝑗 and the association constants for for pair and triple formation increases first nearly linearly in b+−
then for b+− < 11 like the given polynomial and for b+− > 11 the mass action constant starts growing
exponentially. We may define an 𝑛3- function which depends on the ion parameters on 4 parameters in a
complicated way

𝑘3(𝑇) = 8π2ℓ6
+− · 𝑛3(ℓ+− , ℓ++, ℓ−− , 𝑅+−). (60)

A graphical representation of the triple association functions depending on the plus-minus Bjerrum
parameter is shown in figure 4. Note that we need two functions for triple association in the symmetric
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and in the asymmetric case for different combinations of the charges. For the relevant asymmetric charge
combination with and without an approximation for the factor of repulsion, leads to the expression

𝑛3 = [exp(𝑥/2) − 1 + (𝑥/2)]𝑛2(𝑥)2 ≃ (𝑥2/8)𝑛2(𝑥)2. (61)

A graphical representation of the functions 𝑛2(𝑥), 𝑛3(𝑥) is given in figure 4. Since a symmetrical combi-
nation of 3 charges is energetically not favorable we concentrate here on the asymmetrical configurations
(+) (2−) (+) and (−) (2+) (−). Figure 4 shows that for triple ionization, the constant factor approximation
and the effective charge approximation approximately agree for 𝑥 < 6; this is the region where triple
association is relevant for our applications, e.g., to K2SO4, Na2SO4 and MgCl2, CaCl2. In what follows
we combine both methods which leads to the curves in between.

5. Discussionof associating electrolyteswith applications toK2SO4, CaCl2
and LaCl3
Here, we treat the pair and triple association in aqueous solutions based on the full nonlinear

second and third virial coefficients. We may expect a corresponding contribution stemming from the
strong coupling and negative definite part of the 4th virial coefficient. Relevant for pair association
are large negative parts from the 2nd virial coefficient, and important for triple association are the
big negative definite contributions from the 3rd virial coefficient. Following the general results from
statistical thermodynamics [5, 7, 8, 11, 34, 35] we have shown that the key quantities for association are
the asymptotically dominant parts of the strong coupling terms in the cluster integrals. Several examples

Table 1. Table of contact distances for several ion pairs including alkaline earth metal ions, sulfate ions
and adapted “ideal” seawater ions according to [18] with a new value for 𝑅CaCl = 500. In the last but one
column we give our new estimates for the ionization constants of several electrostatic pairs and triples in
water at 25℃, The values for 𝑛3 and 𝐾3 are corrected by a factor due to the effect of charge asymmetry.

𝑎-𝑏-ions 𝑅𝑎𝑏 𝑅𝑎𝑎 𝑅𝑏𝑏 𝑛2; (𝑛3) 𝐾2; (𝐾3)
Na-Cl 350 470 360 0.089 1.191[liter/mol]
K-Cl 320 400 360 0.099 0.548[liter/mol]
Mg-Cl 400 280 360 0.174 7.71[liter/mol]
Cl-Mg-Cl 400 280 360 0.065 (0.204) 15.78(50.26) [liter/mol]2

Ca-Cl 500 320 360 0.131 5.81[liter/mol]
Ca-Cl2 500 320 360 0.079 6.01(19.45) [liter/mol]2

Na-SO4 350 470 300 0.203 9.22[liter/mol]
Na-SO4-Na 350 470 300 0.381 30.40(93.59) [liter/mol]2

K-SO4 340 400 300 0.216 9.57[liter/mol]
K-SO4-K 340 400 300 0.432 34.48(106.1) [liter/mol]2

Mg-SO4 290 400 300 2.036 721.2[liter/mol]
Ca-SO4 350 380 380 1.219 431.6[liter/mol]
La-Cl 270 430 360 0.131 5.81[liter/mol]
La-Cl2 270 430 360 0.079 6.01(19.45) [liter/mol]2

Cd-Cl 420 300 360
Na-K 350 470 280
Na-Mg 300 470 380
Na-Ca 500 400 400
K-Mg 340 400 400
K-Ca 340 400 320
Mg-Ca 330 440 440
Cl-SO4 330 360 400
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Figure 5. (Colour online) Comparison of the activity coefficient of K2SO4 with data by Wilczek et al.
denoted by points [53]. We show the activity of K+ ions (in red) and below (in green) the activity of
SO2−

4 in comparison with the data points by Wilczek et al. [53]; the agreement is at least satifactory. The
curve in between (in blue) is the mean activity of K2SO4. The upper curves with turning points show the
ln(𝛼𝑖) for the ions K+ (in black) and SO2−

4 (in turquoise).

of the resulting values of the association constants are given in table 1. Note that in comparison to earlier
work [19] we introduced some corrections improving the dependence on the ℓ++, ℓ+− , ℓ−− parameters.
We compared here two different ways of estimating the triple association constant, the constant factor
approximation and the effective charge approximation. Both methods are in reasonable agreement for
b+− < 6, and then they start to disagree. In the constant factor approximation, the triple association
constants for salts like K2SO4, CaCl2 and ions like (LaCl2)+ are estimated again expanding the repulsive
factor which leads to the expressions

𝑘KSO4K = π2ℓ2𝑅4
KSO4

· 𝑚(ℓKSO4/𝑅KSO4)2,

𝑘ClCaCl = π2ℓ2𝑅4
CaCl · 𝑚(ℓCaCl/𝑅CaCl)2,

𝑘ClLa+Cl = π2ℓ2𝑅4
LaCl · 𝑚(ℓLaCl/𝑅LaCl)2. (62)

Several numerical values of mass action constants for pair and triple formation estimated this way are
given in table 1. A comparison of the predicted individual activities with measurement is difficult due
to the lack of data. A preliminary comparison of our results for the individual activity coefficients using
the data of Wilczek et al. [53] and of Valisko and Boda is shown in figures 5 and 6. For the salt K2SO4,
our prediction for the individual activities of the ions K+ and SO2−

4 is at least close to the data found by
Wilczek et al [53]. For the salt CaCl2, we may compare with the results by Wilczek et al. and Valisko
and Boda [24]. Again, the agreement of our results with the data of other workers for CaCl2 is sufficient,
although not quantitative. For LaCl3, our theory is not capable of reproducing the pronounced minimum
around

√
𝑐 ∼ 0.4(mole/liter)0.5 predicted in [24]. The reason is possibly that we did not include so far

the fourth virial coefficient. We underline that our approach provides also the individual activities.
For the fourth cluster integral and the corresponding association constants, a consequent statistical

analysis is still missing. Therefore, we restrict ourselves here to an estimate following the lines valid for
the third virial coefficient. In order to estimate the quadruple association constant for a salt like LaCl3,
we fix the Cl-Cl-distances at some energetically favorite distance like

√
3𝑅LaCl, which we guess from

figure 2. Then, the factors for the repulsive terms may be taken out, which leads to factorization of the
remaining terms in the integral and again we get approximating the repulsive term by the quadratic order

𝑘LaCl3 = 𝐶π
3𝑅3

LaClℓ
6
ClCl · [𝑚(ℓLaCl/𝑅LaCl)]3. (63)

We estimated several values of the quadruple association constant following equation (63) and found now
𝐶 ≃ 1/3456. These and other values for the association constant that we obtained this way are given in
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Figure 6. (Colour online) We show the activity coefficients of several ions according to our theory, from
above: Cl in CaCl2 (red) and Cl in LaCl3 (green), CaCl2 (blue), LaCl3 (magenta), Ca2+ (turquise), La3+

(black). We used here the extended physical approach neglecting quadruples, which may be the main
reason for seemingly too low values for the activities of CaCl2, La Cl3, Ca2+ and La3+. The points
denote the data measured by Wilczek-Vera et al. [53] for Cl− and La3+ in LaCl3. The agreement with the
measured data [53] and with MDC calculations of Valisko and Boda for the mean activity coefficients is
reasonable but not yet satisfactory [24].

table 1. Some of the values were given already in [18] and [19]. We added a few not so well studied ions
as Cd and La. The crystallographic radius for Cd2+ is with 95 pm just a few pm higher than that for Mg2+

which is 86 pm. Therefore, we may assume that the contact distances in a solution are also close, we
took 𝑅CdCl = 420 pm. For La3+, we know that the crystallographic radius is smaller than that for Mg2+.
Following canonical MC simulations by Valisko and Boda (2017, 2018), we assume for those ions in
water 𝑅LaLa = 430 pm and 𝑅LaCl = 270 pm corresponding to a quite large Bjerrum parameter b± = 7.95.
Several applications to the binary electrolytes CaCl2 and LaCl3 are presented in figure 6. So far, the
agreement with available data is not yet quantitative [24, 53]. Note that we differ between association
constants 𝑘𝑖,... in the density scale of statistical mechanics particle number/cm3, and 𝐾𝑖... in the usual
chemical concentration scale mol/liter. In order to switch between the figures in both of the scales, we
remember the relations

𝑛𝑖 [𝑐𝑚−3] = 6.023 · 1020𝑐𝑖 [mol/liter]; 𝐾2 = 6.022 · 10−4𝑘2. (64)

Using these factors of recalculation we derived the numbers given in the last column of table 1.

6. Conclusions

In the present survey we discuss ion association and activity coefficients in 1-1, 1-2, and 2-2 elec-
trolytes. For 1-3-electrolytes, we restrict ourselves to some qualitative analysis. The association constants
for triple and quadruple association are estimated in the effective charge and constant factor approxima-
tion. We repeat and correct several fully analytical results to calculate the degrees of weak association
and activity coefficients [18, 19]. In particular, we discuss extended physical methods based on rational
extensions of pressure virial expansions, which do not use mass action laws in an explicit way. Further, we
use semi-chemical methods which define the mass action constants for weak association but simplify the
mass action laws. This way the restriction to weak association allows us to avoid the use of full (nonlinear)
mass action laws. We estimate the ionization constants for pair and triple electrostatic association from
the cluster integrals and calculate the degree of ionization for electrolytic mixtures including seawater in
the regions of weak association, in general 20–30 percent smaller. Several applications to the electrolytes
CaCl2 and LaCl3 are presented in figure 6.
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Summarizing our findings: based on the results of statistical physics, we recommend in addition
to standard methods of calculating the individual activities, new statistical tools for the calculation
of individual and mean activities and degrees of association of ions from lower concentrations up to
moderate concentrations/salinity. The methods are based on the model of hard spheres with non-additive
radii in combination with the nonlinear Debye-Hückel (or mean spherical) approximations for screening.
Association effects are included by rational virial expressions for the osmotic pressure, which take into
account higher order terms stemming from the grand canonical ensemble. These methods avoid the
solution of nonlinear mass action laws and use instead rational polynomials which include terms from
the fugacity expansions of the pressure. For the first time, pair and triple association is taken into account
on same footing in a systematic way; an extension to quadruple association is proposed. A table of
most relevant association constants for of electrolytes including seawater ions is given. We use for all
calculations only hard-charged sphere models and, as parameters, the charges and non-additive contact
distances. The proposed formulae are fully analytical and results can be obtained on a home computer.
We stay within the traditional physical and chemical approaches and develop a rational virial approach
to the pressure and a semi-chemical description of associates. In the purely physical approach to the
osmotic pressure based on rational expressions avoiding explicit definitions of bound pairs or triples. In
our semi-chemical approach, explicit association constants are defined and calculated; this is based on
the concept that binding is due to higher powers in the interaction determining the asymptotic properties
of the cluster coefficients. In both approaches, we concentrate on the relevant contributions of strong
Coulombic interactions to association through the higher virial coefficients which determine association
effects. Note that both approaches are in full agreement at low densities. The input parameters needed in
our theory are, beside dielectric constants, the contact distances of all ion pairs.

In conclusion: the present approach is based on the idea that bound states need a special statistical
treatment, although here we have some freedom. We provide for associating electrolytes as well as for
seawater a reasonable simple treatment and at least qualitative agreement with other available results.
Our input data are 3 contact distances for binary electrolytes and about 20 adapted contact distances for
standard seawater, which may depend on temperature and pressure. So far, all results are given only for
the temperature 25℃, an extension to other temperatures is easy, we have only to change the numerical
value for the Coulomb length ℓ. Note that in other approaches to seawater, the number of free parameters
is still larger. On the other hand, our basic parameters, i.e., the ionic contact distances have a clear physical
interpretation.
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Статистична теорiя парцiальних коефiцiєнтiв активностi
електролiв з врахуванням множинних iонних зарядiв

В. Ебелiнг1, Г. Крiнке2
1 Iнститут фiзики, Унiверситет iм. Гумбольдта, Берлiн, Нiмеччина
2 Iнститут фiзичної хiмiї, Унiверситет Регенсбурга, Нiмеччина

У попереднiй роботi ми розробили новий статистичний метод для розрахунку парцiальних активностей
iонiв включно з iонною асоцiацiєю. У данiй роботi вивчаємо багаточастинковi електростатичнi взаємодiї,
пов’язанi з вищими кластерними iнтегралами, та визначаємо константи iонiзацiї в законi дiючих мас для
асоцiйованих iонних кластерiв. На вiдмiну вiд теорiї Б’єррума та Фуосса, наша концепцiя асоцiацiї базу-
ється не на просторових критерiях, а на iнтенсивностi взаємодiї, яка задається розвиненнями за пара-
метром Б’єррума (𝑒2/𝐷0𝑘B𝑇𝑎, де 𝑎–контактна вiдстань) i визначається асимптотичними властивостями
кластерних iнтегралiв. При утвореннi iонної пари наша константа в законi дiючих мас є класичним ана-
логом вiдомої функцiї розподiлу Планка для водню. Зазвичай, новi константи асоцiацiї при певних зна-
ченнях параметрiв взаємодiї майже вдвiчi меншi, нiж величини, отриманi на основi традицiйних виразiв
(наприклад, Фуосса i Крауса). У роботi вивчається кiлька iонних систем, зокрема, CaCl2, MgCl2, Na2SO4,
K2SO4, LaCl3 та модель морської води. Для кiлькох асоцiативних електролiтiв i морської води досягнуто
хорошого узгодження з експериментами та результатами моделювання Монте-Карло.

Ключовi слова: статистична фiзика, термодинамiка, електролiти, коефiцiєнти активностi, iонна
асоцiацiя, морська вода
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