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Collective excitations in three-band superconductors
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We investigate equilibrium states, magnetic response and the normal oscillations of internal degrees of free-
dom (Higgs modes and Goldstone modes) of three-band superconductors accounting the terms of both internal
proximity effect and the “drag” effect (intergradient interaction) in the Lagrangian. Both the Goldstone mode
and the Higgs mode are split into three branches each: commonmode oscillations and twomodes of anti-phase
oscillations, which are analogous to the Leggett mode in two-band superconductors. It is demonstrated that the
second and third branches are nonphysical, and they can be removed by special choice of coefficients at the
“drag” terms in Lagrangian. As a result, three-band superconductors are characterized by only single coherence
length. Spectrum of the common mode Higgs oscillations has been obtained. The magnetic penetration depth
is determined with densities of superconducting electrons in each band, although the drag terms renormalize
the carrier masses.
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1. Introduction

As well known, there is some analogy between particle physics and condensed matter. Thus, the
nonrelativistic analog of the Higgs effect represents penetration of magnetic field in a superconductor. As
a result of spontaneous broken gauge symmetry below𝑇𝑐, the magnetic field gains the mass, the reciprocal
value of which characterizes the penetration depth of the magnetic field in the superconductor. In the
work [1] it is demonstrated that there are two types of collective excitations with the quasi-relativistic
spectra in the single-band superconducting (SC) system: the Higgs mode 𝐸2 = 𝑚2

H𝜐
4+ 𝑝2𝜐2, where 𝑚H is

the mass of a Higgs boson, so that 𝑚H𝜐
2 = 2|Δ|, and the Goldstone mode 𝐸 = 𝑝𝜐. The value 𝜐 = 𝑣F/

√
3,

where 𝑣F is the Fermi velocity, plays the role of the speed of light, |Δ| is the energy gap in SC state. The
Higgs mode is represented by oscillations of modulus of the Ginzburg-Landau order parameter (OP)
|Ψ(𝑡, r) | and it can be presented as counterflows of SC and normal components so that 𝑛sv𝑠 + 𝑛nv𝑛 = 0.
This oscillation mode is unstable due to the decay into the above-condensate quasiparticles, since its
energy is such that 𝐸 (𝑞) > 2|Δ|. The Goldstone mode is represented by oscillations of the phase 𝜃 (𝑡, r) of
the OP |Ψ|ei𝜃 , which are the eddy currents divJ = 0 that are absorbed into the gauge field 𝐴𝜇 according
to Anderson-Higgs mechanism. Thus, both Higgs mode and Goldstone mode are not accompanied by
the charge density oscillations. At the same time, according to another model [2], Coulomb interaction
“pushes” the frequency of the acoustic oscillations to the plasma frequency 𝜔𝑝 = 4π𝑛𝑒2/𝑚. Thus, the
Goldstone mode becomes inherently unobservable since it turns to plasma oscillations. It should be noted
that the Higgs and Goldstone bosons are typical of condensed matter. Thus, except superconductors, these
bosons are observed in superfluid 3He-B and 3He-A [3], although unlike the particle physics, the observed
Higgs bosons are not fundamental: it comes as a composite object emerging in the fermionic vacuum.

The dynamics of multi-band superconductors is much more complicated than the dynamics of
single-band superconductors due to the presence of several coupled OP Ψ1,Ψ2, . . . ,Ψ𝑛, i.e., multiband
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superconductors have a new property, such as the interband phase differences 𝜃𝑖 − 𝜃𝑘 . Two-band systems
are the simplest but the most numerous class of multi-band superconductors. Their typical representatives
are classical two-band superconductor magnesium diboride MgB2, nonmagnetic borocarbides LuNi2B2C,
YNi2B2C and some oxypnictide compounds [4]. Two-band superconductor is understood as two single-
band superconductors with the corresponding condensates of Cooper pairs Ψ1 and Ψ2 (so that densities of
SC electrons are 𝑛s1 = 2|Ψ1 |2 and 𝑛s2 = 2|Ψ2 |2 accordingly), where these two condensates are coupled by
both the internal proximity effect 𝜖

(
Ψ+

1Ψ2 + Ψ1Ψ
+
2
)

and the “drag” effect 𝜂
(
∇Ψ1∇Ψ+

2 + ∇Ψ+
1∇Ψ2

)
[4–

7]. If we switch off the interband interactions 𝜖 = 0 and 𝜂 = 0, then we will have two independent
superconductors with different critical temperatures 𝑇𝑐1 and 𝑇𝑐2 because the intraband interactions can
be different. The sign of 𝜖 determines the equilibrium phase difference of the OP |Ψ1 |ei𝜃1 and |Ψ2 |ei𝜃2 :
𝜃1−𝜃2 = 0, if 𝜖 < 0, |𝜃1−𝜃2 | = π, if 𝜖 > 0. The case 𝜖 < 0 corresponds to attractive interband interaction
(for example, in MgB2), the case 𝜖 > 0 corresponds to repulsive interband interaction (for example, in
iron-based superconductors). It should be noted that the effect of interband coupling 𝜖 ≠ 0, even if the
coupling is weak, is nonperturbative: the application of a weak interband coupling washes out all OP up
to a new critical temperature [8].

In the work [8] there were investigated normal oscillations of internal degrees of freedom (Higgs mode
and Goldstone mode) of two-band superconductors using generalization of the extended time-dependent
Ginzburg-Landau (ETDGL) theory [1], for the case of two coupled OP by both the internal proximity
effect and the drag effect. It is demonstrated that, due to the internal proximity effect, the Goldstone
mode splits into two branches: common mode oscillations with acoustic spectrum, which is absorbed
by the gauge field, and anti-phase oscillations with an energy gap (mass) in the spectrum determined
with the interband coupling 𝜖 , which can be associated with the Leggett mode. Analogously, due to the
internal proximity effect, Higgs oscillations also split into two branches. The energy gap of the common
mode vanishes at a critical temperature 𝑇𝑐. For another anti-phase mode, its energy gap does not vanish
at 𝑇𝑐 and is determined by the interband coupling 𝜖 . It is demonstrated that the second branch of Higgs
mode is nonphysical [since |Δ1,2(𝑇𝑐) | = 0, then the mass of Higgs mode must be 𝑚H(𝑇𝑐) = 0], and it,
together with the Leggett mode, can be removed by special choice of the coefficient at the “drag” term in
Lagrangian: 𝜂2 = 1/𝑚1𝑚2, 𝜂𝜖 < 0 (where 𝑚1,2 are electron masses in each band). Such a choice permits
only one coherence length, thereby prohibiting the so-called type-1.5 superconductors. Thus, the drag
effect is principally important: by special choice of the coefficient 𝜂 we ensure correct properties of the
collective excitations in two-band superconductors. Experimental data of references [9, 10] on the effect
of resonant enhancement of the current through a Josephson junction between two-band superconductors
is analyzed. It is demonstrated that the data can be explained by the coupling of Josephson oscillations
with Higgs oscillations of two-band superconductors ℏ𝜔 =

√︁
|Δ1 | |Δ2 | ∝

√︁
|Ψ1 | |Ψ2 |, and hence, these

experiments cannot be considered as experimental confirmation of the Leggett mode.

The physics of three-band SC systems (for example, some ferropnictides LiFeAs, NaFeAs,
Ba1−𝑥K𝑥Fe2As2 [11–13] and strontium ruthenate Sr2RuO4 [14]) is much richer and more complicated
than the physics of two-band superconductors. In the three-band case, the equilibrium phase differences
are not only 0 or π, but they can be non-integer numbers of π depending on the signs of the interband
interactions 𝜖𝑖𝑘 [15–17]. Thus, the equilibrium values of OP Ψ1,2 in two-band superconductors are as-
sumed to be real in the absence of current and magnetic field, although for three-band superconductors
it is not always possible to make all OP Ψ1,2,3 real, for example, when all interband couplings are re-
pulsive (𝜖12 > 0, 𝜖13 > 0, 𝜖23 > 0) or when one coupling is repulsive but the other two are attractive
(for example, 𝜖12 > 0, 𝜖13 < 0, 𝜖23 < 0). As a consequence, the chiral ground state, frustration and
the time-reversal symmetry breaking (TRSB) [15–23], the massless Leggett mode [24, 25], topological
excitations [26–28], type-1.5 regimes [29] can occur. In addition, the TRSB state and the frustration
essentially effects the Josephson current and magnetic penetration depth in junctions between three-band
superconductors [30, 31] and between single-band and three-band superconductors [32–34]. As demon-
strated in references [17, 29], unlike two-band superconductors, the Higgs modes and the Leggett modes
can be hybridized. Furthermore, the effect of hybridization is essential if the interband coupling is strong.
The dynamics of two- and three-band systems was generalized for multi-band systems in reference [35],
where it was demonstrated that there are 2 massive Leggett modes and 𝑁 − 3 massless Leggett modes
in 𝑁-band systems (𝑁 > 2). At the same time, in most works on multi-band superconductivity, the drag
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effect has not been taken into account, and, respectively, its role remains unknown.
Proceeding from the aforesaid, we aim at obtaining the spectrum of normal oscillations of internal

degrees of freedom (Higgs modes and Goldstone modes), the coherence length, the “light” speed 𝜐 and
the magnetic penetration depth using the method developed in the work [8] for the case of three order
parameters coupled by both the internal proximity effect and the drag effect.

2. Stationary regime

Three-band superconductors are characterized by three OP-“wave functions” Ψ1 = |Ψ1 |ei𝜃1 , Ψ2 =

|Ψ2 |ei𝜃2 , Ψ3 = |Ψ3 |ei𝜃3 corresponding to the condensates of Cooper pairs in each band, so that the
densities of SC electrons are 𝑛s1 = 2|Ψ1 |2, 𝑛s2 = 2|Ψ2 |2, 𝑛s3 = 2|Ψ3 |2, accordingly. In a bulk isotropic
three-band superconductor, the Ginzburg-Landau free energy functional can be written as:

𝐹 =

∫
d3𝑟

[
ℏ2

4𝑚1
|𝐷Ψ1 |2 +

ℏ2

4𝑚2
|𝐷Ψ2 |2 +

ℏ2

4𝑚3
|𝐷Ψ3 |2 +

ℏ2

4
𝜂12

{
𝐷Ψ1(𝐷Ψ2)+ + (𝐷Ψ1)+𝐷Ψ2

}
+ ℏ2

4
𝜂13

{
𝐷Ψ1(𝐷Ψ3)+ + (𝐷Ψ1)+𝐷Ψ3

}
+ ℏ2

4
𝜂23

{
𝐷Ψ2(𝐷Ψ3)+ + (𝐷Ψ2)+𝐷Ψ3

}
+ 𝑎1 |Ψ1 |2 + 𝑎2 |Ψ2 |2 + 𝑎3 |Ψ3 |2 +

𝑏1
2

|Ψ1 |4 +
𝑏2
2

|Ψ2 |4 +
𝑏3
2

|Ψ3 |4

+ 𝜖12
(
Ψ+

1Ψ2 + Ψ1Ψ
+
2
)
+ 𝜖13

(
Ψ+

1Ψ3 + Ψ1Ψ
+
3
)
+ 𝜖23

(
Ψ+

2Ψ3 + Ψ2Ψ
+
3
)
+ H2

8π

]
, (2.1)

where 𝐷 ≡ ∇ − i(2𝑒/𝑐ℏ)A is a covariant gradient operator, H2/8π = (curl A)2/8π is the energy of
magnetic field, 𝑚1,2,3 denotes the effective mass of carriers in the corresponding band, the coefficients
𝑎1,2,3 are given as 𝑎𝑖 = 𝛾𝑖 (𝑇 − 𝑇𝑐𝑖), where 𝛾𝑖 are some constants, the coefficients 𝑏1,2,3 are independent
of temperature, the coefficients 𝜖𝑖 𝑗 and 𝜂𝑖 𝑗 describe the interband coupling of the OP (proximity effect)
and their gradients (drag effect), respectively. If we switch off the interband interactions 𝜖1,2,3 = 0 and
𝜂1,2,3 = 0, then we will have three independent superconductors with different critical temperatures 𝑇𝑐1,
𝑇𝑐2, 𝑇𝑐3.

The potential 𝑉0 =
∑3

𝑖=1 𝑎𝑖 |Ψ𝑖 |2 + 𝑏𝑖
2 |Ψ𝑖 |4 is a sum of independent potentials of each condensate.

This energy is invariant under any phase rotation. Since the condensates in three-band superconductors
are coupled by the Josephson terms 𝜖𝑖𝑘

(
Ψ+
𝑖
Ψ𝑘 + Ψ𝑖Ψ

+
𝑘

)
= 𝜖𝑖𝑘 |Ψ𝑖 | |Ψ𝑘 | cos(𝜃𝑖 − 𝜃𝑘), the broken 𝑈 (1)

symmetry of the ground state in each band is shared throughout the system: the presence of the condensate
〈Ψ𝑖〉 ≠ 0 in some band induces the Cooper condensation in other bands 〈Ψ𝑘〉 ≠ 0, that is the internal
proximity effect takes place. At the same time, the Josephson terms breaks the global 𝑈 (1) gauge
invariance, because these terms depend on the phase differences 𝜃𝑖 − 𝜃𝑘 , that is the Josephson terms have
a physical sense as the interference between the condensates Ψ1, Ψ2, Ψ3. Hence, the phase difference
modes (the Leggett modes) acquire masses because the phase differences are fixed near the minima of
the Josephson potential.

It should be noted that the free energy (2.1) does not have the symmetry𝑈 (1)×𝑍2, unlike the statement
in references [19, 29]. Indeed, the transformation 𝑍2 makes the sign change of any two condensates, for
example, Ψ1 → −Ψ1, Ψ2 → −Ψ2 (which corresponds to the phase change 𝜃1 → 𝜃1 ± π, 𝜃2 → 𝜃2 ± π),
but the third condensate does not change its sign Ψ3 → Ψ3 (corresponding transformations are illustrated
in appendix A). Obviously, the sum of the Josephson terms in the free energy (2.1) are not invariant
under this transformation. It should be noted that the considered model can be referred to as the three-
Higgs-doublet models (3HDM) [36], but without any specific symmetry in the above sense. For clarity, we
present some invariant potentials under the simplest transformations in appendix A. Thus, the potential𝑉0
has𝑈 (1) ×𝑈 (1) global gauge symmetry, but it is fully broken by the Josephson terms. In reference [35],
the total rule was formulated: in the 𝑁-band system, the global symmetry 𝑈 (1)𝑁−1 is broken by the
Josephson terms to 𝑈 (1)𝑁−3 symmetry. Thus, in 𝑁 > 3-band system, 𝑁 − 3 massless Leggett modes
must be present. Ultimately, the system described with the free energy (2.1) is invariant under common
𝑈 (1) gauge transformation only, i.e., when each OP is turned by the same phase 𝜃: Ψ𝑘 → Ψ𝑘ei𝜃 . Hence,
as demonstrated for two-band superconductors in reference [8], the common mode phase oscillations are
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absorbed by the gauge field, although oscillations of the phase differences 𝜃𝑖 − 𝜃𝑘 occur. The role of the
intergradient couplings is the same as the Josephson coupling and does not introduce anything new at
this stage.

Figure 1. The configurations of mutual arrangement of the OP Ψ1, Ψ2, Ψ3 corresponding to some limit
cases. It is supposed that the weak interband coupling |𝜖12 | = |𝜖13 | = |𝜖23 | � |𝑎𝑖 (0) |.

Minimization of the free energy functional with respect to the OP, if ∇Ψ1,2,3 = 0 and A = 0, gives

𝑎1Ψ1 + 𝜖12Ψ2 + 𝜖13Ψ3 + 𝑏1 |Ψ1 |2Ψ1 = 0,
𝑎2Ψ2 + 𝜖12Ψ1 + 𝜖23Ψ3 + 𝑏2 |Ψ2 |2Ψ2 = 0,
𝑎3Ψ3 + 𝜖13Ψ1 + 𝜖23Ψ2 + 𝑏3 |Ψ3 |2Ψ3 = 0. (2.2)

Equation (2.2) can be rewritten in a form:

𝑎1 |Ψ1 | + 𝜖12 |Ψ2 |ei(𝜃2−𝜃1 ) + 𝜖13 |Ψ3 |ei(𝜃3−𝜃1 ) + 𝑏1 |Ψ1 |3 = 0,
𝑎2 |Ψ2 | + 𝜖12 |Ψ1 |ei(𝜃1−𝜃2 ) + 𝜖23 |Ψ3 |ei(𝜃3−𝜃2 ) + 𝑏1 |Ψ2 |3 = 0,
𝑎3 |Ψ3 | + 𝜖13 |Ψ1 |ei(𝜃1−𝜃3 ) + 𝜖23 |Ψ2 |ei(𝜃2−𝜃3 ) + 𝑏1 |Ψ3 |3 = 0, (2.3)

or in an expanded form:

𝑎1 |Ψ1 | + 𝜖12 |Ψ2 | cos(𝜃2 − 𝜃1) + 𝜖13 |Ψ3 | cos(𝜃3 − 𝜃1) + 𝑏1 |Ψ1 |3 = 0,
𝑎2 |Ψ2 | + 𝜖12 |Ψ1 | cos(𝜃1 − 𝜃2) + 𝜖23 |Ψ3 | cos(𝜃3 − 𝜃2) + 𝑏1 |Ψ2 |3 = 0,
𝑎3 |Ψ3 | + 𝜖13 |Ψ1 | cos(𝜃1 − 𝜃3) + 𝜖23 |Ψ2 | cos(𝜃2 − 𝜃3) + 𝑏1 |Ψ3 |3 = 0,
𝜖12 |Ψ2 | sin(𝜃2 − 𝜃1) + 𝜖13 |Ψ3 | sin(𝜃3 − 𝜃1) = 0,
𝜖12 |Ψ1 | sin(𝜃1 − 𝜃2) + 𝜖23 |Ψ3 | sin(𝜃3 − 𝜃2) = 0,
𝜖13 |Ψ1 | sin(𝜃1 − 𝜃3) + 𝜖23 |Ψ2 | sin(𝜃2 − 𝜃3) = 0. (2.4)
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Hence, possible signs of 𝜖𝑖𝑘 and the phase differences of the OP |Ψ1 |ei𝜃1 , |Ψ2 |ei𝜃2 , |Ψ3 |ei𝜃3 are:

𝜖𝑖𝑘 < 0, 𝜖𝑖𝑙 < 0, 𝜖𝑘𝑙 < 0, then cos(𝜃𝑖 − 𝜃𝑘) = cos(𝜃𝑖 − 𝜃𝑙) = cos(𝜃𝑘 − 𝜃𝑙) = 1,
𝜖𝑖𝑘 < 0, 𝜖𝑖𝑙 > 0, 𝜖𝑘𝑙 > 0, then cos(𝜃𝑖 − 𝜃𝑘) = 1, cos(𝜃𝑖 − 𝜃𝑙) = cos(𝜃𝑘 − 𝜃𝑙) = −1, (2.5)

for the cases, when 𝜖12𝜖13𝜖23 < 0. Therefore, OP Ψ1, Ψ2, Ψ3 can be assumed to be real simultaneously,
as in two-band superconductors. The cases 𝜖12𝜖13𝜖23 > 0 need numerical solution of equation (2.4). As
a result, the phase differences 𝜃𝑖𝑘 ≡ 𝜃𝑖 − 𝜃𝑘 can be functions of temperature 𝜃𝑖𝑘 (𝑇). Only in the case of
absolutely symmetrical bands 𝑎1 = 𝑎2 = 𝑎3, 𝑏1 = 𝑏2 = 𝑏3, |𝜖12 | = |𝜖13 | = |𝜖23 | we obtain

𝜖𝑖𝑘 > 0, 𝜖𝑖𝑙 > 0, 𝜖𝑘𝑙 > 0, then cos(𝜃𝑖 − 𝜃𝑘) = cos(𝜃𝑖 − 𝜃𝑙) = cos(𝜃𝑘 − 𝜃𝑙) = −1/2,
𝜖𝑖𝑘 > 0, 𝜖𝑖𝑙 < 0, 𝜖𝑘𝑙 < 0, then cos(𝜃𝑖 − 𝜃𝑘) = −1/2, cos(𝜃𝑖 − 𝜃𝑙) = cos(𝜃𝑘 − 𝜃𝑙) = 1/2. (2.6)

As an approximation in the case of weak coupling |𝜖12 |, |𝜖13 |, |𝜖23 | � |𝑎1(0) |, |𝑎2(0) |, |𝑎3(0) |, we can
assume |Ψ𝑖 (0) | =

√︁
|𝑎𝑖 (0) |/𝑏𝑖 and then substitute them in equation (2.4) to find the angles 𝜃𝑖 − 𝜃𝑘 . Then,

using the found phase differences, we find new |Ψ𝑖 (𝑇) | from equation (2.4) for all temperatures. Possible
configurations corresponding to some limit cases are illustrated in figure 1. However, it should be noted
that, as demonstrated in reference [23] by numerical calculations, in the case 𝜖12𝜖13𝜖23 > 0, the regime
of nontrivial phase differences 𝜃2 − 𝜃1, 𝜃3 − 𝜃1 ≠ 0, π (that is the TRSB state can be realized) exists only
within a relative small volume in the six-dimensional parameter space ( |Ψ𝑖 |, 𝜖𝑖𝑘).

Figure 2. The sketch of temperature dependencies of OP Ψ1 (𝑇), Ψ2 (𝑇), Ψ3 (𝑇) as solutions of equa-
tion (2.4), if the interband couplings are absent, i.e., 𝜖𝑖𝑘 = 0 (dash lines), and if the weak interband
interaction takes place, i.e., 𝜖𝑖𝑘 ≠ 0, |𝜖𝑖𝑘 | � |𝑎1 (0) | (solid lines). The application of the weak interband
coupling washes out the smaller parameters Ψ1,2 up to a new critical temperature 𝑇𝑐 � 𝑇𝑐1. The effect
on the larger parameter Ψ3 is not so essential. As the couplings |𝜖𝑖𝑘 | increase, Ψ1,2,3 (𝑇) take the forms
shown with dot lines.

Near critical temperature 𝑇𝑐 we have |Ψ1,2,3 |2 → 0. Hence, we can find the critical temperature
equating to zero the determinant of the linearized system (2.2):

𝑎1𝑎2𝑎3 − 𝑎1𝜖
2
23 − 𝑎2𝜖

2
13 − 𝑎3𝜖

2
12 + 2𝜖12𝜖13𝜖23 = 0. (2.7)

In an equivalent way, we can find the critical temperature equating to zero the determinant of the linearized
system of the first three equations from equation (2.4):

𝑎1𝑎2𝑎3 − 𝑎1𝜖
2
23 cos2(𝜃1 − 𝜃2) − 𝑎2𝜖

2
13 cos2(𝜃1 − 𝜃3) − 𝑎3𝜖

2
12 cos2(𝜃1 − 𝜃2)

+ 2𝜖12𝜖13𝜖23 cos(𝜃1 − 𝜃2) cos(𝜃1 − 𝜃3) cos(𝜃2 − 𝜃3) = 0, (2.8)

where phase differences 𝜃𝑖 − 𝜃𝑘 are equilibrium values, that is, those that ensure the coincidence of the
solutions of the equations (2.7) and (2.8), and the critical temperature𝑇𝑐 of the system is the largest of these
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solutions. Solving any of these equations we find 𝑇𝑐 > 𝑇𝑐1, 𝑇𝑐2, 𝑇𝑐3, and besides 𝑇𝑐 (𝜖12𝜖13𝜖23 < 0) >

𝑇𝑐 (𝜖12𝜖13𝜖23 > 0). The case 𝜖𝑖𝑘 < 0 corresponds to attractive interband interaction, the case 𝜖𝑖𝑘 > 0
corresponds to repulsive interband interaction. For symmetrical bands 𝑇𝑐1 = 𝑇𝑐2 = 𝑇𝑐3 ≡ 𝑇𝑐123, 𝛾1 =

𝛾2 = 𝛾3 ≡ 𝛾 and the same modulus of interband interactions |𝜖12 | = |𝜖13 | = |𝜖23 | ≡ 𝜖 > 0 equation (2.8)
is reduced to

𝜖12𝜖13𝜖23 < 0 ⇒ (𝑎 + 𝜖)2(𝑎 − 2𝜖) = 0 ⇒ 𝑇𝑐 = 𝑇𝑐123 + 2𝜖/𝛾,

𝜖12𝜖13𝜖23 > 0 ⇒
(
𝑎 + 𝜖

2

)2
(𝑎 − 𝜖) = 0 ⇒ 𝑇𝑐 = 𝑇𝑐123 + 𝜖/𝛾. (2.9)

The solutions of equation (2.4) are illustrated in figure 2 for the case of strongly asymmetrical bands
𝑇𝑐1,𝑐2 � 𝑇𝑐3. As in the two-band system, the effect of interband coupling 𝜖𝑖𝑘 ≠ 0, even if the coupling is
weak |𝜖𝑖𝑘 | � |𝑎1(0) |, is non-perturbative for the smaller OP Ψ1,2 — the application of the weak interband
coupling washes out the smaller OP up to a new critical temperature 𝑇𝑐 � 𝑇𝑐1,𝑐2. At the same time,
the effect on the largest parameter Ψ3 is not so significant — the application of the interband coupling
slightly increases the critical temperature 𝑇𝑐 & 𝑇𝑐3 only.

Let us consider a superconductor in the weak magnetic field A(r) (i.e., |Ψ| = const). Then, the free
energy functional (2.1) can be reduced to the form:

𝐹 =

∫
d3𝑟𝔉 ≡

∫
d3𝑟

[
ℏ2

4𝑚1
|Ψ1 |2

(
∇𝜃1 −

2𝑒
ℏ𝑐

A
)2

+ ℏ2

4𝑚2
|Ψ2 |2

(
∇𝜃2 −

2𝑒
ℏ𝑐

A
)2

+ ℏ2

4𝑚3
|Ψ3 |2

(
∇𝜃3 −

2𝑒
ℏ𝑐

A
)2

+ ℏ2

2
𝜂12 |Ψ1 | |Ψ2 |

(
∇𝜃1 −

2𝑒
ℏ𝑐

A
) (

∇𝜃2 −
2𝑒
ℏ𝑐

A
)

cos(𝜃1 − 𝜃2)

+ ℏ2

2
𝜂13 |Ψ1 | |Ψ3 |

(
∇𝜃1 −

2𝑒
ℏ𝑐

A
) (

∇𝜃3 −
2𝑒
ℏ𝑐

A
)

cos(𝜃1 − 𝜃3)

+ ℏ2

2
𝜂23 |Ψ2 | |Ψ3 |

(
∇𝜃2 −

2𝑒
ℏ𝑐

A
) (

∇𝜃3 −
2𝑒
ℏ𝑐

A
)

cos(𝜃2 − 𝜃3) +
(curl A)2

8π

+
3∑︁
𝑖=1

(
𝑎𝑖 |Ψ𝑖 |2 +

𝑏𝑖

2
|Ψ𝑖 |4

)
+

∑︁
𝑖≠𝑘

𝜖𝑖𝑘
(
Ψ+
𝑖 Ψ𝑘 + Ψ𝑖Ψ

+
𝑘

) ]
. (2.10)

Corresponding Lagrange equation

curl
𝜕𝔉

𝜕 (curl A) −
𝜕𝔉

𝜕A = 0 (2.11)

gives the supercurrent:

J =
ℏ𝑒

𝑚1
|Ψ1 |2

(
∇𝜃1 −

2𝑒
ℏ𝑐

A
)
+ ℏ𝑒

𝑚2
|Ψ2 |2

(
∇𝜃2 −

2𝑒
ℏ𝑐

A
)
+ ℏ𝑒

𝑚3
|Ψ3 |2

(
∇𝜃3 −

2𝑒
ℏ𝑐

A
)

+ ℏ𝑒𝜂12 |Ψ1 | |Ψ2 |
(
∇𝜃1 + ∇𝜃2 − 2

2𝑒
ℏ𝑐

A
)

cos(𝜃1 − 𝜃2)

+ ℏ𝑒𝜂13 |Ψ1 | |Ψ3 |
(
∇𝜃1 + ∇𝜃3 − 2

2𝑒
ℏ𝑐

A
)

cos(𝜃1 − 𝜃3)

+ ℏ𝑒𝜂23 |Ψ2 | |Ψ3 |
(
∇𝜃2 + ∇𝜃3 − 2

2𝑒
ℏ𝑐

A
)

cos(𝜃2 − 𝜃3), (2.12)

that can be rewritten in the following form:

J =
ℏ𝑒

𝔪1
|Ψ1 |2∇𝜃1 +

ℏ𝑒

𝔪2
|Ψ2 |2∇𝜃2 +

ℏ𝑒

𝔪3
|Ψ3 |2∇𝜃3 −

(
2𝑒2

𝔪1𝑐
|Ψ1 |2 +

2𝑒2

𝔪2𝑐
|Ψ2 |2 +

2𝑒2

𝔪3𝑐
|Ψ3 |2

)
A, (2.13)

where 𝔪𝑖 is the effective mass of an electron in a band 𝑖 due to the drag effect:
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1
𝔪𝑖

=
1
𝑚𝑖

[
1 + 𝜂𝑖𝑘𝑚𝑖

|Ψ𝑘 |
|Ψ𝑖 |

cos(𝜃𝑖 − 𝜃𝑘) + 𝜂𝑖𝑙𝑚𝑖

|Ψ𝑙 |
|Ψ𝑖 |

cos(𝜃𝑖 − 𝜃𝑙)
]
. (2.14)

The magnetic field can be gauge transformed as

A = A′ + ℏ𝑐

2𝑒
(𝛼∇𝜃1 + 𝛽∇𝜃2 + 𝛾∇𝜃3) , (2.15)

where

𝛼 =
|Ψ1 |2/𝔪1

|Ψ1 |2
𝔪1

+ |Ψ2 |2
𝔪2

+ |Ψ3 |2
𝔪3

, 𝛽 =
|Ψ2 |2/𝔪2

|Ψ1 |2
𝔪1

+ |Ψ2 |2
𝔪2

+ |Ψ3 |2
𝔪3

, 𝛾 =
|Ψ3 |2/𝔪3

|Ψ1 |2
𝔪1

+ |Ψ2 |2
𝔪2

+ |Ψ3 |2
𝔪3

, (2.16)

so that
𝛼 + 𝛽 + 𝛾 = 1,

|Ψ2 |2
𝔪2

|Ψ3 |2
𝔪3

𝛼 =
|Ψ1 |2
𝔪1

|Ψ3 |2
𝔪3

𝛽 =
|Ψ1 |2
𝔪1

|Ψ2 |2
𝔪2

𝛾. (2.17)

Then, equation (2.13) is reduced to the London law:

J = −
(

2𝑒2

𝔪1𝑐
|Ψ1 |2 +

2𝑒2

𝔪2𝑐
|Ψ2 |2 +

2𝑒2

𝔪3𝑐
|Ψ3 |2

)
A ≡ − 1

𝜆2 A. (2.18)

Thus, magnetic response of three-band superconductors is analogous to the response of single-band
superconductors, but with contribution into SC density from each band |Ψ𝑖 |2 with the corresponding
effective electron mass (2.14), which is determined with the coefficients of the drag effect 𝜂𝑖𝑘 .

3. Goldstone and Higgs oscillations in three-band superconductors

3.1. Ginzburg-Landau Lagrangian for three-band superconductors

In general case, the OP Ψ1,2,3 are both spatially inhomogeneous and they can change over time:
Ψ1,2,3 = Ψ1,2,3(r, 𝑡). The OP in the modulus-phase representation are equivalent to two real fields each:
modulus |Ψ(r, 𝑡) | and phase 𝜃 (r, 𝑡):

Ψ1(r, 𝑡) = |Ψ1(r, 𝑡) | ei𝜃1 (r,𝑡 ) , Ψ2(r, 𝑡) = |Ψ2(r, 𝑡) | ei𝜃2 (r,𝑡 ) , Ψ3(r, 𝑡) = |Ψ3(r, 𝑡) | ei𝜃3 (r,𝑡 ) . (3.1)

For the stationary case Ψ1,2,3 = Ψ1,2,3(r), the steady configuration of the field Ψ1,2,3(r) minimizes the
free energy functional (2.1). For the nonstationary case Ψ1,2,3(r, 𝑡), according to the method described
in [1], we consider some 4D Minkowski space {𝜐𝑡, r}, where the parameter 𝜐 plays the role of the
“light” speed, which should be determined by the dynamical properties of the system. At the same time,
the dynamics of conduction electrons remains non-relativistic. Then, the two-component scalar fields
Ψ1,2,3(r, 𝑡) minimize some action 𝑆 in the Minkowski space:

𝑆 =
1
𝜐

∫
L

(
Ψ1,Ψ2,Ψ3,Ψ

+
1 ,Ψ

+
2 ,Ψ

+
3 , 𝐴𝜇, 𝐴

𝜇
)
𝜐 d𝑡 d3𝑟, (3.2)

where 𝐴𝜇 = ( 𝑐
𝜐
𝜑,−A), 𝐴𝜇 = ( 𝑐

𝜐
𝜑,A) are covariant and contravariant potential of electromagnetic field.

The Lagrangian L is built by generalizing the density of free energy in equation (2.1) to the “relativistic”
invariant form by substitution of covariant and contravariant differential operators:

𝜕𝜇 ≡
(
1
𝜐

𝜕

𝜕𝑡
,∇

)
, 𝜕𝜇 ≡

(
1
𝜐

𝜕

𝜕𝑡
,−∇

)
, (3.3)

instead of the gradient operators: ∇Ψ → 𝜕𝜇Ψ, ∇Ψ+ → 𝜕𝜇Ψ+, and by substitution the covariant and
contravariant operators in presence of electromagnetic field 𝐴𝜇:

𝐷𝜇 ≡ 𝜕𝜇 + i2𝑒̃
ℏ𝜐

𝐴𝜇, 𝐷𝜇 ≡ 𝜕𝜇 + i2𝑒̃
ℏ𝜐

𝐴𝜇, (3.4)
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instead of the operators 𝐷 in the free energy functional (2.1). Here, 𝑒̃ = 𝜐
𝑐
𝑒, so that 𝑒̃𝐴𝜇 = 𝑒𝐴𝜇. Then,

the Lagrangian will be written as:

L =
ℏ2

4𝑚1
𝐷𝜇Ψ1𝐷

𝜇Ψ+
1 + ℏ2

4𝑚2
𝐷𝜇Ψ2𝐷

𝜇Ψ+
2 + ℏ2

4𝑚3
𝐷𝜇Ψ3𝐷

𝜇Ψ+
3

+ ℏ2

4
𝜂12

{
𝐷𝜇Ψ1(𝐷𝜇Ψ2)+ + (𝐷𝜇Ψ1)+𝐷𝜇Ψ2

}
+ ℏ2

4
𝜂13

{
𝐷𝜇Ψ1(𝐷𝜇Ψ3)+ + (𝐷𝜇Ψ1)+𝐷𝜇Ψ3

}
+ ℏ2

4
𝜂23

{
𝐷𝜇Ψ2(𝐷𝜇Ψ3)+ + (𝐷𝜇Ψ2)+𝐷𝜇Ψ3

}
− 𝑎1 |Ψ1 |2 − 𝑎2 |Ψ2 |2 − 𝑎3 |Ψ3 |2 −

𝑏1
2

|Ψ1 |4 −
𝑏2
2

|Ψ2 |4 −
𝑏3
2

|Ψ3 |4

− 𝜖12
(
Ψ+

1Ψ2 + Ψ1Ψ
+
2
)
− 𝜖13

(
Ψ+

1Ψ3 + Ψ1Ψ
+
3
)
− 𝜖23

(
Ψ+

2Ψ3 + Ψ2Ψ
+
3
)
− 1

16π
𝐹𝜇𝜈𝐹

𝜇𝜈 , (3.5)

where the same speed 𝜐 is used for the condensates Ψ1,2,3 with the masses 𝑚1,2,3, accordingly. The
speed 𝜐 plays the role of the speed of light in SC medium, and it will be found below. 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 −𝜕𝜈𝐴𝜇

is the Faraday tensor.
The modulus-phase representation (3.1) can be considered as the local gauge 𝑈 (1) transformation

Ψ𝑖 → |Ψ𝑖 |. Then, the gauge field 𝐴𝜇 should be transformed as

𝐴′
𝜇 = 𝐴𝜇 + ℏ𝜐

2𝑒̃

(
𝛼𝜕𝜇𝜃1 + 𝛽𝜕𝜇𝜃2 + 𝛾𝜕𝜇𝜃3

)
, (3.6)

where coefficients 𝛼, 𝛽, 𝛾 are determined with equation (2.16). The transformation (3.6) excludes
the phases 𝜃1, 𝜃2, 𝜃3 [using properties (2.17)] from Lagrangian (3.5) individually leaving only their
differences:

L =
ℏ2

4𝑚1
𝐷𝜇 |Ψ1 |𝐷𝜇 |Ψ1 | +

ℏ2

4𝑚2
𝐷𝜇 |Ψ1 |𝐷𝜇 |Ψ2 | +

ℏ2

4𝑚3
𝐷𝜇 |Ψ3 |𝐷𝜇 |Ψ3 |

+ ℏ2

2
𝜂12𝐷𝜇 |Ψ1 |𝐷𝜇 |Ψ2 | cos(𝜃1 − 𝜃2) +

ℏ2

2
𝜂13𝐷𝜇 |Ψ1 |𝐷𝜇 |Ψ3 | cos(𝜃1 − 𝜃3)

+ ℏ2

2
𝜂23𝐷𝜇 |Ψ2 |𝐷𝜇 |Ψ3 | cos(𝜃2 − 𝜃3) − 2𝜖12 |Ψ1 | |Ψ2 | cos(𝜃1 − 𝜃2) − 2𝜖13 |Ψ1 | |Ψ3 | cos(𝜃1 − 𝜃3)

− 2𝜖23 |Ψ2 | |Ψ3 | cos(𝜃2 − 𝜃3) +
ℏ2

4

[
|Ψ1 |2
𝑚1

𝛽2 + |Ψ2 |2
𝑚2

𝛼2 + 2𝜂12 |Ψ1 | |Ψ2 |𝛼𝛽 cos(𝜃1 − 𝜃2)
]

× 𝜕𝜇 (𝜃1 − 𝜃2) 𝜕𝜇 (𝜃1 − 𝜃2) +
ℏ2

4

[
|Ψ1 |2
𝑚1

𝛾2 + |Ψ3 |2
𝑚3

𝛼2 + 2𝜂13 |Ψ1 | |Ψ3 |𝛼𝛾 cos(𝜃1 − 𝜃3)
]

× 𝜕𝜇 (𝜃1 − 𝜃3) 𝜕𝜇 (𝜃1 − 𝜃3) +
ℏ2

4

[
|Ψ2 |2
𝑚2

𝛾2 + |Ψ3 |2
𝑚3

𝛽2 + 2𝜂23 |Ψ2 | |Ψ3 |𝛽𝛾 cos(𝜃2 − 𝜃3)
]
𝜕𝜇 (𝜃2 − 𝜃3)

× 𝜕𝜇 (𝜃2 − 𝜃3) −
ℏ2

4

[
|Ψ1 |2
𝑚1

2𝛾𝛽 − 2𝜂12 |Ψ1 | |Ψ2 |𝛼𝛾 cos(𝜃1 − 𝜃2) − 2𝜂13 |Ψ1 | |Ψ3 |𝛼𝛽 cos(𝜃1 − 𝜃3)

+ 2𝜂23 |Ψ2 | |Ψ3 |𝛼2 cos(𝜃2 − 𝜃3)
]
𝜕𝜇 (𝜃1 − 𝜃2) 𝜕𝜇 (𝜃1 − 𝜃3) −

ℏ2

4

[
|Ψ2 |2
𝑚2

2𝛼𝛾

+ 2𝜂12 |Ψ1 | |Ψ2 |𝛽𝛾 cos(𝜃1 − 𝜃2) − 2𝜂13 |Ψ1 | |Ψ3 |𝛽2 cos(𝜃1 − 𝜃3) + 2𝜂23 |Ψ2 | |Ψ3 |𝛼𝛽 cos(𝜃2 − 𝜃3)
]

× 𝜕𝜇 (𝜃1 − 𝜃2) 𝜕𝜇 (𝜃2 − 𝜃3) −
ℏ2

4

[
|Ψ3 |2
𝑚3

2𝛼𝛽 + 2𝜂12 |Ψ1 | |Ψ2 |𝛾2 cos(𝜃1 − 𝜃2)

+ 2𝜂13 |Ψ1 | |Ψ3 |𝛽𝛾 cos(𝜃1 − 𝜃3) − 2𝜂23 |Ψ2 | |Ψ3 |𝛼𝛾 cos(𝜃2 − 𝜃3)
]
𝜕𝜇 (𝜃1 − 𝜃3) 𝜕𝜇 (𝜃2 − 𝜃3)

+ L
(
|Ψ1 |, |Ψ2 |, |Ψ3 |, 𝐹𝜇𝜈𝐹

𝜇𝜈
)
. (3.7)
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Here, L
(
|Ψ1 |, |Ψ2 |, |Ψ3 |, 𝐹𝜇𝜈𝐹

𝜇𝜈
)
≡ −∑3

𝑖=1

(
𝑎 |Ψ𝑖 |2 + 𝑏

2 |Ψ𝑖 |4
)
− 1

16π𝐹𝜇𝜈𝐹
𝜇𝜈 is the sum of terms of the

Lagrangian, which do not depend on the phases 𝜃𝑖: single-band potential energies and Lagrangian of
electromagnetic field. Thus, the gauge field 𝐴𝜇 absorbs the Goldstone bosons 𝜃1,2,3 so that the Lagrangian
becomes dependent on the phase differences 𝜃1 − 𝜃2, 𝜃1 − 𝜃3, 𝜃2 − 𝜃3 only. At the same time, the phase
differences are not normal coordinates, because, firstly, they are not independent as we can see from
figure 1: we can suppose, for example, 𝜃2 − 𝜃3 = 𝜃1 − 𝜃3 − (𝜃1 − 𝜃2); secondly, we can see that there
are off-diagonal terms, as 𝜕𝜇 (𝜃1 − 𝜃2) 𝜕𝜇 (𝜃1 − 𝜃3), in Lagrangian (3.7). Thus, in order to find normal
oscillations, we must diagonalize Lagrangian (3.7). However, due to mathematical cumbersomeness, to
find normal oscillations we will proceed from the original Lagrangian (3.5).

Before considering the problem of finding the normal frequencies, let us consider “potential energy”
in the Lagrangian (3.5). Substituting the modulus-phase representation (3.1) in the Lagrangian (3.5) and
assuming 𝐴𝜇 = 0, we obtain:

U = 𝑎1 |Ψ1 |2 + 𝑎2 |Ψ2 |2 + 𝑎3 |Ψ3 |2 +
𝑏1
2

|Ψ1 |4 +
𝑏2
2

|Ψ2 |4 +
𝑏3
2

|Ψ3 |4

+ 2𝜖12 |Ψ1 | |Ψ2 | cos(𝜃1 − 𝜃2) + 2𝜖13 |Ψ1 | |Ψ3 | cos(𝜃1 − 𝜃3) + 2𝜖23 |Ψ2 | |Ψ3 | cos(𝜃2 − 𝜃3). (3.8)

At 𝑇 < 𝑇𝑐, we can consider small variations of the modulus of OP from its equilibrium value: |Ψ1,2,3 | =
Ψ01,02,03 + 𝜙1,2,3, where |𝜙1,2,3 | � Ψ01,02,03. Then, |Ψ|2 ≈ Ψ2

0 + 2Ψ0𝜙 + 𝜙2, |Ψ|4 ≈ Ψ4
0 + 4Ψ3

0𝜙 + 6Ψ2
0𝜙

2,
|Ψ1 | |Ψ2 | ≈ Ψ01Ψ02 + Ψ01𝜙2 + Ψ02𝜙1 + 𝜙1𝜙2. Moreover, we can consider small variations of the phase
differences of OP from their equilibrium value:

cos 𝜃𝑖𝑘 = cos
(
𝜃𝑖𝑘 − 𝜃0

𝑖𝑘 + 𝜃0
𝑖𝑘

)
= cos

(
𝜃𝑖𝑘 − 𝜃0

𝑖𝑘

)
cos 𝜃0

𝑖𝑘 − sin
(
𝜃𝑖𝑘 − 𝜃0

𝑖𝑘

)
sin 𝜃0

𝑖𝑘

≈
[
1 −

(
𝜃𝑖𝑘 − 𝜃0

𝑖𝑘

)2/2
]

cos 𝜃0
𝑖𝑘 −

(
𝜃𝑖𝑘 − 𝜃0

𝑖𝑘

)
sin 𝜃0

𝑖𝑘 ,

where we have introduced the notations 𝜃𝑖 − 𝜃𝑘 ≡ 𝜃𝑖𝑘 . Then, the energy (3.8) takes the form:

U ≈ U𝜙 + U𝜃 + U𝜙𝜃 + 𝑎1Ψ
2
01 +

𝑏1
2
Ψ4

01 + 𝑎2Ψ
2
02 +

𝑏2
2
Ψ4

02 + 𝑎3Ψ
2
03 +

𝑏3
2
Ψ4

03

+ 2𝜖12 cos 𝜃0
12Ψ01Ψ02 + 2𝜖13 cos 𝜃0

13Ψ01Ψ03 + 2𝜖23 cos 𝜃0
23Ψ02Ψ03, (3.9)

where the last nine terms determine global potential (as the “mexican hat”), U𝜙 determines a potential
for the module excitations 𝜙1,2,3:

U𝜙 = 𝜙2
1

(
𝑎1 + 3𝑏1Ψ

2
01

)
+ 𝜙2

2

(
𝑎2 + 3𝑏2Ψ

2
02

)
+ 𝜙2

3

(
𝑎2 + 3𝑏3Ψ

2
03

)
+ 𝜙1𝜙22𝜖12 cos 𝜃0

12 + 𝜙1𝜙32𝜖13 cos 𝜃0
13 + 𝜙2𝜙32𝜖23 cos 𝜃0

23

+ 2𝜙1

(
𝜖12 cos 𝜃0

12Ψ02 + 𝜖13 cos 𝜃0
13Ψ03 + 𝑎1Ψ01 + 𝑏1Ψ

3
01

)
+ 2𝜙2

(
𝜖12 cos 𝜃0

12Ψ01 + 𝜖23 cos 𝜃0
23Ψ03 + 𝑎2Ψ02 + 𝑏2Ψ

3
02

)
+ 2𝜙3

(
𝜖13 cos 𝜃0

13Ψ01 + 𝜖23 cos 𝜃0
23Ψ02 + 𝑎3Ψ03 + 𝑏3Ψ

3
03

)
. (3.10)

The terms at 𝜙1,2,3 should be zero, then

𝜖12 cos 𝜃0
12Ψ02 + 𝜖13 cos 𝜃0

13Ψ03 + 𝑎1Ψ01 + 𝑏1Ψ
3
01 = 0,

𝜖12 cos 𝜃0
12Ψ01 + 𝜖23 cos 𝜃0

23Ψ03 + 𝑎2Ψ02 + 𝑏2Ψ
3
02 = 0,

𝜖13 cos 𝜃0
13Ψ01 + 𝜖23 cos 𝜃0

23Ψ02 + 𝑎3Ψ03 + 𝑏3Ψ
3
03 = 0, (3.11)

which corresponds to the first three equations in equation (2.4). U𝜃 determines a potential for the phase
excitations 𝜃1,2,3:

U𝜃 = −2𝜖12Ψ01Ψ02

(
𝜃12 − 𝜃0

12
)2

2
− 2𝜖13Ψ01Ψ03

(
𝜃13 − 𝜃0

13
)2

2
− 2𝜖23Ψ02Ψ03

(
𝜃23 − 𝜃0

23
)2

2
− 2𝜖12Ψ01Ψ02

(
𝜃12 − 𝜃0

12
)
sin 𝜃0

12 − 2𝜖13Ψ01Ψ03
(
𝜃13 − 𝜃0

13
)
sin 𝜃0

13

− 2𝜖23Ψ02Ψ03
(
𝜃23 − 𝜃0

23
)
sin 𝜃0

23. (3.12)
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For the linear terms (𝜃𝑖 𝑗 − 𝜃0
𝑖 𝑗
) not to affect the equations of motion, the following condition must be

satisfied:

𝜖12Ψ02 sin 𝜃0
12 + 𝜖13Ψ03 sin 𝜃0

13 = 0,
𝜖12Ψ01 sin 𝜃0

12 + 𝜖23Ψ03 sin 𝜃0
32 = 0,

𝜖13Ψ01 sin 𝜃0
13 + 𝜖23Ψ02 sin 𝜃0

23 = 0, (3.13)

which corresponds to the second three equations in equation (2.4). U𝜙𝜃 determines the interaction
between the module excitations and the phase excitations:

U𝜙𝜃 = −𝜙1𝜙2𝜖12

[ (
𝜃12 − 𝜃0

12
)2 cos 𝜃0

12 + 2
(
𝜃12 − 𝜃0

12
)
sin 𝜃0

12

]
− 𝜙1𝜙3𝜖13

[ (
𝜃13 − 𝜃0

13
)2 cos 𝜃0

13 + 2
(
𝜃13 − 𝜃0

13
)
sin 𝜃0

13

]
− 𝜙2𝜙3𝜖23

[ (
𝜃23 − 𝜃0

23
)2 cos 𝜃0

23 + 2
(
𝜃23 − 𝜃0

23
)
sin 𝜃0

23

]
− 𝜙1

[ (
𝜃12 − 𝜃0

12
)2
𝜖12 cos 𝜃0

12Ψ02 +
(
𝜃13 − 𝜃0

13
)2
𝜖13 cos 𝜃0

13Ψ03

]
− 𝜙2

[ (
𝜃12 − 𝜃0

12
)2
𝜖12 cos 𝜃0

12Ψ01 +
(
𝜃23 − 𝜃0

23
)2
𝜖23 cos 𝜃0

23Ψ03

]
− 𝜙3

[ (
𝜃13 − 𝜃0

13
)2
𝜖13 cos 𝜃0

13Ψ01 +
(
𝜃23 − 𝜃0

23
)
𝜖23 sin 𝜃0

23Ψ02

]
− 2𝜙1

[ (
𝜃12 − 𝜃0

12
)
𝜖12 sin 𝜃0

12Ψ02 +
(
𝜃13 − 𝜃0

13
)
𝜖13 sin 𝜃0

13Ψ03
]

− 2𝜙2
[ (
𝜃12 − 𝜃0

12
)
𝜖12 sin 𝜃0

12Ψ01 +
(
𝜃23 − 𝜃0

23
)
𝜖23 sin 𝜃0

23Ψ03
]

− 2𝜙3
[ (
𝜃13 − 𝜃0

13
)
𝜖13 sin 𝜃0

13Ψ01 +
(
𝜃23 − 𝜃0

23
)
𝜖23 sin 𝜃0

23Ψ02
]
. (3.14)

We can see that the first six terms are of the third 𝜙𝑖𝜙𝑘 (𝜃𝑖𝑘 − 𝜃0
𝑖𝑘
), 𝜙𝑖 (𝜃𝑖 𝑗 − 𝜃0

𝑖 𝑗
)2 and the forth 𝜙𝑖𝜙𝑘 (𝜃𝑖𝑘 −

𝜃0
𝑖𝑘
)2 order. Hence, they can be neglected. At the same time, the last three terms are of the second

order 𝜙𝑖 (𝜃𝑖𝑘 − 𝜃0
𝑖𝑘
). In the case 𝜖12𝜖13𝜖23 < 0, we have all 𝜃0

𝑖𝑘
= 0 or π, that is sin 𝜃0

𝑖𝑘
= 0, hence the

oscillations of the amplitudes and of the phases are not hybridized in this case. Thus, the Goldstone and
the Higgs modes are hybridized in the case 𝜖12𝜖13𝜖23 > 0 only, that is the phase-amplitude mode can take
place [17, 29].

The drag terms cause the analogous situation:(
𝜕𝜇Ψ𝑖𝜕

𝜇Ψ+
𝑘 + 𝜕𝜇Ψ+

𝑖 𝜕𝜇Ψ𝑘

)
≈

[(
𝜕𝜇𝜙𝑖𝜕

𝜇𝜙𝑘 + 𝜕𝜇𝜙𝑘𝜕
𝜇𝜙𝑖

)
+ Ψ01Ψ02(𝜕𝜇𝜃𝑖𝜕𝜇𝜃𝑘 + 𝜕𝜇𝜃𝑘𝜕

𝜇𝜃𝑖)
]

cos 𝜃0
𝑖𝑘

−
[
Ψ0𝑖

(
𝜕𝜇𝜙𝑖𝜕

𝜇𝜃𝑘 + 𝜕𝜇𝜃𝑘𝜕
𝜇𝜙𝑖

)
− Ψ0𝑘 (𝜕𝜇𝜃𝑖𝜕𝜇𝜙𝑘 + 𝜕𝜇𝜙𝑘𝜕

𝜇𝜃𝑖)
]

sin 𝜃0
𝑖𝑘 . (3.15)

We can see that in the case 𝜖12𝜖13𝜖23 < 0, the oscillations of the phase 𝜃 and amplitude 𝜙 are not hybridized
the same as for potential energy (3.14). It should be noted that the phase-amplitude hybridization is absent
in two-band superconductors due to this property. In addition, as demonstrated in reference [37], the effect
of the mixing of the oscillations of phases and amplitudes of OP from different bands is essential for
a reduced charge carrier density 𝜇 < 𝜔D (𝜇 is chemical potential, 𝜔D is Debye frequency). For a large
charge carrier density, the oscillations of phases and amplitudes can be supposed independent.

Accounting of the hybridization results in the dispersion equation of the sixth order, instead of two
equations (3.21) and (3.36) of the third order. The sixth order equation cannot be solved analytically.
In order to obtain an analytical spectrum of quasiparticles, we are forced to use the decoupling of
correlations. As will be demonstrated below, the spectrum of collective excitations is determined not
only by the coefficients of the proximity effect 𝜖𝑖𝑘 , but also by the coefficients of the drag effect 𝜂𝑖𝑘 .
As in two-band superconductors, the properties of the Higgs modes at 𝑇 = 𝑇𝑐 force us to regard the
coefficients 𝜂𝑖𝑘 in such way that it leaves only the common mode Higgs and Goldstone oscillations. Special
choice of the coefficients 𝜂𝑖𝑘 , which eliminates the spectrum branches with anti-phase oscillations, is
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the same both for the Leggett modes and for the Higgs modes if we neglect their hybridization, and
regardless of the sign of 𝜖12𝜖13𝜖23. Hence, at the first stage, we can consider the normal oscillations
without the phase-amplitude hybridization. Accounting of the phase-amplitude hybridization requires
special consideration.

3.2. Goldstone modes

Let us consider the movement of the phases only. Using the modulus-phase representation (3.1) and
assuming |Ψ1,2,3 | = const and 𝐴𝜇 = 0, the Lagrangian (3.5) takes the form:

L =
ℏ2

4𝑚1
|Ψ1 |2𝜕𝜇𝜃1𝜕

𝜇𝜃1 +
ℏ2

4𝑚2
|Ψ2 |2𝜕𝜇𝜃2𝜕

𝜇𝜃2 +
ℏ3

4𝑚3
|Ψ3 |2𝜕𝜇𝜃3𝜕

𝜇𝜃3

+ ℏ2

4
𝜂12 |Ψ1 | |Ψ2 |

(
𝜕𝜇𝜃1𝜕

𝜇𝜃2 + 𝜕𝜇𝜃2𝜕
𝜇𝜃1

)
cos(𝜃1 − 𝜃2)

+ ℏ2

4
𝜂13 |Ψ1 | |Ψ3 |

(
𝜕𝜇𝜃1𝜕

𝜇𝜃3 + 𝜕𝜇𝜃3𝜕
𝜇𝜃1

)
cos(𝜃1 − 𝜃3)

+ ℏ2

4
𝜂23 |Ψ2 | |Ψ3 |

(
𝜕𝜇𝜃2𝜕

𝜇𝜃3 + 𝜕𝜇𝜃3𝜕
𝜇𝜃2

)
cos(𝜃2 − 𝜃3)

− 2𝜖12 |Ψ1 | |Ψ2 | cos (𝜃1 − 𝜃2) − 2𝜖13 |Ψ1 | |Ψ3 | cos (𝜃1 − 𝜃3)
− 2𝜖23 |Ψ2 | |Ψ3 | cos (𝜃2 − 𝜃3) + L (|Ψ1 |, |Ψ2 |, |Ψ3 |) . (3.16)

Corresponding Lagrange equation, for example, is

𝜕𝜇
𝜕L

𝜕 (𝜕𝜇𝜃1)
− 𝜕L
𝜕𝜃1

= 0 ⇒ ℏ2

4𝑚1
|Ψ1 |2𝜕𝜇𝜕𝜇𝜃1 +

ℏ2

4
𝜂12 |Ψ1 | |Ψ2 | cos(𝜃1 − 𝜃2)𝜕𝜇𝜕𝜇𝜃2

+ℏ
2

4
𝜂13 |Ψ1 | |Ψ3 | cos(𝜃1 − 𝜃3)𝜕𝜇𝜕𝜇𝜃3

−|Ψ1 | |Ψ2 |𝜖12 sin(𝜃1 − 𝜃2) − |Ψ1 | |Ψ3 |𝜖13 sin(𝜃1 − 𝜃3) = 0, (3.17)

where we have omitted nonlinear terms 𝜕𝜇𝜃𝜕
𝜇𝜃. The phases can be written in the form of harmonic

oscillations:

𝜃1 = 𝜃0
1 + 𝐴ei(qr−𝜔𝑡 ) ≡ 𝜃0

1 + 𝐴e−i𝑞𝜇𝑥
𝜇

,

𝜃2 = 𝜃0
2 + 𝐵ei(qr−𝜔𝑡 ) ≡ 𝜃0

2 + 𝐵e−i𝑞𝜇𝑥
𝜇

,

𝜃3 = 𝜃0
3 + 𝐶ei(qr−𝜔𝑡 ) ≡ 𝜃0

3 + 𝐶e−i𝑞𝜇𝑥
𝜇

, (3.18)

where 𝑞𝜇 = (𝜔/𝜐,−q), 𝑥𝜇 = (𝜐𝑡, r), 𝜃0
1,2,3 are equilibrium phases. We should linearize equation (3.17)

assuming cos 𝜃𝑖𝑘 ≈ cos 𝜃0
𝑖𝑘

, sin 𝜃𝑖𝑘 = sin
(
𝜃𝑖𝑘 − 𝜃0

𝑖𝑘
+ 𝜃0

𝑖𝑘

)
≈

(
𝜃𝑖𝑘 − 𝜃0

𝑖𝑘

)
cos 𝜃0

𝑖𝑘
+ sin 𝜃0

𝑖𝑘
, and using the

second three equations from equation (2.4). Then, the linearized equations are

ℏ2

4𝑚1
|Ψ1 |2𝜕𝜇𝜕𝜇𝜃1 +

ℏ2

4
[
𝜂12 cos 𝜃0

12
]
|Ψ1 | |Ψ2 |𝜕𝜇𝜕𝜇𝜃2 +

ℏ2

4
[
𝜂13 cos 𝜃0

13
]
|Ψ1 | |Ψ3 |𝜕𝜇𝜕𝜇𝜃3

− |Ψ1 | |Ψ2 |
[
𝜖12 cos 𝜃0

12
] (
𝜃12 − 𝜃0

12
)
− |Ψ1 | |Ψ3 |

[
𝜖13 cos 𝜃0

13
] (
𝜃13 − 𝜃0

13
)
= 0,

ℏ2

4𝑚2
|Ψ2 |2𝜕𝜇𝜕𝜇𝜃2 +

ℏ2

4
[
𝜂12 cos 𝜃0

12
]
|Ψ1 | |Ψ2 |𝜕𝜇𝜕𝜇𝜃1 +

ℏ2

4
[
𝜂23 cos 𝜃0

23
]
|Ψ2 | |Ψ3 |𝜕𝜇𝜕𝜇𝜃3

+ |Ψ1 | |Ψ2 |
[
𝜖12 cos 𝜃0

12
] (
𝜃12 − 𝜃0

12
)
− |Ψ2 | |Ψ3 |

[
𝜖23 cos 𝜃0

23
] (
𝜃23 − 𝜃0

23
)
= 0,

ℏ2

4𝑚3
|Ψ3 |2𝜕𝜇𝜕𝜇𝜃3 +

ℏ2

4
[
𝜂13 cos 𝜃0

13
]
|Ψ1 | |Ψ3 |𝜕𝜇𝜕𝜇𝜃1 +

ℏ2

4
[
𝜂23 cos 𝜃0

23
]
|Ψ2 | |Ψ3 |𝜕𝜇𝜕𝜇𝜃2

+ |Ψ1 | |Ψ3 |
[
𝜖13 cos 𝜃0

13
] (
𝜃13 − 𝜃0

13
)
+ |Ψ2 | |Ψ3 |

[
𝜖23 cos 𝜃0

23
] (
𝜃23 − 𝜃0

23
)
= 0. (3.19)
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Substituting equation (3.18) in equation (3.19), we obtain equations for the amplitudes 𝐴, 𝐵, 𝐶:

𝐴

(
− |Ψ2 |
|Ψ1 |

𝜖12 cos 𝜃0
12 −

|Ψ3 |
|Ψ1 |

𝜖13 cos 𝜃0
13 − 𝑞𝜇𝑞

𝜇 ℏ2

4𝑚1

)
+ 𝐵

|Ψ2 |
|Ψ1 |

(
𝜖12 cos 𝜃0

12 − 𝑞𝜇𝑞
𝜇 ℏ

2

4
𝜂12 cos 𝜃0

12

)
+ 𝐶

|Ψ3 |
|Ψ1 |

(
𝜖13 cos 𝜃0

13 − 𝑞𝜇𝑞
𝜇 ℏ

2

4
𝜂13 cos 𝜃0

13

)
= 0,

𝐴
|Ψ1 |
|Ψ2 |

(
𝜖12 cos 𝜃0

12 − 𝑞𝜇𝑞
𝜇 ℏ

2

4
𝜂12 cos 𝜃0

12

)
+ 𝐵

(
− |Ψ1 |
|Ψ2 |

𝜖12 cos 𝜃0
12 −

|Ψ3 |
|Ψ2 |

𝜖23 cos 𝜃0
23 − 𝑞𝜇𝑞

𝜇 ℏ2

4𝑚2

)
+ 𝐶

|Ψ3 |
|Ψ2 |

(
𝜖23 cos 𝜃0

23 − 𝑞𝜇𝑞
𝜇 ℏ

2

4
𝜂23 cos 𝜃0

23

)
= 0,

𝐴
|Ψ1 |
|Ψ3 |

(
𝜖13 cos 𝜃0

13 − 𝑞𝜇𝑞
𝜇 ℏ

2

4
𝜂13 cos 𝜃0

13

)
+ 𝐵

|Ψ2 |
|Ψ3 |

(
𝜖23 cos 𝜃0

23 − 𝑞𝜇𝑞
𝜇 ℏ

2

4
𝜂23 cos 𝜃0

23

)
+ 𝐶

(
− |Ψ1 |
|Ψ3 |

𝜖13 cos 𝜃0
13 −

|Ψ2 |
|Ψ3 |

𝜖23 cos 𝜃0
23 − 𝑞𝜇𝑞

𝜇 ℏ2

4𝑚3

)
= 0. (3.20)

Equating the determinant of the system to zero (3.20), we find a dispersion equation:(
𝑞𝜇𝑞

𝜇
)3
𝑎 +

(
𝑞𝜇𝑞

𝜇
)2
𝑏 +

(
𝑞𝜇𝑞

𝜇
)
𝑐 = 0, (3.21)

where

𝑎 =

(
ℏ2

4

)3 [
1

𝑚1𝑚2𝑚3
+ 2𝜂12𝜂13𝜂23 −

𝜂2
12
𝑚3

−
𝜂2

13
𝑚2

−
𝜂2

23
𝑚1

]
,

𝑏 =

(
ℏ2

4

)2 [ (
|Ψ1 |
|Ψ3 |

𝜖̃13 +
|Ψ2 |
|Ψ3 |

𝜖̃23

) (
1

𝑚1𝑚2
− 𝜂2

12

)
+

(
|Ψ1 |
|Ψ2 |

𝜖̃12 +
|Ψ3 |
|Ψ2 |

𝜖̃23

) (
1

𝑚1𝑚3
− 𝜂2

13

)
+

(
|Ψ2 |
|Ψ1 |

𝜖̃12 +
|Ψ3 |
|Ψ1 |

𝜖̃13

) (
1

𝑚2𝑚3
− 𝜂2

23

)
− 2𝜖̃12

(
𝜂12
𝑚3

− 𝜂13𝜂23

)
− 2𝜖̃13

(
𝜂13
𝑚2

− 𝜂12𝜂23

)
− 2𝜖̃23

(
𝜂23
𝑚1

− 𝜂12𝜂13

) ]
,

𝑐 =
ℏ2

4

[ (
|Ψ1 |
|Ψ2 |

𝜖̃12 +
|Ψ3 |
|Ψ2 |

𝜖̃23

) (
|Ψ1 |
|Ψ3 |

𝜖̃13 +
|Ψ2 |
|Ψ3 |

𝜖̃23

)
1
𝑚1

+
(
|Ψ2 |
|Ψ1 |

𝜖̃12 +
|Ψ3 |
|Ψ1 |

𝜖̃13

)
×

(
|Ψ1 |
|Ψ3 |

𝜖̃13 +
|Ψ2 |
|Ψ3 |

𝜖̃23

)
1
𝑚2

+
(
|Ψ2 |
|Ψ1 |

𝜖̃12 +
|Ψ3 |
|Ψ1 |

𝜖̃13

) (
|Ψ1 |
|Ψ2 |

𝜖̃12 +
|Ψ3 |
|Ψ2 |

𝜖̃23

)
1
𝑚3

+ 2𝜖̃13𝜖̃23𝜂12

+ 2𝜖̃12𝜖̃23𝜂13 + 2𝜖̃12𝜖̃13𝜂23 − 𝜖̃2
12

1
𝑚3

+ 2𝜖̃12𝜂12

(
|Ψ1 |
|Ψ3 |

𝜖̃13 +
|Ψ2 |
|Ψ3 |

𝜖̃23

)
− 𝜖̃2

13
1
𝑚2

+ 2𝜖̃13𝜂13

(
|Ψ1 |
|Ψ2 |

𝜖̃12 +
|Ψ3 |
|Ψ2 |

𝜖̃23

)
− 𝜖̃2

23
1
𝑚1

+ 2𝜖̃23𝜂23

(
|Ψ2 |
|Ψ1 |

𝜖̃21 +
|Ψ3 |
|Ψ1 |

𝜖̃13

) ]
, (3.22)

and we denoted:
𝜖̃𝑖𝑘 ≡ 𝜖𝑖𝑘 cos 𝜃0

𝑖𝑘 , 𝜂𝑖𝑘 ≡ 𝜂𝑖𝑘 cos 𝜃0
𝑖𝑘 . (3.23)

From equation (3.21) we can see that one of dispersion relations is

𝑞𝜇𝑞
𝜇 = 0 ⇒ 𝜔2 = 𝑞2𝜐2, (3.24)

wherein 𝐴 = 𝐵 = 𝐶. Thus, this mode represents the common mode oscillations, as Goldstone mode
in single-band superconductors. There are other oscillation modes with such spectra, that 𝑞𝜇𝑞

𝜇 =

(−𝑏 ±
√
𝑏2 − 4𝑎𝑐)/2𝑎 ≠ 0, i.e., two massive modes. These modes are analogous to the Leggett mode in

two-band superconductors [8] and correspond to the results of references [37–39] for the phase oscillations
in three-band superconductors. It should be noted that if we assume all 𝜖𝑖𝑘 = 0, then 𝑏 = 𝑐 = 0 and the
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dispersion equation will be 𝑎(𝑞𝜇𝑞
𝜇)3 = 0. That is, we obtain independent common mode oscillations in

each band. Let us consider a symmetrical three-band system |Ψ1 | = |Ψ2 | = |Ψ3 |, 𝑚1 = 𝑚2 = 𝑚3 ≡ 𝑚,
𝜖12 = 𝜖13 = 𝜖23 ≡ 𝜖 in the case of the absence of the drag effect 𝜂12 = 𝜂13 = 𝜂23 = 0. Then, massive
modes have the same spectrum:

𝑞𝜇𝑞
𝜇 = −12

ℏ2 𝑚𝜖̃, (3.25)

where 𝜖̃ < 0. Amplitudes of these modes relate as 𝐴 = −𝐶, 𝐵 = 0 and 𝐴 = 𝐶, 𝐵 = −(𝐴 + 𝐶), so that
current J = ℏ𝑒

𝑚1
|Ψ1 |2∇𝜃1 + ℏ𝑒

𝑚2
|Ψ2 |2∇𝜃2 + ℏ𝑒

𝑚3
|Ψ3 |2∇𝜃3 is J ≠ 0 for the acoustic mode (3.24) and J = 0 for

the massive modes (3.25). These three Goldstone modes are shown in figure 3.

Figure 3. Normal oscillations of the phases 𝜃1, 𝜃2, 𝜃3 in a symmetrical three-band system |Ψ1 | = |Ψ2 | =
|Ψ3 |, 𝑚1 = 𝑚2 = 𝑚3 with repulsive interband interactions 𝜖12 = 𝜖13 = 𝜖23 > 0 in the case of the absence
of the drag effect 𝜂12 = 𝜂13 = 𝜂23 = 0. (a) Common phase oscillations with acoustic spectrum (3.24),
which are accompanied by nonzero current J = ℏ𝑒

𝑚1
|Ψ1 |2∇𝜃1 + ℏ𝑒

𝑚2
|Ψ2 |2∇𝜃2 + ℏ𝑒

𝑚3
|Ψ3 |2∇𝜃3 ≠ 0. (b, c)

Anti-phase oscillations with the massive spectrum (3.25), which are not accompanied by the current, i.e.
J = 0.

It is not difficult to see that if we assume

𝜂12 =
1

√
𝑚1𝑚2

, 𝜂13 =
1

√
𝑚1𝑚3

, 𝜂23 =
1

√
𝑚2𝑚3

, (3.26)

then, 𝑎 = 𝑏 = 0. Hence, the common mode oscillations (3.24) remain only.

3.3. Higgs modes

Let us consider the movement of the modules only (that is, assuming 𝜃1,2,3 = 𝜃0
1,2,3), then, the

Lagrangian (3.5) takes the form (when 𝐴𝜇 = 0):

L =
ℏ2

4𝑚1
𝜕𝜇 |Ψ1 |𝜕𝜇 |Ψ1 | +

ℏ2

4𝑚2
𝜕𝜇 |Ψ2 |𝜕𝜇 |Ψ2 | +

ℏ2

4𝑚3
𝜕𝜇 |Ψ3 |𝜕𝜇 |Ψ3 |

+ ℏ2

4
𝜂12

(
𝜕𝜇 |Ψ1 |𝜕𝜇 |Ψ2 | + 𝜕𝜇 |Ψ2 |𝜕𝜇 |Ψ1 |

)
+ ℏ2

4
𝜂13

(
𝜕𝜇 |Ψ1 |𝜕𝜇 |Ψ3 | + 𝜕𝜇 |Ψ3 |𝜕𝜇 |Ψ1 |

)
+ ℏ2

4
𝜂23

(
𝜕𝜇 |Ψ2 |𝜕𝜇 |Ψ3 | + 𝜕𝜇 |Ψ3 |𝜕𝜇 |Ψ2 |

)
− 𝑎1 |Ψ1 |2 −

𝑏1
2

|Ψ1 |4 − 𝑎2 |Ψ2 |2 −
𝑏2
2

|Ψ2 |4

− 𝑎3 |Ψ3 |2 −
𝑏3
2

|Ψ3 |4 − 2𝜖̃12 |Ψ1 | |Ψ2 | − 2𝜖̃13 |Ψ1 | |Ψ3 | − 2𝜖̃23 |Ψ2 | |Ψ3 |. (3.27)
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At 𝑇 < 𝑇𝑐, we can consider small variations of the modulus of OP from its equilibrium value: |Ψ1,2,3 | =
Ψ01,02,03 + 𝜙1,2,3, where |𝜙1,2,3 | � Ψ01,02,03. Then, |Ψ|2 ≈ Ψ2

0 + 2Ψ0𝜙 + 𝜙2, |Ψ|4 ≈ Ψ4
0 + 4Ψ3

0𝜙 + 6Ψ2
0𝜙

2,
|Ψ1 | |Ψ2 | ≈ Ψ01Ψ02 + Ψ01𝜙2 + Ψ02𝜙1 + 𝜙1𝜙2, and Lagrangian (3.27) takes the form:

L =
ℏ2

4𝑚1
𝜕𝜇𝜙1𝜕

𝜇𝜙1 +
ℏ2

4𝑚2
𝜕𝜇𝜙2𝜕

𝜇𝜙2 +
ℏ2

4𝑚3
𝜕𝜇𝜙3𝜕

𝜇𝜙3 +
ℏ2

4
𝜂12

(
𝜕𝜇𝜙1𝜕

𝜇𝜙2 + 𝜕𝜇𝜙2𝜕
𝜇𝜙1

)
+ ℏ2

4
𝜂13

(
𝜕𝜇𝜙1𝜕

𝜇𝜙3 + 𝜕𝜇𝜙3𝜕
𝜇𝜙1

)
+ ℏ2

4
𝜂23

(
𝜕𝜇𝜙2𝜕

𝜇𝜙3 + 𝜕𝜇𝜙3𝜕
𝜇𝜙2

)
− 𝜙2

1

(
𝑎1 + 3𝑏1Ψ

2
01

)
− 𝜙2

2

(
𝑎2 + 3𝑏2Ψ

2
02

)
− 𝜙2

3

(
𝑎2 + 3𝑏3Ψ

2
03

)
− 2𝜖̃12𝜙1𝜙2 − 2𝜖̃13𝜙1𝜙3 − 2𝜖̃23𝜙2𝜙3

− 2𝜙1

(
𝜖̃12Ψ02 + 𝜖̃13Ψ03 + 𝑎1Ψ01 + 𝑏1Ψ

3
01

)
− 2𝜙2

(
𝜖̃12Ψ01 + 𝜖̃23Ψ03 + 𝑎2Ψ02 + 𝑏2Ψ

3
02

)
− 2𝜙3

(
𝜖̃13Ψ01 + 𝜖̃23Ψ02 + 𝑎3Ψ03 + 𝑏3Ψ

3
03

)
− 𝑎1Ψ

2
01 −

𝑏1
2
Ψ4

01 − 𝑎2Ψ
2
02 −

𝑏2
2
Ψ4

02

− 𝑎3Ψ
2
03 −

𝑏3
2
Ψ4

03 − 2𝜖̃12Ψ01Ψ02 − 2𝜖̃13Ψ01Ψ03 − 2𝜖̃23Ψ02Ψ03. (3.28)

The last nine terms can be omitted as a constant. The terms at 𝜙1,2,3 should be zero, then

𝜖̃12Ψ02 + 𝜖̃13Ψ03 + 𝑎1Ψ01 + 𝑏1Ψ
3
01 = 0,

𝜖̃12Ψ01 + 𝜖̃23Ψ03 + 𝑎2Ψ02 + 𝑏2Ψ
3
02 = 0,

𝜖̃13Ψ01 + 𝜖̃23Ψ02 + 𝑎3Ψ03 + 𝑏3Ψ
3
03 = 0, (3.29)

which corresponds to the first three equations in equation (2.4). At 𝑇 > 𝑇𝑐1, 𝑇𝑐2, 𝑇𝑐3, we have 𝑎1,2,3 > 0
and equation (2.8) in 𝑇 = 𝑇𝑐, at 𝑇 < 𝑇𝑐1, 𝑇𝑐2, 𝑇𝑐3 we have 𝑎1,2,3 < 0. At 𝑇 � 𝑇𝑐1, 𝑇𝑐2, 𝑇𝑐3 in the case of
the weak interband coupling 𝜖2

𝑖𝑘
� 𝑎𝑖𝑎𝑘 , it is not difficult to obtain from equation (3.29):

Ψ01 =

√︄
|𝑎1 |
𝑏1

(
1 − 𝜖̃12

2
√︁
|𝑎1 | |𝑎2 |

√︂
𝑏1
𝑏2

|𝑎2 |
|𝑎1 |

− 𝜖̃13

2
√︁
|𝑎1 | |𝑎3 |

√︂
𝑏1
𝑏3

|𝑎3 |
|𝑎1 |

)
≈

√︄
|𝑎1 |
𝑏1

,

Ψ02 =

√︄
|𝑎2 |
𝑏2

(
1 − 𝜖̃12

2
√︁
|𝑎2 | |𝑎1 |

√︂
𝑏2
𝑏1

|𝑎1 |
|𝑎2 |

− 𝜖̃23

2
√︁
|𝑎2 | |𝑎3 |

√︂
𝑏2
𝑏3

|𝑎3 |
|𝑎2 |

)
≈

√︄
|𝑎2 |
𝑏2

,

Ψ02 =

√︄
|𝑎3 |
𝑏3

(
1 − 𝜖̃13

2
√︁
|𝑎3 | |𝑎1 |

√︂
𝑏3
𝑏1

|𝑎1 |
|𝑎3 |

− 𝜖̃23

2
√︁
|𝑎2 | |𝑎3 |

√︂
𝑏3
𝑏2

|𝑎2 |
|𝑎3 |

)
≈

√︄
|𝑎3 |
𝑏3

. (3.30)

That is, the effect of the weak interband coupling on the OP Ψ1,2,3 at 𝑇 = 0 is not essential, and it can be
described as perturbation. At 𝑇 → 𝑇𝑐, we have Ψ01,02,03 → 0, then, the following approximation can be
proposed:

Ψ2
01 =

(
−𝑎1𝑎2𝑎3 − 2𝜖̃12𝜖̃13𝜖̃23 + 𝜖̃2

23𝑎1 + 𝜖̃2
13𝑎2 + 𝜖̃2

12𝑎3
)
/𝑏1

(
𝑎2𝑎3 − 𝜖̃2

23
)
,

Ψ2
02 =

(
−𝑎1𝑎2𝑎3 − 2𝜖̃12𝜖̃13𝜖̃23 + 𝜖̃2

23𝑎1 + 𝜖̃2
13𝑎2 + 𝜖̃2

12𝑎3
)
/𝑏2

(
𝑎1𝑎3 − 𝜖̃2

13
)
,

Ψ2
03 =

(
−𝑎1𝑎2𝑎3 − 2𝜖̃12𝜖̃13𝜖̃23 + 𝜖̃2

23𝑎1 + 𝜖̃2
13𝑎2 + 𝜖̃2

12𝑎3
)
/𝑏3

(
𝑎1𝑎2 − 𝜖̃2

12
)
. (3.31)

Thus, at high temperatures 𝑇 & 𝑇𝑐1, 𝑇𝑐2, 𝑇𝑐3, the values of the OP Ψ01,02,03 are determined by the
interband couplings 𝜖𝑖𝑘 , so that, if 𝜖12 = 𝜖13 = 𝜖23 = 0, then Ψ01,02,03 = 0.

Let us introduce the following notes:

𝛼1 ≡ 𝑎1 + 3𝑏1Ψ
2
01, 𝛼2 ≡ 𝑎2 + 3𝑏2Ψ

2
02, 𝛼3 ≡ 𝑎3 + 3𝑏3Ψ

2
03, (3.32)

then,

𝛼1,2,3 = 𝑎1,2,3 > 0, at 𝑇 = 𝑇𝑐,

𝛼1,2,3 = −2𝑎1,2,3 = 2|𝑎1,2,3 |, at 𝑇 � 𝑇𝑐1, 𝑇𝑐2, 𝑇𝑐3. (3.33)
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The second formula is correct if the weak interband coupling 𝜖2 � 𝑎1𝑎2 takes place only. Lagrange
equations for Lagrangian (3.28) are:

ℏ2

4𝑚1
𝜕𝜇𝜕

𝜇𝜙1 +
ℏ2

4
𝜂12𝜕𝜇𝜕

𝜇𝜙2 +
ℏ2

4
𝜂13𝜕𝜇𝜕

𝜇𝜙3 + 𝛼1𝜙1 + 𝜖̃12𝜙2 + 𝜖̃13𝜙3 = 0,

ℏ2

4𝑚2
𝜕𝜇𝜕

𝜇𝜙2 +
ℏ2

4
𝜂12𝜕𝜇𝜕

𝜇𝜙1 +
ℏ2

4
𝜂23𝜕𝜇𝜕

𝜇𝜙3 + 𝛼2𝜙2 + 𝜖̃12𝜙1 + 𝜖̃23𝜙3 = 0,

ℏ2

4𝑚3
𝜕𝜇𝜕

𝜇𝜙3 +
ℏ2

4
𝜂13𝜕𝜇𝜕

𝜇𝜙1 +
ℏ2

4
𝜂23𝜕𝜇𝜕

𝜇𝜙2 + 𝛼3𝜙2 + 𝜖̃13𝜙1 + 𝜖̃23𝜙3 = 0. (3.34)

The fields 𝜙1,2,3 can be written in the form of harmonic oscillations: 𝜙1 = 𝐴 exp(−i𝑞𝜇𝑥
𝜇), 𝜙2 =

𝐵 exp(−i𝑞𝜇𝑥
𝜇), 𝜙3 = 𝐶 exp(−i𝑞𝜇𝑥

𝜇), where 𝑞𝜇𝑥
𝜇 = 𝜔𝑡 − qr. Substituting them in equation (3.34), we

obtain equations for the amplitudes 𝐴, 𝐵, 𝐶:

𝐴

(
𝛼1 − 𝑞𝜇𝑞

𝜇 ℏ2

4𝑚1

)
+ 𝐵

(
𝜖̃12 − 𝑞𝜇𝑞

𝜇 ℏ
2

4
𝜂12

)
+ 𝐶

(
𝜖̃13 − 𝑞𝜇𝑞

𝜇 ℏ
2

4
𝜂13

)
= 0,

𝐴

(
𝜖̃12 − 𝑞𝜇𝑞

𝜇 ℏ
2

4
𝜂12

)
+ 𝐵

(
𝛼2 − 𝑞𝜇𝑞

𝜇 ℏ2

4𝑚2

)
+ 𝐶

(
𝜖̃23 − 𝑞𝜇𝑞

𝜇 ℏ
2

4
𝜂23

)
= 0,

𝐴

(
𝜖̃13 − 𝑞𝜇𝑞

𝜇 ℏ
2

4
𝜂13

)
+ 𝐵

(
𝜖̃23 − 𝑞𝜇𝑞

𝜇 ℏ
2

4
𝜂23

)
+ 𝐶

(
𝛼3 − 𝑞𝜇𝑞

𝜇 ℏ2

4𝑚3

)
= 0. (3.35)

Equating the determinant of the system to zero (3.35), we find the dispersion equation:(
𝑞𝜇𝑞

𝜇
)3
𝑎 +

(
𝑞𝜇𝑞

𝜇
)2
𝑏 +

(
𝑞𝜇𝑞

𝜇
)
𝑐 + 𝑑 = 0, (3.36)

where

𝑎 =

(
ℏ2

4

)3 (
1

𝑚1𝑚2𝑚3
+ 2𝜂12𝜂13𝜂23 −

𝜂2
23
𝑚1

−
𝜂2

13
𝑚2

−
𝜂2

12
𝑚3

)
,

𝑏 =

(
ℏ2

4

)2 (
− 𝛼1
𝑚2𝑚3

− 𝛼2
𝑚1𝑚3

− 𝛼3
𝑚2𝑚2

− 2𝜖̃12𝜂13𝜂23 − 2𝜖̃13𝜂12𝜂23 − 2𝜖̃23𝜂12𝜂13

+ 𝛼1𝜂
2
23 + 𝛼2𝜂

2
13 + 𝛼3𝜂

2
12 + 2

𝜖̃23𝜂23
𝑚1

+ 2
𝜖̃13𝜂13
𝑚2

+ 2
𝜖̃12𝜂12
𝑚3

)
, (3.37)

𝑐 =
ℏ2

4

[
𝜖̃2

23 − 𝛼2𝛼3

𝑚1
+
𝜖̃2

13 − 𝛼1𝛼3

𝑚2
+
𝜖̃2

12 − 𝛼1𝛼2

𝑚3

− 2𝜂12(𝜖̃13𝜖̃23 − 𝛼3𝜖̃12) − 2𝜂13(𝜖̃12𝜖̃23 − 𝛼2𝜖̃13) − 2𝜂23(𝜖̃12𝜖̃13 − 𝛼1𝜖̃23)
]
,

𝑑 = 𝛼1𝛼2𝛼3 + 2𝜖̃12𝜖̃13𝜖̃23 − 𝛼1𝜖̃
2
23 − 𝛼2𝜖̃

2
13 − 𝛼3𝜖̃

2
12.

It should be noted that 𝑑 (𝑇𝑐) = 0 according to equations (2.8), (3.23), (3.32), and (3.33). Hence, we have
the corresponding dispersion relations at a critical temperature:

𝑞𝜇𝑞
𝜇 (𝑇𝑐) = 0, (3.38)

𝑞𝜇𝑞
𝜇 (𝑇𝑐) =

−𝑏 ±
√
𝑏2 − 4𝑎𝑐
2𝑎

> 0. (3.39)

We can see that Higgs mode splits to three branches. For the first mode (3.38), the energy gap (the mass
of Higgs boson) vanishes at the critical temperature, as in single-band superconductors, and amplitudes
of these modes relate as 𝐴 = 𝐵 = 𝐶. At the same time, the energy gap of the second and third
modes (3.39) does not vanish at the critical temperature. Thus, let us consider a case of symmetrical
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bands 𝛼1 = 𝛼2 = 𝛼3 ≡ 𝛼, 𝜖̃1 = 𝜖̃2 = 𝜖̃3 ≡ 𝜖̃ , 𝑚1 = 𝑚2 = 𝑚3 ≡ 𝑚 and the drag effect is absent:
𝜂12 = 𝜂13 = 𝜂23 = 0, then, the massive modes have the same spectrum (𝑏2 − 4𝑎𝑐 = 0):

𝑞𝜇𝑞
𝜇 (𝑇𝑐) = −12

ℏ2 𝑚𝜖̃, (3.40)

where 𝜖̃ < 0. Amplitudes of these modes relate as, for example, 𝐴 = −𝐶, 𝐵 = 0 and 𝐴 = 𝐶, 𝐵 = −(𝐴+𝐶),
accordingly.

In [1] it was demonstrated how the energy gap ℏ𝜔0 (q = 0) is related to the coherence length 𝜉:
𝜉2 = 2𝜐2/𝜔2

0 (or from the uncertainty principle: ℏ𝜔0𝜉/𝜐 ∼ ℏ ⇒ 𝜉 ∼ 𝜐/𝜔0, since the energy of Higgs
mode plays the role of the uncertainty of energy in a superconductor). Thus, there are three coherence
lengths according to the branches (3.38) and (3.39). For example, for the symmetrical bands without the
drag effect, we obtain at 𝑇 = 𝑇𝑐:

𝜉2
1 = ∞, (3.41)

𝜉2
2 = 𝜉2

3 =
ℏ2

6𝑚 |𝜖̃ | < ∞. (3.42)

The first coherence length diverges at 𝑇 = 𝑇𝑐. On the contrary, the second and third lengths remain finite
and they vary only a little with temperature.

Thus, Higgs modes are oscillations of SC densities 𝑛s𝑖 = 2|Ψ𝑖 |2. At the same time, the normal density
must oscillate in anti-phase, so that the total density is constant 𝑛 = 𝑛s+𝑛n = const, hence, 𝑛sv𝑠+𝑛nv𝑛 = 0.
Then, in order to change SC density, one Cooper pair must be broken as minimum, that is the energy
of order of 2|Δ| must be spent. Thus, in [1] it was demonstrated that in single-band superconductors
𝑞𝜇𝑞

𝜇 = 4|Δ|2. Thus, to excite any Higgs mode at𝑇 = 𝑇𝑐 it is not necessary to spend this threshold energy,
since |Δ(𝑇𝑐) | = 0. However, for the second and third branches — equation (3.39) or equation (3.40),
we have 𝑞𝜇𝑞

𝜇 (𝑇𝑐) ≠ 0, which is a nonphysical property. Thus, we must assume equation (3.26), then
from equation (3.37) we can see that 𝑎 = 𝑏 = 0. Hence, the anti-phase Higgs modes are absent, and the
common mode oscillations with zero energy gap at 𝑇 = 𝑇𝑐 remain only:

𝑞𝜇𝑞
𝜇 = −𝑑

𝑐
=

4
ℏ2

[ (
𝛼1𝛼2𝛼3 + 2𝜖̃12𝜖̃13𝜖̃23 − 𝛼1𝜖̃

2
23 − 𝛼2𝜖̃

2
13 − 𝛼3𝜖̃

2
12

)
/
(
𝛼2𝛼3 − 𝜖̃2

23
𝑚1

+
𝛼1𝛼3 − 𝜖̃2

13
𝑚2

+
𝛼1𝛼2 − 𝜖̃2

12
𝑚3

− 2
𝛼3𝜖̃12 − 𝜖̃13𝜖̃23√

𝑚1𝑚2
− 2

𝛼2𝜖̃13 − 𝜖̃12𝜖̃23√
𝑚1𝑚3

− 2
𝛼1𝜖̃23 − 𝜖̃12𝜖̃13√

𝑚2𝑚3

) ]
. (3.43)

Respectively, there is only one coherence length 𝜉 (𝑇):

𝜉2 =
2𝜐2

𝜔2
0
= −2𝑐

𝑑
. (3.44)

For symmetrical bands, we have the following dispersion law for the Higgs mode:

𝑞𝜇𝑞
𝜇 =

4𝑚
3ℏ2 (𝛼 − 2|𝜖̃ |), (3.45)

whose energy gap vanishes at 𝑇 = 𝑇𝑐: from equations (2.9) and (3.33) we have 𝛼(𝑇𝑐) = 𝑎(𝑇𝑐) = 2|𝜖̃ |,
hence, 𝑞𝜇𝑞

𝜇 (𝑇𝑐) = 0. The corresponding coherence length is:

𝜉2 =
3ℏ2

2𝑚
1

|𝛼 − 2|𝜖̃ | | , (3.46)

so that 𝜉 (𝑇𝑐) = ∞.
We could see from the properties of Higgs modes that the existence of several coherence lengthes

with corresponding properties is incompatible with the second-order phase transition. Then, if equa-
tion (3.26) takes place, then Leggett modes are absent, and the common mode oscillations with acoustic
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spectrum (3.24) remain only. Thus, as in single-band superconductors, in three-band superconductors
the common mode oscillations exist only. The anti-phase Goldstone mode (i.e., Leggett modes) and the
anti-phase Higgs modes are absent, which ensures only one coherence length 𝜉 (𝑇) diverging at 𝑇 = 𝑇𝑐.
At the same time, the Goldstone mode is accompanied by current. Therefore, the gauge field 𝐴𝜇 ab-
sorbs the Goldstone boson 𝜃, as in single-band superconductors, i.e., Anderson-Higgs mechanism takes
place [1]. The condition (3.26) generalizes the condition obtained in [5, 8] for two-band superconductors,
which prohibits type 1.5 superconductors.

Let us consider the regime of almost independent condensates in each band. This means: 1) temper-
ature must be low, i.e., 𝑇 � 𝑇𝑐1, 𝑇𝑐2, 𝑇𝑐3, 2) the weak interband coupling 𝜖2

𝑖𝑘
� 𝑎𝑖𝑎𝑘 must take place.

Using equation (3.30), the energy gap ℏ𝜔0 (q = 0) of Higgs mode (3.43) can be reduced to a form:

(ℏ𝜔0)2 = 4𝜐2 𝛼1𝛼2𝛼3
(𝛼2𝛼3/𝑚1) + (𝛼1𝛼3/𝑚2) + (𝛼1𝛼2/𝑚3)

= 8𝜐2 |𝑎1 | |𝑎2 | |𝑎3 |
( |𝑎2 | |𝑎3 |/𝑚1) + (|𝑎1 | |𝑎3 |/𝑚2) + (|𝑎1 | |𝑎2 |/𝑚3)

=
8
3
𝜐2


√︃
𝑎2

1 |𝑎2 | |𝑎3 |𝑏2𝑏3

( |𝑎2 | |𝑎3 |/𝑚1) + (|𝑎1 | |𝑎3 |/𝑚2) + (|𝑎1 | |𝑎2 |/𝑚3)
Ψ02Ψ03

+

√︃
𝑎2

2 |𝑎1 | |𝑎3 |𝑏1𝑏3

( |𝑎2 | |𝑎3 |/𝑚1) + (|𝑎1 | |𝑎3 |/𝑚2) + (|𝑎1 | |𝑎2 |/𝑚3)
Ψ01Ψ03

+

√︃
𝑎2

3 |𝑎1 | |𝑎2 |𝑏1𝑏2

( |𝑎2 | |𝑎3 |/𝑚1) + (|𝑎1 | |𝑎3 |/𝑚2) + (|𝑎1 | |𝑎2 |/𝑚3)
Ψ01Ψ02

 . (3.47)

Then, multipliers before Ψ0𝑖Ψ0𝑘 depend on temperature very weakly, and this energy is symmetrical
with respect to the bands. Using the relationship between the “wave function” of Cooper pairs Ψ and the
energy gap Δ [1, 40, 41]:

Ψ𝑖 =
[14𝜁 (3)𝑛𝑖]1/2

4π𝑇𝑐𝑖
Δ𝑖 , (3.48)

where 𝑛𝑖 = 𝑘3
𝐹𝑖
/3π2 is electron density for a band 𝑖. Then, we can see that (ℏ𝜔0)2 ∝ |Δ𝑖 | |Δ𝑘 |, and we

can assume:
(ℏ𝜔0)2 = 𝜒12Δ01Δ02 + 𝜒13Δ01Δ03 + 𝜒23Δ02Δ03, (3.49)

where 𝜒𝑖𝑘 = const (dimensionless) are such that in superconductor with symmetrical𝑚1 = 𝑚2 = 𝑚3, 𝑛1 =

𝑛2 = 𝑛3, 𝑎1 = 𝑎2 = 𝑎3, 𝑏1 = 𝑏2 = 𝑏3, 𝑇𝑐1 = 𝑇𝑐2 = 𝑇𝑐3 ⇒ Δ1 = Δ2 = Δ3 and almost independent bands
(i.e., 𝜖2

𝑖𝑘
� 𝑎𝑖𝑎𝑘 at 𝑇 � 𝑇𝑐1, 𝑇𝑐2, 𝑇𝑐3), we should have 𝜐 = 𝜐F/3, since in single-band superconductors

we have 𝜐 = 𝜐F/
√

3 and we can determine the “dielectric permittivity” as 𝜀 = 𝑐2/𝜐2 = 𝑐2/(𝜐2
F/3) [1],

then a “mixture” of three superconductors is equivalent to three parallel dielectrics (capacitors), then the
total permittivity is 𝜀 = 𝜀1 + 𝜀2 + 𝜀3 = 3𝑐2/

(
𝜐2

F/3
)
; hence, we obtain for the “mixture”: 𝜐 = 𝜐F/3. The

coefficients 𝑎𝑖 , 𝑏𝑖 are [42]:

𝑎𝑖 =
6π2𝑇𝑐𝑖

7𝜁 (3)𝜀𝐹𝑖

(𝑇 − 𝑇𝑐𝑖) , 𝑏𝑖 =
6π2𝑇𝑐𝑖

7𝜁 (3)𝜀𝐹𝑖

𝑇𝑐𝑖

𝑛𝑖
. (3.50)

Let us suppose that 𝜒12 ≈ 𝜒13 ≈ 𝜒23 ≡ 𝜒 = const, and consider symmetrical bands (in particular
𝜐F1 = 𝜐F2 = 𝜐F3 ≡ 𝜐F). Substituting equations (3.47), (3.48) and (3.50) in equation (3.49) we obtain:

𝜐2 =
3𝜒
4
𝜐2

F ⇒ 𝜒 =
4
27

. (3.51)

For the material with different bands at 𝑇 � 𝑇𝑐1, 𝑇𝑐2, 𝑇𝑐3 we can obtain the following approximation:

𝜐2 ≈ 1
9

(
𝑇𝑐2𝑇𝑐3
𝑇𝑐1

𝜐2
F1 +

𝑇𝑐1𝑇𝑐3
𝑇𝑐2

𝜐2
F2 +

𝑇𝑐1𝑇𝑐2
𝑇𝑐3

𝜐2
F3

)
1

𝑇𝑐1 + 𝑇𝑐2 + 𝑇𝑐3
. (3.52)
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Thus, the speed of “light” 𝜐 is of the order of Fermi speeds 𝜐F1, 𝜐F2, 𝜐F3 in the corresponding bands, as
in single-band superconductors, where 𝜐 = 𝜐F/

√
3 [1].

4. Results

In this work we investigate equilibrium states, magnetic response and the normal oscillations of
internal degrees of freedom of three-band superconductors with the accounting of the terms of the “drag”
effect 𝜂𝑖𝑘

{
𝐷𝜇Ψ𝑖 (𝐷𝜇Ψ𝑘)+ + (𝐷𝜇Ψ𝑖)+𝐷𝜇Ψ𝑘

}
. Our results are as follows:

1) The obtained equation for critical temperature (2.8) demonstrates that 𝑇𝑐 depends on the signs
of the coefficients of internal proximity effect (𝜖𝑖𝑘 < 0 for attractive interband interaction, 𝜖𝑖𝑘 > 0 for
repulsive interband interaction): 𝑇𝑐 (𝜖12𝜖13𝜖23 < 0) > 𝑇𝑐 (𝜖12𝜖13𝜖23 > 0). As in two-band systems, the
effect of interband coupling is nonperturbative: the application of the weak interband coupling washes
out all OP up to a new critical temperature, as illustrated in figure 2. The magnetic penetration depth is
determined with SC densities in each band, although the drag terms renormalize the carrier masses see
equation (2.14).

2) Due to the internal proximity effect, the Goldstone mode splits into three branches: common
mode oscillations with the acoustic spectrum, and the oscillations of the relative phases 𝜃𝑖 − 𝜃𝑘 between
SC condensates with an energy gap in the spectrum determined by interband couplings 𝜖𝑖𝑘 , which
are analogous to the Leggett mode in two-band superconductors. The common mode oscillations are
absorbed by the gauge field 𝐴𝜇. That is why oscillations are accompanied by current, as in single-band
superconductors [1]. At the same time, the massive modes are not accompanied by current. Therefore,
they “survive”. If we assume that the coefficients of the drag effect 𝜂𝑖𝑘 are such as in equation (3.26),
then the Leggett modes are absent, and the common mode oscillations (3.24) remain only.

3) Higgs oscillations also split into three branches. The energy gap of the common mode vanishes at
critical temperature 𝑇𝑐, for the other two anti-phase modes their energy gaps do not vanish at 𝑇𝑐 and are
determined by the interband couplings 𝜖𝑖𝑘 . The mass of Higgs mode is related to the coherence length 𝜉.
Hence, we obtain three coherence lengths accordingly. The first coherence length diverges at 𝑇 = 𝑇𝑐,
while on the contrary, the second and third lengths remain finite at all temperatures. The effect of the
splitting of Goldstone and Higgs modes into three branches each takes place even at the infinitely small
coefficients 𝜖𝑖𝑘 . Thus, the effect of interband coupling 𝜖 ≠ 0 is nonperturbative. As for Goldstone modes,
if we assume that coefficients of the drag effect 𝜂𝑖𝑘 are such as in equation (3.26), then the anti-phase
Higgs modes are absent and the common mode oscillations (3.43) with zero energy gap at 𝑇 = 𝑇𝑐 remain
only.

4) The excitation of one quant of Higgs oscillations requires the breaking of one Cooper pair as
minimum, i.e., the energy of the order of 2|Δ| must be spent. Hence, to excite any Higgs mode at 𝑇 = 𝑇𝑐
it is not necessary to spend this threshold energy. In three-band superconductors for anti-phase Higgs
modes, we have a nonphysical property 𝑞𝜇𝑞

𝜇 (𝑇𝑐) ≠ 0. As and for Goldstone modes, if we assume that
coefficients of the drag effect 𝜂𝑖𝑘 are the same as in equation (3.26), then the anti-phase Higgs modes
are absent and the common mode oscillations with zero energy gap at 𝑇 = 𝑇𝑐 remain only. Thus, as in
single-band superconductors, in three-band superconductors the common mode oscillations exist only.
The anti-phase Goldstone mode (i.e., Leggett modes) and the anti-phase Higgs modes are absent, which
ensures only single coherence length 𝜉 (𝑇) diverging at 𝑇 = 𝑇𝑐.

5) The square of the energy gap of Higgs mode in three-band superconductors can be represent in the
form of a sum of products of gaps Δ0𝑖Δ0𝑘 see equation (3.49), which is similar to two-band superconduc-
tors [8], and it differs from the mass of Higgs mode in single-band superconductors: ℏ𝜔0 = 2|Δ|, where
this mode exists in the free quasiparticle continuum. On the contrary, in two-band superconductors and in
three-band superconductors it can be

√︁
|Δ𝑖 | |Δ𝑘 | < 2 min( |Δ1 |, |Δ2 |, |Δ3 |), then the Higgs mode becomes

stable. The speed of “light” 𝜐 is of the order of Fermi velocities in each band 𝜐F1, 𝜐F2, 𝜐F3 and depends
on the single-band “critical” temperatures 𝑇𝑐1, 𝑇𝑐2, 𝑇𝑐3 see equation (3.52).

6) Unlike the two-band systems, the Higgs modes and the Goldstone modes can be hybridized at
𝜖12𝜖13𝜖23 > 0. For the case 𝜖12𝜖13𝜖23 < 0, the hybridization is absent. All previous results were obtained
in the approximation of splitting of the correlation between amplitude and phase oscillations.
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A. Some symmetric 3HDM potentials

Following to [36] a scalar 3HDM potential symmetric under a group 𝐺 can be written as

𝑉 = 𝑉0 +𝑉𝐺 , (A.1)

where

𝑉0 =

3∑︁
𝑖=1

𝑎𝑖 |Ψ𝑖 |2 +
𝑏𝑖

2
|Ψ𝑖 |4

+ 𝑏12 |Ψ1 |2 |Ψ2 |2 + 𝑏13 |Ψ1 |2 |Ψ3 |2 + 𝑏23 |Ψ2 |2 |Ψ3 |2

+ 𝑏′12(Ψ
+
1Ψ2) (Ψ+

2Ψ1) + 𝑏′13(Ψ
+
1Ψ3) (Ψ+

3Ψ1) + 𝑏′23(Ψ
+
2Ψ3) (Ψ+

3Ψ2) (A.2)

is invariant under the most general 𝑈 (1) × 𝑈 (1) gauge transformation and 𝑈𝐺 is a collection of extra
terms ensuring the symmetry group 𝐺. The 𝑈 (1) ×𝑈 (1) group is generated by

©­«
e−i𝛼 0 0

0 ei𝛼 0
0 0 1

ª®¬ ©­«
e−2i𝛽/3 0 0

0 ei𝛽/3 0
0 0 ei𝛽/3

ª®¬ . (A.3)

However, in the present work we use the minimum model, where 𝑏𝑖𝑘 = 𝑏′
𝑖𝑘

= 0. A potential symmetric
under the 𝑈 (1) group is

𝑉𝑈 (1) = 𝑉0 + 𝜆123
[
(Ψ+

1Ψ3) (Ψ+
2Ψ3) + (Ψ1Ψ

+
3 ) (Ψ2Ψ

+
3 )

]
. (A.4)

The 𝑈 (1) group is generated by ©­«
e−i𝛼 0 0

0 ei𝛼 0
0 0 1

ª®¬ . (A.5)

A potential symmetric under the 𝑈 (1) × 𝑍2 group is

𝑉𝑈 (1)×𝑍2 = 𝑉0 + 𝜆23
[
(Ψ+

2Ψ3)2 + (Ψ2Ψ
+
3 )

2] . (A.6)

The 𝑈 (1) × 𝑍2 group is generated by

©­«
e−2i𝛽/3 0 0

0 ei𝛽/3 0
0 0 ei𝛽/3

ª®¬ ©­«
−1 0 0
0 −1 0
0 0 1

ª®¬ . (A.7)

A potential symmetric under the 𝑍2 group is

𝑉𝑍2 = 𝑉0 + 𝜖12
[
Ψ+

1Ψ2 + Ψ1Ψ
+
2
]
+ 𝜆12

[ (
Ψ+

1Ψ2
)2 +

(
Ψ1Ψ

+
2
)2

]
+ 𝜆13

[ (
Ψ+

1Ψ3
)2 +

(
Ψ1Ψ

+
3
)2

]
+ 𝜆23

[ (
Ψ+

2Ψ3
)2 +

(
Ψ2Ψ

+
3
)2

]
. (A.8)

The 𝑍2 group is generated by ©­«
−1 0 0
0 −1 0
0 0 1

ª®¬ . (A.9)
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Collective excitations in three-band superconductors

Коллективнi збудження у тризонному надпровiднику

К. В. Григоришин
Iнститут теоретичної фiзики iм. М.М. Боголюбова НАН України, вул. Метрологiчна 14-б, 03143 Київ,
Україна

Дослiджено стани рiвноваги, магнiтний вiдгук i нормальнi коливання внутрiшнiх ступенiв вiльностi (моди
Хiггса та моди Голдстоуна) тризонних надпровiдникiв з урахуванням як внутрiшнього ефекту близькостi,
так i ефекту “захоплення” (мiжградiєнтної взаємодiї) в лагранжiанi. Як мода Голдстоуна, так i мода Хiггса
розщеплюються на три гiлки кожна: синфазнi коливання та двi моди протифазних коливань, що аналогiч-
нi модi Леггетта в двозонних надпровiдниках. Показано, що друга i третя гiлки є нефiзичними, i їх можна
усунути спецiальним пiдбором коефiцiєнтiв при членах “захоплення” в лагранжiанi. У результатi тризон-
нi надпровiдники характеризуються лише однiєю довжиною когерентностi. Отримано спектр синфазних
коливань Хiггса. Глибинамагнiтного проникнення визначається густиноюнадпровiдних електронiв у кож-
нiй зонi, однак мiжградiєнтна взаємодiя перенормує маси носiїв.

Ключовi слова: лоренц-коварiантнiсть, мода Хiггса, мода Голдстоуна, мода Леггетта, мiжзонна
взаємодiя, ефект захоплення
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