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Chalcogenide perovskites offer superior thermal and aqueous stability aswell as a benign elemental composition
compared to organic halide perovskites for optoelectronic applications. In this study, the structural, electrical,
elastic, phonon dispersion, and thermodynamic features of the orthorhombic phase of chalcogenide perovskite
CaZrS3 (space group Pnma) were examined by first principles calculations utilizing the plane wave pseudopo-
tentials (PW-PPs) in generalized gradient approximations (GGA). The ground state properties such as lattice pa-
rameters, unit cell volume, bulk modulus, and its derivative were calculated and are in a good agreement with
existing findings. The mechanical properties such as bulk modulus, shear modulus, Young’s modulus and elastic
anisotropy were calculated from the obtained elastic constants. The ratio of bulk modulus to shear modulus
confirms that the orthorhombic phase of CaZrS3 is a ductile material. The absence of negative frequencies in
phonon dispersion curve and the phonon density of states give an indication that the structure is dynamically
stable. Finally, thermodynamic parameters such as free energy, entropy, and heat capacity were calculated with
variation in temperature. The estimated findings follow the same pattern as previous efforts.
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1. Introduction

The quest for technological advancement, particularly in the field of semiconductors, plays a signifi-
cant role in several optoelectronic, photonic, and energy technologies. Among current semiconductors,
the prevailing materials like silicon, group III–V, and group II–VI are typically constructed by a fourfold
coordinated tetrahedral network of covalent bonds. There have been major successes in developing solar
cell semiconductor materials such as Si, GaAs, CuIn𝑥Ga1−𝑥Se2 (CIGS), and lead halide perovskite based
materials [1–3]. Over the past decades, inorganic-organic/organometal lead halides have been extensively
studied since the early 20th century [4, 5]. In 1970, for the first time, Weber reported the synthesis and
physical properties of −CH3NH3PbX3− (X = Cl, Br, I) organometal lead halide perovskite [4]. During
this time, the organometal lead halide perovskites emerged as a candidate and very promising materi-
als for light harvesting in the solar cell as reported in 2009 [5]. The latest area in solar cell materials
is the organic-inorganic hybrid lead (Pb) halide perovskites, for which the efficiency reached 22.7%
in 2018 [3], starting from 3.8% in 2009 [5].These hybrid perovskites, however, have poor thermal and
moisture stability, as well as the presence of lead toxicity [6]. The intrinsic poor long-term stability of
CH3NH3PbI3-based perovskite solar cells, as well as the presence of toxicity, has hindered their industrial
application and commercialization. Inorganic lead-free perovskites have recently been widely investigated
to address these issues. Recently, chalcogenide perovskites have received attention due to their promising
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photovoltaic and thermoelectric properties, with initial studies conducted on oxide perovskites that have
good band gaps for optical absorption [7]. Chalcogenide perovskites assume an ABX3 configuration
with A, and B are elements with a combined valence of 6 (with different valences), while X is typically S
or Se. These materials belong to a new class of ionic semiconductors. The band gap of these materials
can be systematically tuned in a wide range from ultra-violet to infrared. Due to their predicted strong
iconicity, they may exhibit unique physical properties such as being free of deep-level defects, which is
beneficial for energy harvesting and other optoelectronic applications [8]. It should be emphasized that
oxide perovskites, with a chemical formula ABO3, have long been a focus of active research. This family
of materials exhibits unusually rich properties ranging from colossal magnetoresistance, ferroelectricity
to superconductivity and charge density waves, resulting from the interplay of different degrees of free-
dom with similar energy scales. The intriguing physics of their chalcogenide counterparts, however, is
largely unexplored [8].

In recent years, theoretical calculations based on the density functional theory (DFT) have been used
to reveal and predict the structural, mechanical, electrical, optical, and thermal properties of crystal
materials. CaZrS3, which is the focus of this work, is a family of chalcogenide perovskite crystal
material that was considered theoretically for optoelectronic applications [8–12]. The relaxed lattice
parameters and band gap of CaZrS3 were estimated using DFT as implemented in VASP and the
Perdew, Burk, and Ernzerhof (GGA-PBE) generalized gradient approximation [13]. In addition, the
lattice parameter and the band gap of CaZrS3 were also calculated using the FPLAPW method with
DFT as implemented in WIEN2K, approximating the exchange correlation potential with PBE-GGA,
Engel-Vosko (EV) method and Hubbard parameter (GGA+U) [12]. However, to our knowledge, the
structural, elastic, electronic, phonon dispersion and thermodynamic properties of CaZrS3 are not yet
well investigated for optoelectronic application. Moreover, investigation of elastic, phonon dispersion and
thermodynamic properties of CaZrS3 using the first principle computational methods remains unexplored.
In this paper, the structural, elastic, electronic, and phonon dispersion relation and thermal properties of
CaZrS3 are carefully examined. The electronic properties are calculated by considering PBE-GGA [14]
and also DFT with the Hubbard functional (DFT+U) [15] for exchange correlation potential using
Quantum ESPRESSO package (QE). In addition, phonon dispersion and the thermodynamic properties
of CaZrS3 are studied using a 1×1×2 (in 𝑥, 𝑦, and 𝑧 direction, respectively) supercell containing 40 atoms
created in a PHONOPY package [16].

2. Computational methods

In this study, the DFT as implemented in the QE [17] within the generalized gradient approximation
(GGA) functional [14] and with the Hubbard correction (DFT+U) [15] was used. The effective Hubbard
parameter (𝑈eff) was calculated iteratively for Zr-𝑑 orbitals. For this study, a cell with 20 atoms (4-Ca,
4-Zr, and 12-S) in orthorhombic phase for structural, elastic and electronic property calculations was
used. The ultra-soft pseudopotentials (US-PP) were used to treat the interaction of the electrons with
the ion cores as in [18]. The corresponding valence electrons considered for the calculations are Ca —
[Ar]4𝑠2, Zr — [Kr]4𝑑25𝑠2, and S — [Ne]3𝑠23𝑝4. Crystal structure optimization was done using a plane
wave cutoff energy of 60 Ry and the Brillouin zone with a 3 × 3 × 3 Monkhorst-Pack 𝑘-point grid [19]
based on the convergence criteria energy 10−4 Ry, force 10−3 Ry/Bohr, and cell pressure 0.5 kbar.
Using the optimized structure, the elastic properties were calculated by THERMO_PW package within
Quantum ESPRESSO package [17]. In addition, the thermal properties were calculated with the help
of PHONOPY package [16]. To study the phonon dispersion relation and thermodynamic properties
of CaZrS3, a supercell of 1 × 1 × 2 in 𝑥, 𝑦, and 𝑧 direction with 40 atoms was created and used for
computations.
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3. Results and discussion

3.1. Crystal structure

Most of the material properties are governed by their crystal structures. A stable crystal structure
is the one with the lowest energy arrangement of atoms at a given temperature and pressure [20]. In
this study, an orthorhombic phase of CaZrS3 [space group 𝑃𝑛𝑚𝑎(62) point group 𝐷2ℎ (𝑚𝑚𝑚)] with
the crystallographic structure of GdFeO3-type was considered. Each Ca atom is centrally located in the
spatial region defined by its neighbouring S and Zr atoms in the lattice, which is composed of distorted
ZrS6 corner-sharing octahedral as visualized in figure 1. The ionic components are Ca+2, Zr+4 and S−2

ions.

Figure 1. (Colour online) The GdFeO3-type crystallographic structures of CaZrS3.

The structural stability of perovskite materials in general is determined by the Goldschmidt tolerance
factor (𝜏) [13],

𝜏 =
1
2
(𝑟ca+ + 𝑟S− )
(𝑟Zr+ + 𝑟S− ) , (3.1)

where 𝑟Ca+ , 𝑟Zr− and 𝑟S− are ionic radii for Ca+2, Zr+4 and S−2 ions, respectively. The sizes of the ions
are known to have a major influence on the structural distortion of perovskites. Thus, materials with a
tolerance factor of 0.71 6 𝜏 6 0.9 result in a distorted perovskite structure with tilted octahedral, while
for 0.9 < 𝜏 < 1.0 the materials have an ideal cubic structure, and when the tolerance factor is much
higher (𝜏 > 1) or lower (𝜏 < 0.71), non-perovskite structures are commonly formed [21, 22]. The ionic
radii of Ca, Zr and S, and the calculated tolerance factor CaZrS3 are shown in table 1. Here, since the
calculated value falls within a distorted perovskite range, CaZrS3 stability is defined, and Pnma symmetry
is adopted.

Table 1. The ionic radii and calculated tolerance factor of CaZrS3.

Ions Radius (Å) Tolerance factor
Ca+2 1.00
Zr+4 0.79 0.76
S−2 1.84

Here, for structural optimization of CaZrS3, the values of cutoff energy and 𝑘-point grid size obtained
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from the convergence test were utilized. Structural optimization was performed setting the convergence
criteria; change in energy,Δ𝐸 = 1.0×10−4 Ry and change in force,Δ𝐹 = 1.0×10−3 Ry/Å. The optimized
equilibrium lattice constants were 𝑎 = 6.57, 𝑏 = 7.06, and 𝑐 = 9.63. These values are in good agreement
with the theoretical and experimental values, as summarized in table 2. Moreover, a series of strained
lattices were used to calculate the static lattice potential corresponding to total energy. From these results,
the equilibrium unit cell volume, bulk modulus, and its pressure derivative can be calculated. A series of
total energy calculations as a function of volume can be fitted to an equation of state (EOS) according to
Murnaghan [23]:

𝐸 (𝑉) = 𝐸0 +
𝐵0𝑉

𝐵′
0

[
(𝑉0/𝑉)
𝐵′

0
+ 1

]
− 𝐵0𝑉0

𝐵′
0 − 1

, (3.2)

where 𝐵0 is an equilibrium bulk modulus that effectively measures the curvature of the energy versus
volume curve about the relaxed volume 𝑉0, and 𝐵′

0 is the derivative of the bulk modulus.
The calculated values of the bulk modulus, equilibrium unit cell volume and the dimensionless bulk

modulus derivative of CaZrS3 are given in table 2. The calculated values of the unit cell volume and bulk
modulus are in a good agreement with the experimental and the previous theoretical values, respectively
as shown in table 2.

Table 2. The calculated values of equilibrium lattice constant, unit cell volume, bulk modulus and its
derivative of CaZrS3 in comparison to existing works.

Source Lattice parameter (Å) Vol (Å3) 𝐵 (GPa) 𝐵′
a b c

The calculated value 6.57 7.06 9.63 447.78 81.8 4.09
Theory [10]𝑎 7 .0856 9.6647 6.5588 449.1479 82.4513 4.1716

[10]𝑏 7.0719 9.6611 6.5817 449.6771 105.7320 −
[13]𝑐 6.56 7.06 9.63
[11]𝑐 7.02 6.47 9.53
[12]𝑐 7.07 9.63 6.57

Experimental [24] 7.03 6.54 9.59
[21] 7.03 9.59 6.54 440.66

𝑎(FP-LAPW method) DFT implemented in WIEN2K.
𝑏(PP-PW method) DFT implemented in WIEN2K.

𝑐(PAW method) DFT implemented in VASP.

3.2. Elastic properties

Mechanical properties

The elastic constant of crystals gives fundamental information for the study of mechanical charac-
teristics of materials, as they are related to the mechanical properties of the material such as the elastic
moduli, Poisson’s ratio, and elastic anisotropy factor of materials. To calculate the elastic constants, we
applied the non-volume-conserving method. The complete elastic constant tensor was determined from
calculations of the stresses induced by small deformations of the equilibrium primitive cell. The elastic
constant tensors 𝐶𝑖 𝑗𝑘 are given by [25–27];

𝐶𝑖 𝑗𝑘𝑙 =
𝜕𝜎𝑖 𝑗

𝜕Y𝑘𝑙

����
𝜒

=
1
𝑉

𝜕2𝐸

𝜕Y𝑖 𝑗𝜕Y𝑘𝑙

����
𝜒

, (3.3)

where 𝐸 stands for the Helmholtz free energy, 𝜎𝑖 𝑗 and Y𝑘𝑙 are the applied stress and Eulerian strain
tensors, and 𝜒 stands for the coordinates.
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In this case, for orthorhombic system, there are nine independent elastic constants that should satisfy
the well-known Born stability criteria [28].

(𝐶11 + 𝐶22 − 2𝐶12) > 0, (𝐶11 + 𝐶33 − 2𝐶13) > 0,
(𝐶22 + 𝐶33 − 2𝐶23) > 0, 𝐶11 > 0, 𝐶22 > 0,
𝐶33 > 0, 𝐶44 > 0, 𝐶55 > 0, 𝐶66 > 0,
(𝐶11 + 𝐶22 + 𝐶33 + 2𝐶12 + 2𝐶13 + 2𝐶23) > 0. (3.4)

The calculated elastic constants (table 3) satisfy the mechanical stability conditions above and 𝐶𝑖 𝑗 > 0,
𝐶12 < 𝐶11 and 𝐶13 < 1/2(𝐶11 + 𝐶33).

Table 3. The calculated elastic constants of CaZrS3.

𝐶11 𝐶12 𝐶13 𝐶22 𝐶23 𝐶33 𝐶44 𝐶55 𝐶66
The calculated 120.9 59.4 38.5 155.47 36.91 146.5 44.5 28.6 51.4value

Using the Voigt-Reuss-Hill (VRH) average approximation, mechanical parameters such as the Young
modulus (𝐸), Poisson’s ratio ([) and shear modulus (𝐺) are computed from the calculated elastic constants
as [28, 29], the elastic constants and calculated mechanical properties from the elastic constants are shown
in table 3 and table 4, respectively.

Table 4. Mechanical properties calculated from elastic constants of CaZrS3.

𝐵 𝐺 𝐵/𝐺 𝐸 [ 𝐴𝑢

The calculated 76.36 42.73 1.78 108.04 0.26 0.35value

Bulk modulus 𝐵 is an essential physical parameter in describing the compressibility of solids under
the hydrostatic pressure. Large value of bulk modulus results in higher compressibility of a solid material.
The Bulk modulus value (76.36 GPa) calculated from elastic constants is found to be close to the value
calculated from the equation of state (81.8 GPa) as in table 2. The shear modulus 𝐺 is another important
parameter that can describe the shape change under the shear force. The larger the shear modulus is, the
higher is the shape change resistance of the solid material. The calculated value of the shear modulus
is 42.73 GPa and it is comparable to the value obtained by [10]. Furthermore, determining the ratio
of 𝐵/𝐺 is important for understanding the brittle and ductile behavior of materials in the material
fabrication. The ductility and brittleness of materials can be determined based on the value of 𝐵/𝐺 ratio
according to Pugh [30]. The cutoff value is 1.75. When 𝐵/𝐺 > 1.75, the material behaves in a ductile
manner, otherwise, it exhibits brittle properties. From table 4, our calculated ratio for 𝐵/𝐺 value is 1.78
for CaZrS3 in GdFeO3-type phase, showing that CaZrS3 in this phase is ductile. Another mechanical
parameter that provides information about the feature of the bonding forces is Poisson’s ratio ([). In the
evaluation of Poisson’s ratio, the values 0.25 and 0.5 are the lower and upper limits of the central force,
respectively [31]. From table 4, the calculated Poisson’s ratio ([) is 0.26 (which is between 0.25 and 0.5)
indicating that the inter-atomic forces are central.

The universal anisotropic index [𝐴𝑢 = (5𝐺𝑣/𝐺𝑅) + (𝐵𝑣/𝐵𝑅) − 6] is a measure to define the elastic
anisotropic or isotropic characteristics based on the contributions of both bulk and shear modulus [32].
It is one of the important physical parameters used to study the service life time of materials. The
material is isotropic if the value of 𝐴𝑢 = 0; otherwise it (𝐴𝑢 ≠ 0) refers to the anisotropic mechanical
properties. Any value smaller or greater than zero represents a higher extent of anisotropy. Based on this,
for orthorhombic phase of CaZrS3, the calculated value for 𝐴𝑢 is 0.35, indicating that the CaZrS3 was
found to be anisotropic.
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Debye temperature

The thermal properties of a solid material are related to two physical parameters: Debye tempera-
ture (\D) and melting temperature 𝑀𝑡 , respectively. The Debye temperature is another essential physical
term that can be used to characterize solid-state physics phenomena such as lattice vibration, elastic
constants, specific heat, and melting point. The magnitude of the Debye temperature is helpful to know
the thermal conductivity of solid materials. The higher the value of the Debye temperature is, the higher
is its thermal conductivity. The Debye temperature (\D) of CaZrS3 can be estimated from the averaged
sound velocity, 𝐶𝑚, given by [33],

\D =
ℎ

𝑘B

[
3𝑛
4π

(
𝑁A𝜌

𝑀

)]1/3
𝐶𝑚, 𝐶𝑚 =

[
1
3

(
2
𝑐2
𝑡

+ 1
𝑐3
𝑙

)]−1/3
, (3.5)

where ℎ is Plank’s constant, 𝑘B is Boltzmann’s constant, 𝑁A is Avogadro’s number, 𝜌 is density, 𝑀 is
molecular weight, 𝑛 is the number of atoms in a formula unit, 𝑐𝑙 is the longitudinal sound velocity, and 𝑐𝑡
is the transverse sound velocity. The longitudinal and transverse sound velocities can be obtained from
density, shear and bulk modulus of the material as:

𝑐𝑙 =

(
𝐵 + 3

4𝐺

𝜌

)1/2
, 𝑐𝑡 =

(
𝐺

𝜌

)1/2
. (3.6)

Moreover, the Debye average sound velocity which represents the maximum frequency of the material is
described by 𝑐D =

(
𝑘B𝑇/𝜌

)1/2. The melting point of a material depends on Debye temperature; a larger
Debye temperature of the material shows a higher melting temperature [34]. The melting temperature
𝑀𝑡 of a stable phase of CaZrS3 can be determined based on an elastic constant 𝐶11 using [35],

𝑀𝑡 = 553 K + 5.9𝐶11 K. (3.7)

The calculated values of longitudinal sound velocity, transverse sound velocity and Debye temperature
for CaZrS3 are given in table 5. It was observed that the calculated values for Debye temperature and
melting point are 415.5 K, and 1267.6 K, respectively.

Table 5. Density, sound velocities, Debye temperature and melting point of CaZrS3.

𝜌 (gcm−3) 𝑐𝑙 (m/s) 𝑐𝑡 (m/s) 𝑐𝑚 (m/s) 𝑐D (m/s) \D (K) 𝑀𝑡 (K)

The calculated value 3.4826 6283.72 3557.14 3759.0 3932.83 415.5 1267.6

3.3. Electronic properties: density of states (DOS) and band structure

The energy band structure and density of states of materials are used to determine the electronic
properties of solid materials. The accessible electronic energy levels of solid materials are represented by
electronic band structures. In this study, the electronic band structure along the high symmetry direction
of the Brillouin zone was estimated using the GGA-PBE functional and the Hubbard correction (GGA+U)
for exchange correlation potential, as shown in figure 2. The GGA-PBE functional fails to approximate the
exact exchange correlation potential, since the band gap value obtained by approximating the exchange
correlation potential with GGA-PBE functional is 1.23 eV (table 6), which appears to be underestimated
as compared to experimental band gap values of 1.90 eV [8, 24]. Furthermore, the band gap was calculated
with the Hubbard correction for on-site interaction, yielding a band gap of 1.88 eV, which is close to the
experimental result [8, 24].

The DOS is also used to describe how state occupancy behaves at different energy levels. It provides
information on both occupied and empty states. The states that are available for occupancy have a high
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Figure 2. (Colour online) Band structure of CaZrS3 with respect to GGA-PBE (left-hand) and GGA+U
(right-hand).

Table 6. The calculated band gap value of CaZrS3 in comparison to the existing theoretical and experi-
mental results.

Source GGA-PBE HSE06 GGA+U
The calculated value 1.23 − 1.88

Theory [13] 1.24 2.04
[11] 2.22

Experimental [8, 24] 1.90

DOS at a certain energy level. However, there is no state occupied at DOS equal to zero. In this study, the
total and partial densities of states were obtained for the equilibrium states of the phases using GGA-PBE
correlation interaction and also with GGA+U as shown in figure 3 and figure 4. The density of states is
discontinuous for the width from the top of the valence band to the bottom of the conduction band which
is normally refered to the band gap of the system. Moreover, figure 4 shows that the maximum valence
band is mainly contributed by S-2𝑝 orbitals and the minimum conduction band is mainly dominated by
Zr-3𝑑 orbitals. On the other hand, Ca-4𝑑 orbitals are observed on both maximum valence and minimum
conduction bands, and the rest of the orbitals have a small contribution.
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Figure 3. (Colour online) Total density of states of CaZrS3 with respect to GGA-PBE (left-hand) and
GGA+U (right-hand).

3.4. Phonon dispersion relation

Phonon vibration plays an essential role in dynamic behaviors and in thermal properties, which are
central topics in fundamental issues of materials science. The phonon frequency of crystalline structures
is one of the fundamental aspects when considering the phase stability, phase transformations, and
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thermodynamics of these materials. The phonon density of states 𝑔(𝜔) is given by [36, 37]

𝑔(𝜔) = 1
𝑁

∑︁
𝑞 𝑗

𝛿(𝜔 − 𝜔𝑞 𝑗 ), (3.8)

where 𝑁 is the number of unit cells in a crystal. Divided by 𝑁 , 𝑔(𝜔) is normalized so that the integral
over frequency becomes 3𝑛𝑎, where 𝑛𝑎 is the number of atoms.
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Figure 4. (Colour online) The partial densities of states of CaZrS3 with respect to GGA-PBE (left) and
GGA+U (right).

Considering the atom specific phonon density of states projected along a unit direction vector �̂�, is
defined as [37]

𝑔𝑘 (𝜔, ℏ) =
1
𝑁

∑︁
𝑞 𝑗

𝛿(𝜔 − 𝜔𝑞 𝑗 )
��ℏe𝑘𝑞 𝑗

��2. (3.9)

From the canonical distribution in statistical mechanics for phonons under the harmonic approximation,
the energy 𝐸𝑛 of the phonon system is given as

𝐸 =
∑︁

ℏ𝜔𝑞 𝑗

[
1
2
+ 1

exp(ℏ𝜔𝑞 𝑗/𝑘B𝑇) − 1

]
, (3.10)

where 𝑇 , 𝑘B and ℏ are the temperature, the Boltzmann constant, and the reduced Planck constant,
respectively. Here, from statistical mechanics, �̂� = 1/[exp(ℏ𝜔𝑞 𝑗/𝑘B𝑇) − 1] gives the mean phonon
number distribution function.
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Figure 5. (Colour online) Phonon dispersion relation for CaZrS3.

A supercell of 1×1×2 (in 𝑥, 𝑦, and 𝑧-direction) containing 40 atoms was created to study the phonon
dispersion relation for CaZrS3, using a PHONOPY package with Quantum ESPRESSO package as
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implemented in [16]. It is known that a crystal constituent of 40 atoms in bulk system (three dimensions 𝑥,
𝑦, 𝑧 coordinates) has 120 degrees of freedom (3𝑛𝑎, where 𝑛𝑎 is the number of atoms). The phonon
dispersion relation for frequency bands and frequency density of states were calculated and displayed
as shown in figure 5 and figure 6, respectively. As indicated in figure 5, it was observed that there are
three (3) acoustic branches and 117 optical branches (3𝑛𝑎 − 3) mode of vibrations. Here, also the results
showed that CaZrS3 possesses no imaginary phonon frequency modes. Hence, it is structurally and
lattice dynamically stable. This finding agrees with the results of the analysis of the elastic constants and
Goldschmidt tolerance factor.
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Figure 6. (Colour online) Phonon density of states of CaZrS3.

3.5. Thermodynamic properties

Thermodynamic properties of materials are one of the foundations of solid-state science and industry.
The investigation of these properties is important in order to determine their specific behavior when these
materials are subjected to high pressure and temperature. Using the thermodynamic relations, a number
of thermal properties, such as constant volume heat capacity𝐶𝑣, Helmholtz free energy 𝐹, and entropy 𝑆,
can be computed as functions of temperature as [26, 36, 38]

𝐶𝑉 =
∑︁
𝑞 𝑗

𝑘B

(
ℏ𝜔𝑞 𝑗

𝑘B𝑇

)2 exp
(
ℏ𝜔𝑞 𝑗/𝑘B𝑇

)[
exp

(
ℏ𝜔𝑞 𝑗/𝑘B𝑇

)
− 1

]2 , (3.11)

𝐹 =
1
2

∑︁
𝑞 𝑗

ℏ𝜔𝑞 𝑗 + 𝑘B𝑇
∑︁
𝑞 𝑗

ln
[
1 − exp

(
− ℏ𝜔𝑞 𝑗/𝑘B𝑇

) ]
, (3.12)

𝑆 =
1

2𝑇

∑︁
𝑞 𝑗

ℏ𝜔𝑞 𝑗 coth
(
ℏ𝜔𝑞 𝑗/2𝑘B𝑇

)
− 𝑘B

∑︁
𝑞 𝑗

ln
[
2 sinh

(
ℏ𝜔𝑞 𝑗/2𝑘B𝑇

) ]
. (3.13)

Here also, a supercell of of 1 × 1 × 2 (in 𝑥, 𝑦, and 𝑧-direction) containing 40 atoms was used to study the
thermodynamic properties of CaZrS3, using a PHONOPY package with Quantum ESPRESSO package
as implemented in [16]. At finite temperatures ranging from 0 K to 1000 K, thermodynamic parameters
such as enthalpy, free energy, entropy, and heat capacity were computed and plotted in figure 7. In this
consideration, the volume and temperature are independent variables. From figure 7, one can observe
that below 10 K, the values of the entropy and heat capacity are almost zero. The free energy diminishes
gradually as the temperature rises, whereas the entropy rises rapidly, following reasonable trends shown
in [36, 39, 40]. As a result, the enthalpy increases linearly with the increment of temperature. The increase
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in enthalpy at high temperatures leads to a decrease in the free energy which is associated with defects. It
is clearly observed that for the temperature below 400 K, the heat capacity increases rapidly, whereas for
temperature above 400 K it increases slowly (almost increasing linearly) with temperature and gradually
approaches the Dulong-Petit limit (classical limit) owing to the anharmonic approximations of the Debye
model as observed in [36, 41, 42]. The calculated heat capacity graph is also smooth and continuous
confirming that there is no phase change occurring in CaZrS3 up to 1000 K [36].
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Figure 7. (Colour online) Specific heat, free energy, entropy, and enthalpy of CaZrS3 with respect to
temperature variation.

4. Conclusion

Chalcogenide perovskites have emerged as a non-toxic and stable photovoltaic material that has similar
optoelectronic capabilities to lead halide hybrid perovskites. In this study, the first-principles calculations
using the Quantum ESPRESSO software package were used to study the structural, electrical, elastic,
phonon dispersion relation, and temperature-dependent thermodynamic characteristics of orthorhombic
CaZrS3 for optoelectronic applications. The THERMO_PW package was used to compute the elastic
characteristics of the material using the optimized structure. The PHONOPY package was also used to
calculate the phonon dispersion and thermal characteristics. The computed lattice parameters 𝑎 = 6.57,
𝑏 = 7.06, and 𝑐 = 9.63 correspond well to theoretical and experimental results. The elastic constants were
used to calculate mechanical parameters of CaZrS3, such as the bulk modulus, shear modulus, Young’s
modulus, and elastic anisotropy. CaZrS3 was found to be classified as a ductile material according to the
determined value of 𝐵/𝐺 ratio (1.78). Poisson’s ratio obtained the value of 0.26, indicating that interatomic
forces are central. The measured global anisotropic index value of 0.35 validates the anisotropic nature
of CaZrS3. The band gap value of CaZrS3 was calculated by approximating the exchange correlation
potential with GGA/PBE and GGA+U. The band gap value calculated using GGA/PBE is 1.23 eV, which
is 35% percent less than the experimental result. However, the computed band gap value using GGA+U
is 1.88 eV, which is close to the experimental band gap value. The absence of imaginary (negative
frequencies in the figures) frequencies in phonon dispersion curve and the phonon density of states give
an indication that the structure is dynamically stable. The temperature dependence of thermodynamic
parameters including enthalpy, entropy, free energy, and heat capacity is calculated and analyzed.
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Дослiдження структурних, пружних, електронних, фононних
дисперсiйних i термодинамiчних властивостей
орторомбiчного CaZrS3 для застосувань в оптичнiй
електронiцi

М. Д. Касса, Н. Г. Дебело, М. М. Волдемарiям
Фiзичний факультет унiверситету Джимми, 378, Джимма, Ефiопiя

Халькогенiднi перовскiти забезпечують вiдмiнну термiчну та водну стiйкiсть, а також доброякiсний еле-
ментний склад для оптоелектронних застосувань у порiвняннi з органiчними галогенiдними перовскiта-
ми. У данiй роботi структурнi, електричнi, пружнi, термодинамiчнi характеристики та фононна дисперсiя
орторомбiчної фази халькогенiдного перовскiту CaZrS3 (просторова група Pnma) дослiджувалися за допо-
могою першопринципних розрахункiв iз використанням псевдопотенцiалiв плоскої хвилi в узагальнених
градiєнтних наближеннях. Були обчисленi такi властивостi основного стану, як параметри ґратки, об’єм
елементарної комiрки, модуль всестороннього стиску та його похiдна, що добре узгоджуються з результа-
тами, наявними в науковiй лiтературi. Механiчнi властивостi, такi як модулi всестороннього стиску i зсуву,
модуль Юнга та пружна анiзотропiя, були розрахованi на основi отриманих констант пружностi. Значен-
ня частки модуля всестороннього стиску та модуля зсуву пiдтверджує, що орторомбiчна фаза в CaZrS3 є
пластичним матерiалом. Вiдсутнiсть вiд’ємних частот на кривiй фононної дисперсiї та фононна густина
станiв вказують на те, що ця структура є динамiчно стiйкою. Насамкiнець, були обчисленi такi термоди-
намiчнi параметри, як вiльна енергiя, ентропiя та теплоємнiсть в залежностi вiд температури. Результати
проведених оцiнок виявляють такi ж закономiрностi, як i попереднi.

Ключовi слова: CaZrS3, електроннi властивостi, механiчнi властивостi, дисперсiя фононiв,
термодинамiчнi властивостi
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