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Collective excitations in three-band superconductors

K. V. Grigorishin ∗

Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine,
14-b Metrolohichna str., 03143 Kyiv, Ukraine

Received September 01, 2022, in final form October 30, 2022

We investigate equilibrium states, magnetic response and the normal oscillations of internal degrees of free-
dom (Higgs modes and Goldstone modes) of three-band superconductors accounting the terms of both internal
proximity effect and the “drag” effect (intergradient interaction) in the Lagrangian. Both the Goldstone mode
and the Higgs mode are split into three branches each: commonmode oscillations and twomodes of anti-phase
oscillations, which are analogous to the Leggett mode in two-band superconductors. It is demonstrated that the
second and third branches are nonphysical, and they can be removed by special choice of coefficients at the
“drag” terms in Lagrangian. As a result, three-band superconductors are characterized by only single coherence
length. Spectrum of the common mode Higgs oscillations has been obtained. The magnetic penetration depth
is determined with densities of superconducting electrons in each band, although the drag terms renormalize
the carrier masses.
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1. Introduction

As well known, there is some analogy between particle physics and condensed matter. Thus, the
nonrelativistic analog of the Higgs effect represents penetration of magnetic field in a superconductor. As
a result of spontaneous broken gauge symmetry below𝑇𝑐, the magnetic field gains the mass, the reciprocal
value of which characterizes the penetration depth of the magnetic field in the superconductor. In the
work [1] it is demonstrated that there are two types of collective excitations with the quasi-relativistic
spectra in the single-band superconducting (SC) system: the Higgs mode 𝐸2 = 𝑚2

H𝜐
4+ 𝑝2𝜐2, where 𝑚H is

the mass of a Higgs boson, so that 𝑚H𝜐
2 = 2|Δ|, and the Goldstone mode 𝐸 = 𝑝𝜐. The value 𝜐 = 𝑣F/

√
3,

where 𝑣F is the Fermi velocity, plays the role of the speed of light, |Δ| is the energy gap in SC state. The
Higgs mode is represented by oscillations of modulus of the Ginzburg-Landau order parameter (OP)
|Ψ(𝑡, r) | and it can be presented as counterflows of SC and normal components so that 𝑛sv𝑠 + 𝑛nv𝑛 = 0.
This oscillation mode is unstable due to the decay into the above-condensate quasiparticles, since its
energy is such that 𝐸 (𝑞) > 2|Δ|. The Goldstone mode is represented by oscillations of the phase \ (𝑡, r) of
the OP |Ψ|ei\ , which are the eddy currents divJ = 0 that are absorbed into the gauge field 𝐴` according
to Anderson-Higgs mechanism. Thus, both Higgs mode and Goldstone mode are not accompanied by
the charge density oscillations. At the same time, according to another model [2], Coulomb interaction
“pushes” the frequency of the acoustic oscillations to the plasma frequency 𝜔𝑝 = 4π𝑛𝑒2/𝑚. Thus, the
Goldstone mode becomes inherently unobservable since it turns to plasma oscillations. It should be noted
that the Higgs and Goldstone bosons are typical of condensed matter. Thus, except superconductors, these
bosons are observed in superfluid 3He-B and 3He-A [3], although unlike the particle physics, the observed
Higgs bosons are not fundamental: it comes as a composite object emerging in the fermionic vacuum.

The dynamics of multi-band superconductors is much more complicated than the dynamics of
single-band superconductors due to the presence of several coupled OP Ψ1,Ψ2, . . . ,Ψ𝑛, i.e., multiband
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superconductors have a new property, such as the interband phase differences \𝑖 − \𝑘 . Two-band systems
are the simplest but the most numerous class of multi-band superconductors. Their typical representatives
are classical two-band superconductor magnesium diboride MgB2, nonmagnetic borocarbides LuNi2B2C,
YNi2B2C and some oxypnictide compounds [4]. Two-band superconductor is understood as two single-
band superconductors with the corresponding condensates of Cooper pairs Ψ1 and Ψ2 (so that densities of
SC electrons are 𝑛s1 = 2|Ψ1 |2 and 𝑛s2 = 2|Ψ2 |2 accordingly), where these two condensates are coupled by
both the internal proximity effect 𝜖

(
Ψ+

1Ψ2 + Ψ1Ψ
+
2
)

and the “drag” effect [
(
∇Ψ1∇Ψ+

2 + ∇Ψ+
1∇Ψ2

)
[4–

7]. If we switch off the interband interactions 𝜖 = 0 and [ = 0, then we will have two independent
superconductors with different critical temperatures 𝑇𝑐1 and 𝑇𝑐2 because the intraband interactions can
be different. The sign of 𝜖 determines the equilibrium phase difference of the OP |Ψ1 |ei\1 and |Ψ2 |ei\2 :
\1−\2 = 0, if 𝜖 < 0, |\1−\2 | = π, if 𝜖 > 0. The case 𝜖 < 0 corresponds to attractive interband interaction
(for example, in MgB2), the case 𝜖 > 0 corresponds to repulsive interband interaction (for example, in
iron-based superconductors). It should be noted that the effect of interband coupling 𝜖 ≠ 0, even if the
coupling is weak, is nonperturbative: the application of a weak interband coupling washes out all OP up
to a new critical temperature [8].

In the work [8] there were investigated normal oscillations of internal degrees of freedom (Higgs mode
and Goldstone mode) of two-band superconductors using generalization of the extended time-dependent
Ginzburg-Landau (ETDGL) theory [1], for the case of two coupled OP by both the internal proximity
effect and the drag effect. It is demonstrated that, due to the internal proximity effect, the Goldstone
mode splits into two branches: common mode oscillations with acoustic spectrum, which is absorbed
by the gauge field, and anti-phase oscillations with an energy gap (mass) in the spectrum determined
with the interband coupling 𝜖 , which can be associated with the Leggett mode. Analogously, due to the
internal proximity effect, Higgs oscillations also split into two branches. The energy gap of the common
mode vanishes at a critical temperature 𝑇𝑐. For another anti-phase mode, its energy gap does not vanish
at 𝑇𝑐 and is determined by the interband coupling 𝜖 . It is demonstrated that the second branch of Higgs
mode is nonphysical [since |Δ1,2(𝑇𝑐) | = 0, then the mass of Higgs mode must be 𝑚H(𝑇𝑐) = 0], and it,
together with the Leggett mode, can be removed by special choice of the coefficient at the “drag” term in
Lagrangian: [2 = 1/𝑚1𝑚2, [𝜖 < 0 (where 𝑚1,2 are electron masses in each band). Such a choice permits
only one coherence length, thereby prohibiting the so-called type-1.5 superconductors. Thus, the drag
effect is principally important: by special choice of the coefficient [ we ensure correct properties of the
collective excitations in two-band superconductors. Experimental data of references [9, 10] on the effect
of resonant enhancement of the current through a Josephson junction between two-band superconductors
is analyzed. It is demonstrated that the data can be explained by the coupling of Josephson oscillations
with Higgs oscillations of two-band superconductors ℏ𝜔 =

√︁
|Δ1 | |Δ2 | ∝

√︁
|Ψ1 | |Ψ2 |, and hence, these

experiments cannot be considered as experimental confirmation of the Leggett mode.

The physics of three-band SC systems (for example, some ferropnictides LiFeAs, NaFeAs,
Ba1−𝑥K𝑥Fe2As2 [11–13] and strontium ruthenate Sr2RuO4 [14]) is much richer and more complicated
than the physics of two-band superconductors. In the three-band case, the equilibrium phase differences
are not only 0 or π, but they can be non-integer numbers of π depending on the signs of the interband
interactions 𝜖𝑖𝑘 [15–17]. Thus, the equilibrium values of OP Ψ1,2 in two-band superconductors are as-
sumed to be real in the absence of current and magnetic field, although for three-band superconductors
it is not always possible to make all OP Ψ1,2,3 real, for example, when all interband couplings are re-
pulsive (𝜖12 > 0, 𝜖13 > 0, 𝜖23 > 0) or when one coupling is repulsive but the other two are attractive
(for example, 𝜖12 > 0, 𝜖13 < 0, 𝜖23 < 0). As a consequence, the chiral ground state, frustration and
the time-reversal symmetry breaking (TRSB) [15–23], the massless Leggett mode [24, 25], topological
excitations [26–28], type-1.5 regimes [29] can occur. In addition, the TRSB state and the frustration
essentially effects the Josephson current and magnetic penetration depth in junctions between three-band
superconductors [30, 31] and between single-band and three-band superconductors [32–34]. As demon-
strated in references [17, 29], unlike two-band superconductors, the Higgs modes and the Leggett modes
can be hybridized. Furthermore, the effect of hybridization is essential if the interband coupling is strong.
The dynamics of two- and three-band systems was generalized for multi-band systems in reference [35],
where it was demonstrated that there are 2 massive Leggett modes and 𝑁 − 3 massless Leggett modes
in 𝑁-band systems (𝑁 > 2). At the same time, in most works on multi-band superconductivity, the drag
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effect has not been taken into account, and, respectively, its role remains unknown.
Proceeding from the aforesaid, we aim at obtaining the spectrum of normal oscillations of internal

degrees of freedom (Higgs modes and Goldstone modes), the coherence length, the “light” speed 𝜐 and
the magnetic penetration depth using the method developed in the work [8] for the case of three order
parameters coupled by both the internal proximity effect and the drag effect.

2. Stationary regime

Three-band superconductors are characterized by three OP-“wave functions” Ψ1 = |Ψ1 |ei\1 , Ψ2 =

|Ψ2 |ei\2 , Ψ3 = |Ψ3 |ei\3 corresponding to the condensates of Cooper pairs in each band, so that the
densities of SC electrons are 𝑛s1 = 2|Ψ1 |2, 𝑛s2 = 2|Ψ2 |2, 𝑛s3 = 2|Ψ3 |2, accordingly. In a bulk isotropic
three-band superconductor, the Ginzburg-Landau free energy functional can be written as:

𝐹 =

∫
d3𝑟

[
ℏ2

4𝑚1
|𝐷Ψ1 |2 +

ℏ2

4𝑚2
|𝐷Ψ2 |2 +

ℏ2

4𝑚3
|𝐷Ψ3 |2 +

ℏ2

4
[12

{
𝐷Ψ1(𝐷Ψ2)+ + (𝐷Ψ1)+𝐷Ψ2

}
+ ℏ2

4
[13

{
𝐷Ψ1(𝐷Ψ3)+ + (𝐷Ψ1)+𝐷Ψ3

}
+ ℏ2

4
[23

{
𝐷Ψ2(𝐷Ψ3)+ + (𝐷Ψ2)+𝐷Ψ3

}
+ 𝑎1 |Ψ1 |2 + 𝑎2 |Ψ2 |2 + 𝑎3 |Ψ3 |2 +

𝑏1
2

|Ψ1 |4 +
𝑏2
2

|Ψ2 |4 +
𝑏3
2

|Ψ3 |4

+ 𝜖12
(
Ψ+

1Ψ2 + Ψ1Ψ
+
2
)
+ 𝜖13

(
Ψ+

1Ψ3 + Ψ1Ψ
+
3
)
+ 𝜖23

(
Ψ+

2Ψ3 + Ψ2Ψ
+
3
)
+ H2

8π

]
, (2.1)

where 𝐷 ≡ ∇ − i(2𝑒/𝑐ℏ)A is a covariant gradient operator, H2/8π = (curl A)2/8π is the energy of
magnetic field, 𝑚1,2,3 denotes the effective mass of carriers in the corresponding band, the coefficients
𝑎1,2,3 are given as 𝑎𝑖 = 𝛾𝑖 (𝑇 − 𝑇𝑐𝑖), where 𝛾𝑖 are some constants, the coefficients 𝑏1,2,3 are independent
of temperature, the coefficients 𝜖𝑖 𝑗 and [𝑖 𝑗 describe the interband coupling of the OP (proximity effect)
and their gradients (drag effect), respectively. If we switch off the interband interactions 𝜖1,2,3 = 0 and
[1,2,3 = 0, then we will have three independent superconductors with different critical temperatures 𝑇𝑐1,
𝑇𝑐2, 𝑇𝑐3.

The potential 𝑉0 =
∑3

𝑖=1 𝑎𝑖 |Ψ𝑖 |2 + 𝑏𝑖
2 |Ψ𝑖 |4 is a sum of independent potentials of each condensate.

This energy is invariant under any phase rotation. Since the condensates in three-band superconductors
are coupled by the Josephson terms 𝜖𝑖𝑘

(
Ψ+
𝑖
Ψ𝑘 + Ψ𝑖Ψ

+
𝑘

)
= 𝜖𝑖𝑘 |Ψ𝑖 | |Ψ𝑘 | cos(\𝑖 − \𝑘), the broken 𝑈 (1)

symmetry of the ground state in each band is shared throughout the system: the presence of the condensate
〈Ψ𝑖〉 ≠ 0 in some band induces the Cooper condensation in other bands 〈Ψ𝑘〉 ≠ 0, that is the internal
proximity effect takes place. At the same time, the Josephson terms breaks the global 𝑈 (1) gauge
invariance, because these terms depend on the phase differences \𝑖 − \𝑘 , that is the Josephson terms have
a physical sense as the interference between the condensates Ψ1, Ψ2, Ψ3. Hence, the phase difference
modes (the Leggett modes) acquire masses because the phase differences are fixed near the minima of
the Josephson potential.

It should be noted that the free energy (2.1) does not have the symmetry𝑈 (1)×𝑍2, unlike the statement
in references [19, 29]. Indeed, the transformation 𝑍2 makes the sign change of any two condensates, for
example, Ψ1 → −Ψ1, Ψ2 → −Ψ2 (which corresponds to the phase change \1 → \1 ± π, \2 → \2 ± π),
but the third condensate does not change its sign Ψ3 → Ψ3 (corresponding transformations are illustrated
in appendix A). Obviously, the sum of the Josephson terms in the free energy (2.1) are not invariant
under this transformation. It should be noted that the considered model can be referred to as the three-
Higgs-doublet models (3HDM) [36], but without any specific symmetry in the above sense. For clarity, we
present some invariant potentials under the simplest transformations in appendix A. Thus, the potential𝑉0
has𝑈 (1) ×𝑈 (1) global gauge symmetry, but it is fully broken by the Josephson terms. In reference [35],
the total rule was formulated: in the 𝑁-band system, the global symmetry 𝑈 (1)𝑁−1 is broken by the
Josephson terms to 𝑈 (1)𝑁−3 symmetry. Thus, in 𝑁 > 3-band system, 𝑁 − 3 massless Leggett modes
must be present. Ultimately, the system described with the free energy (2.1) is invariant under common
𝑈 (1) gauge transformation only, i.e., when each OP is turned by the same phase \: Ψ𝑘 → Ψ𝑘ei\ . Hence,
as demonstrated for two-band superconductors in reference [8], the common mode phase oscillations are
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absorbed by the gauge field, although oscillations of the phase differences \𝑖 − \𝑘 occur. The role of the
intergradient couplings is the same as the Josephson coupling and does not introduce anything new at
this stage.

Figure 1. The configurations of mutual arrangement of the OP Ψ1, Ψ2, Ψ3 corresponding to some limit
cases. It is supposed that the weak interband coupling |𝜖12 | = |𝜖13 | = |𝜖23 | � |𝑎𝑖 (0) |.

Minimization of the free energy functional with respect to the OP, if ∇Ψ1,2,3 = 0 and A = 0, gives

𝑎1Ψ1 + 𝜖12Ψ2 + 𝜖13Ψ3 + 𝑏1 |Ψ1 |2Ψ1 = 0,
𝑎2Ψ2 + 𝜖12Ψ1 + 𝜖23Ψ3 + 𝑏2 |Ψ2 |2Ψ2 = 0,
𝑎3Ψ3 + 𝜖13Ψ1 + 𝜖23Ψ2 + 𝑏3 |Ψ3 |2Ψ3 = 0. (2.2)

Equation (2.2) can be rewritten in a form:

𝑎1 |Ψ1 | + 𝜖12 |Ψ2 |ei(\2−\1 ) + 𝜖13 |Ψ3 |ei(\3−\1 ) + 𝑏1 |Ψ1 |3 = 0,
𝑎2 |Ψ2 | + 𝜖12 |Ψ1 |ei(\1−\2 ) + 𝜖23 |Ψ3 |ei(\3−\2 ) + 𝑏1 |Ψ2 |3 = 0,
𝑎3 |Ψ3 | + 𝜖13 |Ψ1 |ei(\1−\3 ) + 𝜖23 |Ψ2 |ei(\2−\3 ) + 𝑏1 |Ψ3 |3 = 0, (2.3)

or in an expanded form:

𝑎1 |Ψ1 | + 𝜖12 |Ψ2 | cos(\2 − \1) + 𝜖13 |Ψ3 | cos(\3 − \1) + 𝑏1 |Ψ1 |3 = 0,
𝑎2 |Ψ2 | + 𝜖12 |Ψ1 | cos(\1 − \2) + 𝜖23 |Ψ3 | cos(\3 − \2) + 𝑏1 |Ψ2 |3 = 0,
𝑎3 |Ψ3 | + 𝜖13 |Ψ1 | cos(\1 − \3) + 𝜖23 |Ψ2 | cos(\2 − \3) + 𝑏1 |Ψ3 |3 = 0,
𝜖12 |Ψ2 | sin(\2 − \1) + 𝜖13 |Ψ3 | sin(\3 − \1) = 0,
𝜖12 |Ψ1 | sin(\1 − \2) + 𝜖23 |Ψ3 | sin(\3 − \2) = 0,
𝜖13 |Ψ1 | sin(\1 − \3) + 𝜖23 |Ψ2 | sin(\2 − \3) = 0. (2.4)
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Hence, possible signs of 𝜖𝑖𝑘 and the phase differences of the OP |Ψ1 |ei\1 , |Ψ2 |ei\2 , |Ψ3 |ei\3 are:

𝜖𝑖𝑘 < 0, 𝜖𝑖𝑙 < 0, 𝜖𝑘𝑙 < 0, then cos(\𝑖 − \𝑘) = cos(\𝑖 − \𝑙) = cos(\𝑘 − \𝑙) = 1,
𝜖𝑖𝑘 < 0, 𝜖𝑖𝑙 > 0, 𝜖𝑘𝑙 > 0, then cos(\𝑖 − \𝑘) = 1, cos(\𝑖 − \𝑙) = cos(\𝑘 − \𝑙) = −1, (2.5)

for the cases, when 𝜖12𝜖13𝜖23 < 0. Therefore, OP Ψ1, Ψ2, Ψ3 can be assumed to be real simultaneously,
as in two-band superconductors. The cases 𝜖12𝜖13𝜖23 > 0 need numerical solution of equation (2.4). As
a result, the phase differences \𝑖𝑘 ≡ \𝑖 − \𝑘 can be functions of temperature \𝑖𝑘 (𝑇). Only in the case of
absolutely symmetrical bands 𝑎1 = 𝑎2 = 𝑎3, 𝑏1 = 𝑏2 = 𝑏3, |𝜖12 | = |𝜖13 | = |𝜖23 | we obtain

𝜖𝑖𝑘 > 0, 𝜖𝑖𝑙 > 0, 𝜖𝑘𝑙 > 0, then cos(\𝑖 − \𝑘) = cos(\𝑖 − \𝑙) = cos(\𝑘 − \𝑙) = −1/2,
𝜖𝑖𝑘 > 0, 𝜖𝑖𝑙 < 0, 𝜖𝑘𝑙 < 0, then cos(\𝑖 − \𝑘) = −1/2, cos(\𝑖 − \𝑙) = cos(\𝑘 − \𝑙) = 1/2. (2.6)

As an approximation in the case of weak coupling |𝜖12 |, |𝜖13 |, |𝜖23 | � |𝑎1(0) |, |𝑎2(0) |, |𝑎3(0) |, we can
assume |Ψ𝑖 (0) | =

√︁
|𝑎𝑖 (0) |/𝑏𝑖 and then substitute them in equation (2.4) to find the angles \𝑖 − \𝑘 . Then,

using the found phase differences, we find new |Ψ𝑖 (𝑇) | from equation (2.4) for all temperatures. Possible
configurations corresponding to some limit cases are illustrated in figure 1. However, it should be noted
that, as demonstrated in reference [23] by numerical calculations, in the case 𝜖12𝜖13𝜖23 > 0, the regime
of nontrivial phase differences \2 − \1, \3 − \1 ≠ 0, π (that is the TRSB state can be realized) exists only
within a relative small volume in the six-dimensional parameter space ( |Ψ𝑖 |, 𝜖𝑖𝑘).

Figure 2. The sketch of temperature dependencies of OP Ψ1 (𝑇), Ψ2 (𝑇), Ψ3 (𝑇) as solutions of equa-
tion (2.4), if the interband couplings are absent, i.e., 𝜖𝑖𝑘 = 0 (dash lines), and if the weak interband
interaction takes place, i.e., 𝜖𝑖𝑘 ≠ 0, |𝜖𝑖𝑘 | � |𝑎1 (0) | (solid lines). The application of the weak interband
coupling washes out the smaller parameters Ψ1,2 up to a new critical temperature 𝑇𝑐 � 𝑇𝑐1. The effect
on the larger parameter Ψ3 is not so essential. As the couplings |𝜖𝑖𝑘 | increase, Ψ1,2,3 (𝑇) take the forms
shown with dot lines.

Near critical temperature 𝑇𝑐 we have |Ψ1,2,3 |2 → 0. Hence, we can find the critical temperature
equating to zero the determinant of the linearized system (2.2):

𝑎1𝑎2𝑎3 − 𝑎1𝜖
2
23 − 𝑎2𝜖

2
13 − 𝑎3𝜖

2
12 + 2𝜖12𝜖13𝜖23 = 0. (2.7)

In an equivalent way, we can find the critical temperature equating to zero the determinant of the linearized
system of the first three equations from equation (2.4):

𝑎1𝑎2𝑎3 − 𝑎1𝜖
2
23 cos2(\1 − \2) − 𝑎2𝜖

2
13 cos2(\1 − \3) − 𝑎3𝜖

2
12 cos2(\1 − \2)

+ 2𝜖12𝜖13𝜖23 cos(\1 − \2) cos(\1 − \3) cos(\2 − \3) = 0, (2.8)

where phase differences \𝑖 − \𝑘 are equilibrium values, that is, those that ensure the coincidence of the
solutions of the equations (2.7) and (2.8), and the critical temperature𝑇𝑐 of the system is the largest of these

23702-5



K. V. Grigorishin

solutions. Solving any of these equations we find 𝑇𝑐 > 𝑇𝑐1, 𝑇𝑐2, 𝑇𝑐3, and besides 𝑇𝑐 (𝜖12𝜖13𝜖23 < 0) >

𝑇𝑐 (𝜖12𝜖13𝜖23 > 0). The case 𝜖𝑖𝑘 < 0 corresponds to attractive interband interaction, the case 𝜖𝑖𝑘 > 0
corresponds to repulsive interband interaction. For symmetrical bands 𝑇𝑐1 = 𝑇𝑐2 = 𝑇𝑐3 ≡ 𝑇𝑐123, 𝛾1 =

𝛾2 = 𝛾3 ≡ 𝛾 and the same modulus of interband interactions |𝜖12 | = |𝜖13 | = |𝜖23 | ≡ 𝜖 > 0 equation (2.8)
is reduced to

𝜖12𝜖13𝜖23 < 0 ⇒ (𝑎 + 𝜖)2(𝑎 − 2𝜖) = 0 ⇒ 𝑇𝑐 = 𝑇𝑐123 + 2𝜖/𝛾,

𝜖12𝜖13𝜖23 > 0 ⇒
(
𝑎 + 𝜖

2

)2
(𝑎 − 𝜖) = 0 ⇒ 𝑇𝑐 = 𝑇𝑐123 + 𝜖/𝛾. (2.9)

The solutions of equation (2.4) are illustrated in figure 2 for the case of strongly asymmetrical bands
𝑇𝑐1,𝑐2 � 𝑇𝑐3. As in the two-band system, the effect of interband coupling 𝜖𝑖𝑘 ≠ 0, even if the coupling is
weak |𝜖𝑖𝑘 | � |𝑎1(0) |, is non-perturbative for the smaller OP Ψ1,2 — the application of the weak interband
coupling washes out the smaller OP up to a new critical temperature 𝑇𝑐 � 𝑇𝑐1,𝑐2. At the same time,
the effect on the largest parameter Ψ3 is not so significant — the application of the interband coupling
slightly increases the critical temperature 𝑇𝑐 & 𝑇𝑐3 only.

Let us consider a superconductor in the weak magnetic field A(r) (i.e., |Ψ| = const). Then, the free
energy functional (2.1) can be reduced to the form:

𝐹 =

∫
d3𝑟𝔉 ≡

∫
d3𝑟

[
ℏ2

4𝑚1
|Ψ1 |2

(
∇\1 −

2𝑒
ℏ𝑐

A
)2

+ ℏ2

4𝑚2
|Ψ2 |2

(
∇\2 −

2𝑒
ℏ𝑐

A
)2

+ ℏ2

4𝑚3
|Ψ3 |2

(
∇\3 −

2𝑒
ℏ𝑐

A
)2

+ ℏ2

2
[12 |Ψ1 | |Ψ2 |

(
∇\1 −

2𝑒
ℏ𝑐

A
) (

∇\2 −
2𝑒
ℏ𝑐

A
)

cos(\1 − \2)

+ ℏ2

2
[13 |Ψ1 | |Ψ3 |

(
∇\1 −

2𝑒
ℏ𝑐

A
) (

∇\3 −
2𝑒
ℏ𝑐

A
)

cos(\1 − \3)

+ ℏ2

2
[23 |Ψ2 | |Ψ3 |

(
∇\2 −

2𝑒
ℏ𝑐

A
) (

∇\3 −
2𝑒
ℏ𝑐

A
)

cos(\2 − \3) +
(curl A)2

8π

+
3∑︁
𝑖=1

(
𝑎𝑖 |Ψ𝑖 |2 +

𝑏𝑖

2
|Ψ𝑖 |4

)
+

∑︁
𝑖≠𝑘

𝜖𝑖𝑘
(
Ψ+
𝑖 Ψ𝑘 + Ψ𝑖Ψ

+
𝑘

) ]
. (2.10)

Corresponding Lagrange equation

curl
𝜕𝔉

𝜕 (curl A) −
𝜕𝔉

𝜕A = 0 (2.11)

gives the supercurrent:

J =
ℏ𝑒

𝑚1
|Ψ1 |2

(
∇\1 −

2𝑒
ℏ𝑐

A
)
+ ℏ𝑒

𝑚2
|Ψ2 |2

(
∇\2 −

2𝑒
ℏ𝑐

A
)
+ ℏ𝑒

𝑚3
|Ψ3 |2

(
∇\3 −

2𝑒
ℏ𝑐

A
)

+ ℏ𝑒[12 |Ψ1 | |Ψ2 |
(
∇\1 + ∇\2 − 2

2𝑒
ℏ𝑐

A
)

cos(\1 − \2)

+ ℏ𝑒[13 |Ψ1 | |Ψ3 |
(
∇\1 + ∇\3 − 2

2𝑒
ℏ𝑐

A
)

cos(\1 − \3)

+ ℏ𝑒[23 |Ψ2 | |Ψ3 |
(
∇\2 + ∇\3 − 2

2𝑒
ℏ𝑐

A
)

cos(\2 − \3), (2.12)

that can be rewritten in the following form:

J =
ℏ𝑒

𝔪1
|Ψ1 |2∇\1 +

ℏ𝑒

𝔪2
|Ψ2 |2∇\2 +

ℏ𝑒

𝔪3
|Ψ3 |2∇\3 −

(
2𝑒2

𝔪1𝑐
|Ψ1 |2 +

2𝑒2

𝔪2𝑐
|Ψ2 |2 +

2𝑒2

𝔪3𝑐
|Ψ3 |2

)
A, (2.13)

where 𝔪𝑖 is the effective mass of an electron in a band 𝑖 due to the drag effect:
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1
𝔪𝑖

=
1
𝑚𝑖

[
1 + [𝑖𝑘𝑚𝑖

|Ψ𝑘 |
|Ψ𝑖 |

cos(\𝑖 − \𝑘) + [𝑖𝑙𝑚𝑖

|Ψ𝑙 |
|Ψ𝑖 |

cos(\𝑖 − \𝑙)
]
. (2.14)

The magnetic field can be gauge transformed as

A = A′ + ℏ𝑐

2𝑒
(𝛼∇\1 + 𝛽∇\2 + 𝛾∇\3) , (2.15)

where

𝛼 =
|Ψ1 |2/𝔪1

|Ψ1 |2
𝔪1

+ |Ψ2 |2
𝔪2

+ |Ψ3 |2
𝔪3

, 𝛽 =
|Ψ2 |2/𝔪2

|Ψ1 |2
𝔪1

+ |Ψ2 |2
𝔪2

+ |Ψ3 |2
𝔪3

, 𝛾 =
|Ψ3 |2/𝔪3

|Ψ1 |2
𝔪1

+ |Ψ2 |2
𝔪2

+ |Ψ3 |2
𝔪3

, (2.16)

so that
𝛼 + 𝛽 + 𝛾 = 1,

|Ψ2 |2
𝔪2

|Ψ3 |2
𝔪3

𝛼 =
|Ψ1 |2
𝔪1

|Ψ3 |2
𝔪3

𝛽 =
|Ψ1 |2
𝔪1

|Ψ2 |2
𝔪2

𝛾. (2.17)

Then, equation (2.13) is reduced to the London law:

J = −
(

2𝑒2

𝔪1𝑐
|Ψ1 |2 +

2𝑒2

𝔪2𝑐
|Ψ2 |2 +

2𝑒2

𝔪3𝑐
|Ψ3 |2

)
A ≡ − 1

_2 A. (2.18)

Thus, magnetic response of three-band superconductors is analogous to the response of single-band
superconductors, but with contribution into SC density from each band |Ψ𝑖 |2 with the corresponding
effective electron mass (2.14), which is determined with the coefficients of the drag effect [𝑖𝑘 .

3. Goldstone and Higgs oscillations in three-band superconductors

3.1. Ginzburg-Landau Lagrangian for three-band superconductors

In general case, the OP Ψ1,2,3 are both spatially inhomogeneous and they can change over time:
Ψ1,2,3 = Ψ1,2,3(r, 𝑡). The OP in the modulus-phase representation are equivalent to two real fields each:
modulus |Ψ(r, 𝑡) | and phase \ (r, 𝑡):

Ψ1(r, 𝑡) = |Ψ1(r, 𝑡) | ei\1 (r,𝑡 ) , Ψ2(r, 𝑡) = |Ψ2(r, 𝑡) | ei\2 (r,𝑡 ) , Ψ3(r, 𝑡) = |Ψ3(r, 𝑡) | ei\3 (r,𝑡 ) . (3.1)

For the stationary case Ψ1,2,3 = Ψ1,2,3(r), the steady configuration of the field Ψ1,2,3(r) minimizes the
free energy functional (2.1). For the nonstationary case Ψ1,2,3(r, 𝑡), according to the method described
in [1], we consider some 4D Minkowski space {𝜐𝑡, r}, where the parameter 𝜐 plays the role of the
“light” speed, which should be determined by the dynamical properties of the system. At the same time,
the dynamics of conduction electrons remains non-relativistic. Then, the two-component scalar fields
Ψ1,2,3(r, 𝑡) minimize some action 𝑆 in the Minkowski space:

𝑆 =
1
𝜐

∫
L

(
Ψ1,Ψ2,Ψ3,Ψ

+
1 ,Ψ

+
2 ,Ψ

+
3 , 𝐴`, 𝐴

`
)
𝜐 d𝑡 d3𝑟, (3.2)

where 𝐴` = ( 𝑐
𝜐
𝜑,−A), 𝐴` = ( 𝑐

𝜐
𝜑,A) are covariant and contravariant potential of electromagnetic field.

The Lagrangian L is built by generalizing the density of free energy in equation (2.1) to the “relativistic”
invariant form by substitution of covariant and contravariant differential operators:

𝜕` ≡
(
1
𝜐

𝜕

𝜕𝑡
,∇

)
, 𝜕` ≡

(
1
𝜐

𝜕

𝜕𝑡
,−∇

)
, (3.3)

instead of the gradient operators: ∇Ψ → 𝜕`Ψ, ∇Ψ+ → 𝜕`Ψ+, and by substitution the covariant and
contravariant operators in presence of electromagnetic field 𝐴`:

𝐷` ≡ 𝜕` + i2�̃�
ℏ𝜐

𝐴`, 𝐷` ≡ 𝜕` + i2�̃�
ℏ𝜐

𝐴`, (3.4)
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instead of the operators 𝐷 in the free energy functional (2.1). Here, �̃� = 𝜐
𝑐
𝑒, so that �̃�𝐴` = 𝑒𝐴`. Then,

the Lagrangian will be written as:

L =
ℏ2

4𝑚1
𝐷`Ψ1𝐷

`Ψ+
1 + ℏ2

4𝑚2
𝐷`Ψ2𝐷

`Ψ+
2 + ℏ2

4𝑚3
𝐷`Ψ3𝐷

`Ψ+
3

+ ℏ2

4
[12

{
𝐷`Ψ1(𝐷`Ψ2)+ + (𝐷`Ψ1)+𝐷`Ψ2

}
+ ℏ2

4
[13

{
𝐷`Ψ1(𝐷`Ψ3)+ + (𝐷`Ψ1)+𝐷`Ψ3

}
+ ℏ2

4
[23

{
𝐷`Ψ2(𝐷`Ψ3)+ + (𝐷`Ψ2)+𝐷`Ψ3

}
− 𝑎1 |Ψ1 |2 − 𝑎2 |Ψ2 |2 − 𝑎3 |Ψ3 |2 −

𝑏1
2

|Ψ1 |4 −
𝑏2
2

|Ψ2 |4 −
𝑏3
2

|Ψ3 |4

− 𝜖12
(
Ψ+

1Ψ2 + Ψ1Ψ
+
2
)
− 𝜖13

(
Ψ+

1Ψ3 + Ψ1Ψ
+
3
)
− 𝜖23

(
Ψ+

2Ψ3 + Ψ2Ψ
+
3
)
− 1

16π
𝐹`a𝐹

`a , (3.5)

where the same speed 𝜐 is used for the condensates Ψ1,2,3 with the masses 𝑚1,2,3, accordingly. The
speed 𝜐 plays the role of the speed of light in SC medium, and it will be found below. 𝐹`a = 𝜕`𝐴a −𝜕a𝐴`

is the Faraday tensor.
The modulus-phase representation (3.1) can be considered as the local gauge 𝑈 (1) transformation

Ψ𝑖 → |Ψ𝑖 |. Then, the gauge field 𝐴` should be transformed as

𝐴′
` = 𝐴` + ℏ𝜐

2�̃�

(
𝛼𝜕`\1 + 𝛽𝜕`\2 + 𝛾𝜕`\3

)
, (3.6)

where coefficients 𝛼, 𝛽, 𝛾 are determined with equation (2.16). The transformation (3.6) excludes
the phases \1, \2, \3 [using properties (2.17)] from Lagrangian (3.5) individually leaving only their
differences:

L =
ℏ2

4𝑚1
𝐷` |Ψ1 |𝐷` |Ψ1 | +

ℏ2

4𝑚2
𝐷` |Ψ1 |𝐷` |Ψ2 | +

ℏ2

4𝑚3
𝐷` |Ψ3 |𝐷` |Ψ3 |

+ ℏ2

2
[12𝐷` |Ψ1 |𝐷` |Ψ2 | cos(\1 − \2) +

ℏ2

2
[13𝐷` |Ψ1 |𝐷` |Ψ3 | cos(\1 − \3)

+ ℏ2

2
[23𝐷` |Ψ2 |𝐷` |Ψ3 | cos(\2 − \3) − 2𝜖12 |Ψ1 | |Ψ2 | cos(\1 − \2) − 2𝜖13 |Ψ1 | |Ψ3 | cos(\1 − \3)

− 2𝜖23 |Ψ2 | |Ψ3 | cos(\2 − \3) +
ℏ2

4

[
|Ψ1 |2
𝑚1

𝛽2 + |Ψ2 |2
𝑚2

𝛼2 + 2[12 |Ψ1 | |Ψ2 |𝛼𝛽 cos(\1 − \2)
]

× 𝜕` (\1 − \2) 𝜕` (\1 − \2) +
ℏ2

4

[
|Ψ1 |2
𝑚1

𝛾2 + |Ψ3 |2
𝑚3

𝛼2 + 2[13 |Ψ1 | |Ψ3 |𝛼𝛾 cos(\1 − \3)
]

× 𝜕` (\1 − \3) 𝜕` (\1 − \3) +
ℏ2

4

[
|Ψ2 |2
𝑚2

𝛾2 + |Ψ3 |2
𝑚3

𝛽2 + 2[23 |Ψ2 | |Ψ3 |𝛽𝛾 cos(\2 − \3)
]
𝜕` (\2 − \3)

× 𝜕` (\2 − \3) −
ℏ2

4

[
|Ψ1 |2
𝑚1

2𝛾𝛽 − 2[12 |Ψ1 | |Ψ2 |𝛼𝛾 cos(\1 − \2) − 2[13 |Ψ1 | |Ψ3 |𝛼𝛽 cos(\1 − \3)

+ 2[23 |Ψ2 | |Ψ3 |𝛼2 cos(\2 − \3)
]
𝜕` (\1 − \2) 𝜕` (\1 − \3) −

ℏ2

4

[
|Ψ2 |2
𝑚2

2𝛼𝛾

+ 2[12 |Ψ1 | |Ψ2 |𝛽𝛾 cos(\1 − \2) − 2[13 |Ψ1 | |Ψ3 |𝛽2 cos(\1 − \3) + 2[23 |Ψ2 | |Ψ3 |𝛼𝛽 cos(\2 − \3)
]

× 𝜕` (\1 − \2) 𝜕` (\2 − \3) −
ℏ2

4

[
|Ψ3 |2
𝑚3

2𝛼𝛽 + 2[12 |Ψ1 | |Ψ2 |𝛾2 cos(\1 − \2)

+ 2[13 |Ψ1 | |Ψ3 |𝛽𝛾 cos(\1 − \3) − 2[23 |Ψ2 | |Ψ3 |𝛼𝛾 cos(\2 − \3)
]
𝜕` (\1 − \3) 𝜕` (\2 − \3)

+ L
(
|Ψ1 |, |Ψ2 |, |Ψ3 |, 𝐹`a𝐹

`a
)
. (3.7)
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Here, L
(
|Ψ1 |, |Ψ2 |, |Ψ3 |, 𝐹`a𝐹

`a
)
≡ −∑3

𝑖=1

(
𝑎 |Ψ𝑖 |2 + 𝑏

2 |Ψ𝑖 |4
)
− 1

16π𝐹`a𝐹
`a is the sum of terms of the

Lagrangian, which do not depend on the phases \𝑖: single-band potential energies and Lagrangian of
electromagnetic field. Thus, the gauge field 𝐴` absorbs the Goldstone bosons \1,2,3 so that the Lagrangian
becomes dependent on the phase differences \1 − \2, \1 − \3, \2 − \3 only. At the same time, the phase
differences are not normal coordinates, because, firstly, they are not independent as we can see from
figure 1: we can suppose, for example, \2 − \3 = \1 − \3 − (\1 − \2); secondly, we can see that there
are off-diagonal terms, as 𝜕` (\1 − \2) 𝜕` (\1 − \3), in Lagrangian (3.7). Thus, in order to find normal
oscillations, we must diagonalize Lagrangian (3.7). However, due to mathematical cumbersomeness, to
find normal oscillations we will proceed from the original Lagrangian (3.5).

Before considering the problem of finding the normal frequencies, let us consider “potential energy”
in the Lagrangian (3.5). Substituting the modulus-phase representation (3.1) in the Lagrangian (3.5) and
assuming 𝐴` = 0, we obtain:

U = 𝑎1 |Ψ1 |2 + 𝑎2 |Ψ2 |2 + 𝑎3 |Ψ3 |2 +
𝑏1
2

|Ψ1 |4 +
𝑏2
2

|Ψ2 |4 +
𝑏3
2

|Ψ3 |4

+ 2𝜖12 |Ψ1 | |Ψ2 | cos(\1 − \2) + 2𝜖13 |Ψ1 | |Ψ3 | cos(\1 − \3) + 2𝜖23 |Ψ2 | |Ψ3 | cos(\2 − \3). (3.8)

At 𝑇 < 𝑇𝑐, we can consider small variations of the modulus of OP from its equilibrium value: |Ψ1,2,3 | =
Ψ01,02,03 + 𝜙1,2,3, where |𝜙1,2,3 | � Ψ01,02,03. Then, |Ψ|2 ≈ Ψ2

0 + 2Ψ0𝜙 + 𝜙2, |Ψ|4 ≈ Ψ4
0 + 4Ψ3

0𝜙 + 6Ψ2
0𝜙

2,
|Ψ1 | |Ψ2 | ≈ Ψ01Ψ02 + Ψ01𝜙2 + Ψ02𝜙1 + 𝜙1𝜙2. Moreover, we can consider small variations of the phase
differences of OP from their equilibrium value:

cos \𝑖𝑘 = cos
(
\𝑖𝑘 − \0

𝑖𝑘 + \0
𝑖𝑘

)
= cos

(
\𝑖𝑘 − \0

𝑖𝑘

)
cos \0

𝑖𝑘 − sin
(
\𝑖𝑘 − \0

𝑖𝑘

)
sin \0

𝑖𝑘

≈
[
1 −

(
\𝑖𝑘 − \0

𝑖𝑘

)2/2
]

cos \0
𝑖𝑘 −

(
\𝑖𝑘 − \0

𝑖𝑘

)
sin \0

𝑖𝑘 ,

where we have introduced the notations \𝑖 − \𝑘 ≡ \𝑖𝑘 . Then, the energy (3.8) takes the form:

U ≈ U𝜙 + U\ + U𝜙\ + 𝑎1Ψ
2
01 +

𝑏1
2
Ψ4

01 + 𝑎2Ψ
2
02 +

𝑏2
2
Ψ4

02 + 𝑎3Ψ
2
03 +

𝑏3
2
Ψ4

03

+ 2𝜖12 cos \0
12Ψ01Ψ02 + 2𝜖13 cos \0

13Ψ01Ψ03 + 2𝜖23 cos \0
23Ψ02Ψ03, (3.9)

where the last nine terms determine global potential (as the “mexican hat”), U𝜙 determines a potential
for the module excitations 𝜙1,2,3:

U𝜙 = 𝜙2
1

(
𝑎1 + 3𝑏1Ψ

2
01

)
+ 𝜙2

2

(
𝑎2 + 3𝑏2Ψ

2
02

)
+ 𝜙2

3

(
𝑎2 + 3𝑏3Ψ

2
03

)
+ 𝜙1𝜙22𝜖12 cos \0

12 + 𝜙1𝜙32𝜖13 cos \0
13 + 𝜙2𝜙32𝜖23 cos \0

23

+ 2𝜙1

(
𝜖12 cos \0

12Ψ02 + 𝜖13 cos \0
13Ψ03 + 𝑎1Ψ01 + 𝑏1Ψ

3
01

)
+ 2𝜙2

(
𝜖12 cos \0

12Ψ01 + 𝜖23 cos \0
23Ψ03 + 𝑎2Ψ02 + 𝑏2Ψ

3
02

)
+ 2𝜙3

(
𝜖13 cos \0

13Ψ01 + 𝜖23 cos \0
23Ψ02 + 𝑎3Ψ03 + 𝑏3Ψ

3
03

)
. (3.10)

The terms at 𝜙1,2,3 should be zero, then

𝜖12 cos \0
12Ψ02 + 𝜖13 cos \0

13Ψ03 + 𝑎1Ψ01 + 𝑏1Ψ
3
01 = 0,

𝜖12 cos \0
12Ψ01 + 𝜖23 cos \0

23Ψ03 + 𝑎2Ψ02 + 𝑏2Ψ
3
02 = 0,

𝜖13 cos \0
13Ψ01 + 𝜖23 cos \0

23Ψ02 + 𝑎3Ψ03 + 𝑏3Ψ
3
03 = 0, (3.11)

which corresponds to the first three equations in equation (2.4). U\ determines a potential for the phase
excitations \1,2,3:

U\ = −2𝜖12Ψ01Ψ02

(
\12 − \0

12
)2

2
− 2𝜖13Ψ01Ψ03

(
\13 − \0

13
)2

2
− 2𝜖23Ψ02Ψ03

(
\23 − \0

23
)2

2
− 2𝜖12Ψ01Ψ02

(
\12 − \0

12
)
sin \0

12 − 2𝜖13Ψ01Ψ03
(
\13 − \0

13
)
sin \0

13

− 2𝜖23Ψ02Ψ03
(
\23 − \0

23
)
sin \0

23. (3.12)
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For the linear terms (\𝑖 𝑗 − \0
𝑖 𝑗
) not to affect the equations of motion, the following condition must be

satisfied:

𝜖12Ψ02 sin \0
12 + 𝜖13Ψ03 sin \0

13 = 0,
𝜖12Ψ01 sin \0

12 + 𝜖23Ψ03 sin \0
32 = 0,

𝜖13Ψ01 sin \0
13 + 𝜖23Ψ02 sin \0

23 = 0, (3.13)

which corresponds to the second three equations in equation (2.4). U𝜙\ determines the interaction
between the module excitations and the phase excitations:

U𝜙\ = −𝜙1𝜙2𝜖12

[ (
\12 − \0

12
)2 cos \0

12 + 2
(
\12 − \0

12
)
sin \0

12

]
− 𝜙1𝜙3𝜖13

[ (
\13 − \0

13
)2 cos \0

13 + 2
(
\13 − \0

13
)
sin \0

13

]
− 𝜙2𝜙3𝜖23

[ (
\23 − \0

23
)2 cos \0

23 + 2
(
\23 − \0

23
)
sin \0

23

]
− 𝜙1

[ (
\12 − \0

12
)2
𝜖12 cos \0

12Ψ02 +
(
\13 − \0

13
)2
𝜖13 cos \0

13Ψ03

]
− 𝜙2

[ (
\12 − \0

12
)2
𝜖12 cos \0

12Ψ01 +
(
\23 − \0

23
)2
𝜖23 cos \0

23Ψ03

]
− 𝜙3

[ (
\13 − \0

13
)2
𝜖13 cos \0

13Ψ01 +
(
\23 − \0

23
)
𝜖23 sin \0

23Ψ02

]
− 2𝜙1

[ (
\12 − \0

12
)
𝜖12 sin \0

12Ψ02 +
(
\13 − \0

13
)
𝜖13 sin \0

13Ψ03
]

− 2𝜙2
[ (
\12 − \0

12
)
𝜖12 sin \0

12Ψ01 +
(
\23 − \0

23
)
𝜖23 sin \0

23Ψ03
]

− 2𝜙3
[ (
\13 − \0

13
)
𝜖13 sin \0

13Ψ01 +
(
\23 − \0

23
)
𝜖23 sin \0

23Ψ02
]
. (3.14)

We can see that the first six terms are of the third 𝜙𝑖𝜙𝑘 (\𝑖𝑘 − \0
𝑖𝑘
), 𝜙𝑖 (\𝑖 𝑗 − \0

𝑖 𝑗
)2 and the forth 𝜙𝑖𝜙𝑘 (\𝑖𝑘 −

\0
𝑖𝑘
)2 order. Hence, they can be neglected. At the same time, the last three terms are of the second

order 𝜙𝑖 (\𝑖𝑘 − \0
𝑖𝑘
). In the case 𝜖12𝜖13𝜖23 < 0, we have all \0

𝑖𝑘
= 0 or π, that is sin \0

𝑖𝑘
= 0, hence the

oscillations of the amplitudes and of the phases are not hybridized in this case. Thus, the Goldstone and
the Higgs modes are hybridized in the case 𝜖12𝜖13𝜖23 > 0 only, that is the phase-amplitude mode can take
place [17, 29].

The drag terms cause the analogous situation:(
𝜕`Ψ𝑖𝜕

`Ψ+
𝑘 + 𝜕`Ψ+

𝑖 𝜕`Ψ𝑘

)
≈

[(
𝜕`𝜙𝑖𝜕

`𝜙𝑘 + 𝜕`𝜙𝑘𝜕
`𝜙𝑖

)
+ Ψ01Ψ02(𝜕`\𝑖𝜕`\𝑘 + 𝜕`\𝑘𝜕

`\𝑖)
]

cos \0
𝑖𝑘

−
[
Ψ0𝑖

(
𝜕`𝜙𝑖𝜕

`\𝑘 + 𝜕`\𝑘𝜕
`𝜙𝑖

)
− Ψ0𝑘 (𝜕`\𝑖𝜕`𝜙𝑘 + 𝜕`𝜙𝑘𝜕

`\𝑖)
]

sin \0
𝑖𝑘 . (3.15)

We can see that in the case 𝜖12𝜖13𝜖23 < 0, the oscillations of the phase \ and amplitude 𝜙 are not hybridized
the same as for potential energy (3.14). It should be noted that the phase-amplitude hybridization is absent
in two-band superconductors due to this property. In addition, as demonstrated in reference [37], the effect
of the mixing of the oscillations of phases and amplitudes of OP from different bands is essential for
a reduced charge carrier density ` < 𝜔D (` is chemical potential, 𝜔D is Debye frequency). For a large
charge carrier density, the oscillations of phases and amplitudes can be supposed independent.

Accounting of the hybridization results in the dispersion equation of the sixth order, instead of two
equations (3.21) and (3.36) of the third order. The sixth order equation cannot be solved analytically.
In order to obtain an analytical spectrum of quasiparticles, we are forced to use the decoupling of
correlations. As will be demonstrated below, the spectrum of collective excitations is determined not
only by the coefficients of the proximity effect 𝜖𝑖𝑘 , but also by the coefficients of the drag effect [𝑖𝑘 .
As in two-band superconductors, the properties of the Higgs modes at 𝑇 = 𝑇𝑐 force us to regard the
coefficients [𝑖𝑘 in such way that it leaves only the common mode Higgs and Goldstone oscillations. Special
choice of the coefficients [𝑖𝑘 , which eliminates the spectrum branches with anti-phase oscillations, is
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the same both for the Leggett modes and for the Higgs modes if we neglect their hybridization, and
regardless of the sign of 𝜖12𝜖13𝜖23. Hence, at the first stage, we can consider the normal oscillations
without the phase-amplitude hybridization. Accounting of the phase-amplitude hybridization requires
special consideration.

3.2. Goldstone modes

Let us consider the movement of the phases only. Using the modulus-phase representation (3.1) and
assuming |Ψ1,2,3 | = const and 𝐴` = 0, the Lagrangian (3.5) takes the form:

L =
ℏ2

4𝑚1
|Ψ1 |2𝜕`\1𝜕

`\1 +
ℏ2

4𝑚2
|Ψ2 |2𝜕`\2𝜕

`\2 +
ℏ3

4𝑚3
|Ψ3 |2𝜕`\3𝜕

`\3

+ ℏ2

4
[12 |Ψ1 | |Ψ2 |

(
𝜕`\1𝜕

`\2 + 𝜕`\2𝜕
`\1

)
cos(\1 − \2)

+ ℏ2

4
[13 |Ψ1 | |Ψ3 |

(
𝜕`\1𝜕

`\3 + 𝜕`\3𝜕
`\1

)
cos(\1 − \3)

+ ℏ2

4
[23 |Ψ2 | |Ψ3 |

(
𝜕`\2𝜕

`\3 + 𝜕`\3𝜕
`\2

)
cos(\2 − \3)

− 2𝜖12 |Ψ1 | |Ψ2 | cos (\1 − \2) − 2𝜖13 |Ψ1 | |Ψ3 | cos (\1 − \3)
− 2𝜖23 |Ψ2 | |Ψ3 | cos (\2 − \3) + L (|Ψ1 |, |Ψ2 |, |Ψ3 |) . (3.16)

Corresponding Lagrange equation, for example, is

𝜕`
𝜕L

𝜕 (𝜕`\1)
− 𝜕L
𝜕\1

= 0 ⇒ ℏ2

4𝑚1
|Ψ1 |2𝜕`𝜕`\1 +

ℏ2

4
[12 |Ψ1 | |Ψ2 | cos(\1 − \2)𝜕`𝜕`\2

+ℏ
2

4
[13 |Ψ1 | |Ψ3 | cos(\1 − \3)𝜕`𝜕`\3

−|Ψ1 | |Ψ2 |𝜖12 sin(\1 − \2) − |Ψ1 | |Ψ3 |𝜖13 sin(\1 − \3) = 0, (3.17)

where we have omitted nonlinear terms 𝜕`\𝜕
`\. The phases can be written in the form of harmonic

oscillations:

\1 = \0
1 + 𝐴ei(qr−𝜔𝑡 ) ≡ \0

1 + 𝐴e−i𝑞`𝑥
`

,

\2 = \0
2 + 𝐵ei(qr−𝜔𝑡 ) ≡ \0

2 + 𝐵e−i𝑞`𝑥
`

,

\3 = \0
3 + 𝐶ei(qr−𝜔𝑡 ) ≡ \0

3 + 𝐶e−i𝑞`𝑥
`

, (3.18)

where 𝑞` = (𝜔/𝜐,−q), 𝑥` = (𝜐𝑡, r), \0
1,2,3 are equilibrium phases. We should linearize equation (3.17)

assuming cos \𝑖𝑘 ≈ cos \0
𝑖𝑘

, sin \𝑖𝑘 = sin
(
\𝑖𝑘 − \0

𝑖𝑘
+ \0

𝑖𝑘

)
≈

(
\𝑖𝑘 − \0

𝑖𝑘

)
cos \0

𝑖𝑘
+ sin \0

𝑖𝑘
, and using the

second three equations from equation (2.4). Then, the linearized equations are

ℏ2

4𝑚1
|Ψ1 |2𝜕`𝜕`\1 +

ℏ2

4
[
[12 cos \0

12
]
|Ψ1 | |Ψ2 |𝜕`𝜕`\2 +

ℏ2

4
[
[13 cos \0

13
]
|Ψ1 | |Ψ3 |𝜕`𝜕`\3

− |Ψ1 | |Ψ2 |
[
𝜖12 cos \0

12
] (
\12 − \0

12
)
− |Ψ1 | |Ψ3 |

[
𝜖13 cos \0

13
] (
\13 − \0

13
)
= 0,

ℏ2

4𝑚2
|Ψ2 |2𝜕`𝜕`\2 +

ℏ2

4
[
[12 cos \0

12
]
|Ψ1 | |Ψ2 |𝜕`𝜕`\1 +

ℏ2

4
[
[23 cos \0

23
]
|Ψ2 | |Ψ3 |𝜕`𝜕`\3

+ |Ψ1 | |Ψ2 |
[
𝜖12 cos \0

12
] (
\12 − \0

12
)
− |Ψ2 | |Ψ3 |

[
𝜖23 cos \0

23
] (
\23 − \0

23
)
= 0,

ℏ2

4𝑚3
|Ψ3 |2𝜕`𝜕`\3 +

ℏ2

4
[
[13 cos \0

13
]
|Ψ1 | |Ψ3 |𝜕`𝜕`\1 +

ℏ2

4
[
[23 cos \0

23
]
|Ψ2 | |Ψ3 |𝜕`𝜕`\2

+ |Ψ1 | |Ψ3 |
[
𝜖13 cos \0

13
] (
\13 − \0

13
)
+ |Ψ2 | |Ψ3 |

[
𝜖23 cos \0

23
] (
\23 − \0

23
)
= 0. (3.19)
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Substituting equation (3.18) in equation (3.19), we obtain equations for the amplitudes 𝐴, 𝐵, 𝐶:

𝐴

(
− |Ψ2 |
|Ψ1 |

𝜖12 cos \0
12 −

|Ψ3 |
|Ψ1 |

𝜖13 cos \0
13 − 𝑞`𝑞

` ℏ2

4𝑚1

)
+ 𝐵

|Ψ2 |
|Ψ1 |

(
𝜖12 cos \0

12 − 𝑞`𝑞
` ℏ

2

4
[12 cos \0

12

)
+ 𝐶

|Ψ3 |
|Ψ1 |

(
𝜖13 cos \0

13 − 𝑞`𝑞
` ℏ

2

4
[13 cos \0

13

)
= 0,

𝐴
|Ψ1 |
|Ψ2 |

(
𝜖12 cos \0

12 − 𝑞`𝑞
` ℏ

2

4
[12 cos \0

12

)
+ 𝐵

(
− |Ψ1 |
|Ψ2 |

𝜖12 cos \0
12 −

|Ψ3 |
|Ψ2 |

𝜖23 cos \0
23 − 𝑞`𝑞

` ℏ2

4𝑚2

)
+ 𝐶

|Ψ3 |
|Ψ2 |

(
𝜖23 cos \0

23 − 𝑞`𝑞
` ℏ

2

4
[23 cos \0

23

)
= 0,

𝐴
|Ψ1 |
|Ψ3 |

(
𝜖13 cos \0

13 − 𝑞`𝑞
` ℏ

2

4
[13 cos \0

13

)
+ 𝐵

|Ψ2 |
|Ψ3 |

(
𝜖23 cos \0

23 − 𝑞`𝑞
` ℏ

2

4
[23 cos \0

23

)
+ 𝐶

(
− |Ψ1 |
|Ψ3 |

𝜖13 cos \0
13 −

|Ψ2 |
|Ψ3 |

𝜖23 cos \0
23 − 𝑞`𝑞

` ℏ2

4𝑚3

)
= 0. (3.20)

Equating the determinant of the system to zero (3.20), we find a dispersion equation:(
𝑞`𝑞

`
)3
𝑎 +

(
𝑞`𝑞

`
)2
𝑏 +

(
𝑞`𝑞

`
)
𝑐 = 0, (3.21)

where

𝑎 =

(
ℏ2

4

)3 [
1

𝑚1𝑚2𝑚3
+ 2[̃12[̃13[̃23 −

[̃2
12
𝑚3

−
[̃2

13
𝑚2

−
[̃2

23
𝑚1

]
,

𝑏 =

(
ℏ2

4

)2 [ (
|Ψ1 |
|Ψ3 |

�̃�13 +
|Ψ2 |
|Ψ3 |

�̃�23

) (
1

𝑚1𝑚2
− [2

12

)
+

(
|Ψ1 |
|Ψ2 |

�̃�12 +
|Ψ3 |
|Ψ2 |

�̃�23

) (
1

𝑚1𝑚3
− [2

13

)
+

(
|Ψ2 |
|Ψ1 |

�̃�12 +
|Ψ3 |
|Ψ1 |

�̃�13

) (
1

𝑚2𝑚3
− [2

23

)
− 2�̃�12

(
[̃12
𝑚3

− [̃13[̃23

)
− 2�̃�13

(
[̃13
𝑚2

− [̃12[̃23

)
− 2�̃�23

(
[̃23
𝑚1

− [̃12[̃13

) ]
,

𝑐 =
ℏ2

4

[ (
|Ψ1 |
|Ψ2 |

�̃�12 +
|Ψ3 |
|Ψ2 |

�̃�23

) (
|Ψ1 |
|Ψ3 |

�̃�13 +
|Ψ2 |
|Ψ3 |

�̃�23

)
1
𝑚1

+
(
|Ψ2 |
|Ψ1 |

�̃�12 +
|Ψ3 |
|Ψ1 |

�̃�13

)
×

(
|Ψ1 |
|Ψ3 |

�̃�13 +
|Ψ2 |
|Ψ3 |

�̃�23

)
1
𝑚2

+
(
|Ψ2 |
|Ψ1 |

�̃�12 +
|Ψ3 |
|Ψ1 |

�̃�13

) (
|Ψ1 |
|Ψ2 |

�̃�12 +
|Ψ3 |
|Ψ2 |

�̃�23

)
1
𝑚3

+ 2�̃�13�̃�23[̃12

+ 2�̃�12�̃�23[̃13 + 2�̃�12�̃�13[̃23 − �̃�2
12

1
𝑚3

+ 2�̃�12[̃12

(
|Ψ1 |
|Ψ3 |

�̃�13 +
|Ψ2 |
|Ψ3 |

�̃�23

)
− �̃�2

13
1
𝑚2

+ 2�̃�13[̃13

(
|Ψ1 |
|Ψ2 |

�̃�12 +
|Ψ3 |
|Ψ2 |

�̃�23

)
− �̃�2

23
1
𝑚1

+ 2�̃�23[̃23

(
|Ψ2 |
|Ψ1 |

�̃�21 +
|Ψ3 |
|Ψ1 |

�̃�13

) ]
, (3.22)

and we denoted:
�̃�𝑖𝑘 ≡ 𝜖𝑖𝑘 cos \0

𝑖𝑘 , [̃𝑖𝑘 ≡ [𝑖𝑘 cos \0
𝑖𝑘 . (3.23)

From equation (3.21) we can see that one of dispersion relations is

𝑞`𝑞
` = 0 ⇒ 𝜔2 = 𝑞2𝜐2, (3.24)

wherein 𝐴 = 𝐵 = 𝐶. Thus, this mode represents the common mode oscillations, as Goldstone mode
in single-band superconductors. There are other oscillation modes with such spectra, that 𝑞`𝑞

` =

(−𝑏 ±
√
𝑏2 − 4𝑎𝑐)/2𝑎 ≠ 0, i.e., two massive modes. These modes are analogous to the Leggett mode in

two-band superconductors [8] and correspond to the results of references [37–39] for the phase oscillations
in three-band superconductors. It should be noted that if we assume all 𝜖𝑖𝑘 = 0, then 𝑏 = 𝑐 = 0 and the
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dispersion equation will be 𝑎(𝑞`𝑞
`)3 = 0. That is, we obtain independent common mode oscillations in

each band. Let us consider a symmetrical three-band system |Ψ1 | = |Ψ2 | = |Ψ3 |, 𝑚1 = 𝑚2 = 𝑚3 ≡ 𝑚,
𝜖12 = 𝜖13 = 𝜖23 ≡ 𝜖 in the case of the absence of the drag effect [12 = [13 = [23 = 0. Then, massive
modes have the same spectrum:

𝑞`𝑞
` = −12

ℏ2 𝑚�̃�, (3.25)

where �̃� < 0. Amplitudes of these modes relate as 𝐴 = −𝐶, 𝐵 = 0 and 𝐴 = 𝐶, 𝐵 = −(𝐴 + 𝐶), so that
current J = ℏ𝑒

𝑚1
|Ψ1 |2∇\1 + ℏ𝑒

𝑚2
|Ψ2 |2∇\2 + ℏ𝑒

𝑚3
|Ψ3 |2∇\3 is J ≠ 0 for the acoustic mode (3.24) and J = 0 for

the massive modes (3.25). These three Goldstone modes are shown in figure 3.

Figure 3. Normal oscillations of the phases \1, \2, \3 in a symmetrical three-band system |Ψ1 | = |Ψ2 | =
|Ψ3 |, 𝑚1 = 𝑚2 = 𝑚3 with repulsive interband interactions 𝜖12 = 𝜖13 = 𝜖23 > 0 in the case of the absence
of the drag effect [12 = [13 = [23 = 0. (a) Common phase oscillations with acoustic spectrum (3.24),
which are accompanied by nonzero current J = ℏ𝑒

𝑚1
|Ψ1 |2∇\1 + ℏ𝑒

𝑚2
|Ψ2 |2∇\2 + ℏ𝑒

𝑚3
|Ψ3 |2∇\3 ≠ 0. (b, c)

Anti-phase oscillations with the massive spectrum (3.25), which are not accompanied by the current, i.e.
J = 0.

It is not difficult to see that if we assume

[̃12 =
1

√
𝑚1𝑚2

, [̃13 =
1

√
𝑚1𝑚3

, [̃23 =
1

√
𝑚2𝑚3

, (3.26)

then, 𝑎 = 𝑏 = 0. Hence, the common mode oscillations (3.24) remain only.

3.3. Higgs modes

Let us consider the movement of the modules only (that is, assuming \1,2,3 = \0
1,2,3), then, the

Lagrangian (3.5) takes the form (when 𝐴` = 0):

L =
ℏ2

4𝑚1
𝜕` |Ψ1 |𝜕` |Ψ1 | +

ℏ2

4𝑚2
𝜕` |Ψ2 |𝜕` |Ψ2 | +

ℏ2

4𝑚3
𝜕` |Ψ3 |𝜕` |Ψ3 |

+ ℏ2

4
[̃12

(
𝜕` |Ψ1 |𝜕` |Ψ2 | + 𝜕` |Ψ2 |𝜕` |Ψ1 |

)
+ ℏ2

4
[̃13

(
𝜕` |Ψ1 |𝜕` |Ψ3 | + 𝜕` |Ψ3 |𝜕` |Ψ1 |

)
+ ℏ2

4
[̃23

(
𝜕` |Ψ2 |𝜕` |Ψ3 | + 𝜕` |Ψ3 |𝜕` |Ψ2 |

)
− 𝑎1 |Ψ1 |2 −

𝑏1
2

|Ψ1 |4 − 𝑎2 |Ψ2 |2 −
𝑏2
2

|Ψ2 |4

− 𝑎3 |Ψ3 |2 −
𝑏3
2

|Ψ3 |4 − 2�̃�12 |Ψ1 | |Ψ2 | − 2�̃�13 |Ψ1 | |Ψ3 | − 2�̃�23 |Ψ2 | |Ψ3 |. (3.27)
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At 𝑇 < 𝑇𝑐, we can consider small variations of the modulus of OP from its equilibrium value: |Ψ1,2,3 | =
Ψ01,02,03 + 𝜙1,2,3, where |𝜙1,2,3 | � Ψ01,02,03. Then, |Ψ|2 ≈ Ψ2

0 + 2Ψ0𝜙 + 𝜙2, |Ψ|4 ≈ Ψ4
0 + 4Ψ3

0𝜙 + 6Ψ2
0𝜙

2,
|Ψ1 | |Ψ2 | ≈ Ψ01Ψ02 + Ψ01𝜙2 + Ψ02𝜙1 + 𝜙1𝜙2, and Lagrangian (3.27) takes the form:

L =
ℏ2

4𝑚1
𝜕`𝜙1𝜕

`𝜙1 +
ℏ2

4𝑚2
𝜕`𝜙2𝜕

`𝜙2 +
ℏ2

4𝑚3
𝜕`𝜙3𝜕

`𝜙3 +
ℏ2

4
[̃12

(
𝜕`𝜙1𝜕

`𝜙2 + 𝜕`𝜙2𝜕
`𝜙1

)
+ ℏ2

4
[̃13

(
𝜕`𝜙1𝜕

`𝜙3 + 𝜕`𝜙3𝜕
`𝜙1

)
+ ℏ2

4
[̃23

(
𝜕`𝜙2𝜕

`𝜙3 + 𝜕`𝜙3𝜕
`𝜙2

)
− 𝜙2

1

(
𝑎1 + 3𝑏1Ψ

2
01

)
− 𝜙2

2

(
𝑎2 + 3𝑏2Ψ

2
02

)
− 𝜙2

3

(
𝑎2 + 3𝑏3Ψ

2
03

)
− 2�̃�12𝜙1𝜙2 − 2�̃�13𝜙1𝜙3 − 2�̃�23𝜙2𝜙3

− 2𝜙1

(
�̃�12Ψ02 + �̃�13Ψ03 + 𝑎1Ψ01 + 𝑏1Ψ

3
01

)
− 2𝜙2

(
�̃�12Ψ01 + �̃�23Ψ03 + 𝑎2Ψ02 + 𝑏2Ψ

3
02

)
− 2𝜙3

(
�̃�13Ψ01 + �̃�23Ψ02 + 𝑎3Ψ03 + 𝑏3Ψ

3
03

)
− 𝑎1Ψ

2
01 −

𝑏1
2
Ψ4

01 − 𝑎2Ψ
2
02 −

𝑏2
2
Ψ4

02

− 𝑎3Ψ
2
03 −

𝑏3
2
Ψ4

03 − 2�̃�12Ψ01Ψ02 − 2�̃�13Ψ01Ψ03 − 2�̃�23Ψ02Ψ03. (3.28)

The last nine terms can be omitted as a constant. The terms at 𝜙1,2,3 should be zero, then

�̃�12Ψ02 + �̃�13Ψ03 + 𝑎1Ψ01 + 𝑏1Ψ
3
01 = 0,

�̃�12Ψ01 + �̃�23Ψ03 + 𝑎2Ψ02 + 𝑏2Ψ
3
02 = 0,

�̃�13Ψ01 + �̃�23Ψ02 + 𝑎3Ψ03 + 𝑏3Ψ
3
03 = 0, (3.29)

which corresponds to the first three equations in equation (2.4). At 𝑇 > 𝑇𝑐1, 𝑇𝑐2, 𝑇𝑐3, we have 𝑎1,2,3 > 0
and equation (2.8) in 𝑇 = 𝑇𝑐, at 𝑇 < 𝑇𝑐1, 𝑇𝑐2, 𝑇𝑐3 we have 𝑎1,2,3 < 0. At 𝑇 � 𝑇𝑐1, 𝑇𝑐2, 𝑇𝑐3 in the case of
the weak interband coupling 𝜖2

𝑖𝑘
� 𝑎𝑖𝑎𝑘 , it is not difficult to obtain from equation (3.29):

Ψ01 =

√︄
|𝑎1 |
𝑏1

(
1 − �̃�12

2
√︁
|𝑎1 | |𝑎2 |

√︂
𝑏1
𝑏2

|𝑎2 |
|𝑎1 |

− �̃�13

2
√︁
|𝑎1 | |𝑎3 |

√︂
𝑏1
𝑏3

|𝑎3 |
|𝑎1 |

)
≈

√︄
|𝑎1 |
𝑏1

,

Ψ02 =

√︄
|𝑎2 |
𝑏2

(
1 − �̃�12

2
√︁
|𝑎2 | |𝑎1 |

√︂
𝑏2
𝑏1

|𝑎1 |
|𝑎2 |

− �̃�23

2
√︁
|𝑎2 | |𝑎3 |

√︂
𝑏2
𝑏3

|𝑎3 |
|𝑎2 |

)
≈

√︄
|𝑎2 |
𝑏2

,

Ψ02 =

√︄
|𝑎3 |
𝑏3

(
1 − �̃�13

2
√︁
|𝑎3 | |𝑎1 |

√︂
𝑏3
𝑏1

|𝑎1 |
|𝑎3 |

− �̃�23

2
√︁
|𝑎2 | |𝑎3 |

√︂
𝑏3
𝑏2

|𝑎2 |
|𝑎3 |

)
≈

√︄
|𝑎3 |
𝑏3

. (3.30)

That is, the effect of the weak interband coupling on the OP Ψ1,2,3 at 𝑇 = 0 is not essential, and it can be
described as perturbation. At 𝑇 → 𝑇𝑐, we have Ψ01,02,03 → 0, then, the following approximation can be
proposed:

Ψ2
01 =

(
−𝑎1𝑎2𝑎3 − 2�̃�12�̃�13�̃�23 + �̃�2

23𝑎1 + �̃�2
13𝑎2 + �̃�2

12𝑎3
)
/𝑏1

(
𝑎2𝑎3 − �̃�2

23
)
,

Ψ2
02 =

(
−𝑎1𝑎2𝑎3 − 2�̃�12�̃�13�̃�23 + �̃�2

23𝑎1 + �̃�2
13𝑎2 + �̃�2

12𝑎3
)
/𝑏2

(
𝑎1𝑎3 − �̃�2

13
)
,

Ψ2
03 =

(
−𝑎1𝑎2𝑎3 − 2�̃�12�̃�13�̃�23 + �̃�2

23𝑎1 + �̃�2
13𝑎2 + �̃�2

12𝑎3
)
/𝑏3

(
𝑎1𝑎2 − �̃�2

12
)
. (3.31)

Thus, at high temperatures 𝑇 & 𝑇𝑐1, 𝑇𝑐2, 𝑇𝑐3, the values of the OP Ψ01,02,03 are determined by the
interband couplings 𝜖𝑖𝑘 , so that, if 𝜖12 = 𝜖13 = 𝜖23 = 0, then Ψ01,02,03 = 0.

Let us introduce the following notes:

𝛼1 ≡ 𝑎1 + 3𝑏1Ψ
2
01, 𝛼2 ≡ 𝑎2 + 3𝑏2Ψ

2
02, 𝛼3 ≡ 𝑎3 + 3𝑏3Ψ

2
03, (3.32)

then,

𝛼1,2,3 = 𝑎1,2,3 > 0, at 𝑇 = 𝑇𝑐,

𝛼1,2,3 = −2𝑎1,2,3 = 2|𝑎1,2,3 |, at 𝑇 � 𝑇𝑐1, 𝑇𝑐2, 𝑇𝑐3. (3.33)
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The second formula is correct if the weak interband coupling 𝜖2 � 𝑎1𝑎2 takes place only. Lagrange
equations for Lagrangian (3.28) are:

ℏ2

4𝑚1
𝜕`𝜕

`𝜙1 +
ℏ2

4
[̃12𝜕`𝜕

`𝜙2 +
ℏ2

4
[̃13𝜕`𝜕

`𝜙3 + 𝛼1𝜙1 + �̃�12𝜙2 + �̃�13𝜙3 = 0,

ℏ2

4𝑚2
𝜕`𝜕

`𝜙2 +
ℏ2

4
[̃12𝜕`𝜕

`𝜙1 +
ℏ2

4
[̃23𝜕`𝜕

`𝜙3 + 𝛼2𝜙2 + �̃�12𝜙1 + �̃�23𝜙3 = 0,

ℏ2

4𝑚3
𝜕`𝜕

`𝜙3 +
ℏ2

4
[̃13𝜕`𝜕

`𝜙1 +
ℏ2

4
[̃23𝜕`𝜕

`𝜙2 + 𝛼3𝜙2 + �̃�13𝜙1 + �̃�23𝜙3 = 0. (3.34)

The fields 𝜙1,2,3 can be written in the form of harmonic oscillations: 𝜙1 = 𝐴 exp(−i𝑞`𝑥
`), 𝜙2 =

𝐵 exp(−i𝑞`𝑥
`), 𝜙3 = 𝐶 exp(−i𝑞`𝑥

`), where 𝑞`𝑥
` = 𝜔𝑡 − qr. Substituting them in equation (3.34), we

obtain equations for the amplitudes 𝐴, 𝐵, 𝐶:

𝐴

(
𝛼1 − 𝑞`𝑞

` ℏ2

4𝑚1

)
+ 𝐵

(
�̃�12 − 𝑞`𝑞

` ℏ
2

4
[̃12

)
+ 𝐶

(
�̃�13 − 𝑞`𝑞

` ℏ
2

4
[̃13

)
= 0,

𝐴

(
�̃�12 − 𝑞`𝑞

` ℏ
2

4
[̃12

)
+ 𝐵

(
𝛼2 − 𝑞`𝑞

` ℏ2

4𝑚2

)
+ 𝐶

(
�̃�23 − 𝑞`𝑞

` ℏ
2

4
[̃23

)
= 0,

𝐴

(
�̃�13 − 𝑞`𝑞

` ℏ
2

4
[̃13

)
+ 𝐵

(
�̃�23 − 𝑞`𝑞

` ℏ
2

4
[̃23

)
+ 𝐶

(
𝛼3 − 𝑞`𝑞

` ℏ2

4𝑚3

)
= 0. (3.35)

Equating the determinant of the system to zero (3.35), we find the dispersion equation:(
𝑞`𝑞

`
)3
𝑎 +

(
𝑞`𝑞

`
)2
𝑏 +

(
𝑞`𝑞

`
)
𝑐 + 𝑑 = 0, (3.36)

where

𝑎 =

(
ℏ2

4

)3 (
1

𝑚1𝑚2𝑚3
+ 2[̃12[̃13[̃23 −

[̃2
23
𝑚1

−
[̃2

13
𝑚2

−
[̃2

12
𝑚3

)
,

𝑏 =

(
ℏ2

4

)2 (
− 𝛼1
𝑚2𝑚3

− 𝛼2
𝑚1𝑚3

− 𝛼3
𝑚2𝑚2

− 2�̃�12[̃13[̃23 − 2�̃�13[̃12[̃23 − 2�̃�23[̃12[̃13

+ 𝛼1[̃
2
23 + 𝛼2[̃

2
13 + 𝛼3[̃

2
12 + 2

�̃�23[̃23
𝑚1

+ 2
�̃�13[̃13
𝑚2

+ 2
�̃�12[̃12
𝑚3

)
, (3.37)

𝑐 =
ℏ2

4

[
�̃�2

23 − 𝛼2𝛼3

𝑚1
+
�̃�2

13 − 𝛼1𝛼3

𝑚2
+
�̃�2

12 − 𝛼1𝛼2

𝑚3

− 2[̃12(�̃�13�̃�23 − 𝛼3�̃�12) − 2[̃13(�̃�12�̃�23 − 𝛼2�̃�13) − 2[̃23(�̃�12�̃�13 − 𝛼1�̃�23)
]
,

𝑑 = 𝛼1𝛼2𝛼3 + 2�̃�12�̃�13�̃�23 − 𝛼1�̃�
2
23 − 𝛼2�̃�

2
13 − 𝛼3�̃�

2
12.

It should be noted that 𝑑 (𝑇𝑐) = 0 according to equations (2.8), (3.23), (3.32), and (3.33). Hence, we have
the corresponding dispersion relations at a critical temperature:

𝑞`𝑞
` (𝑇𝑐) = 0, (3.38)

𝑞`𝑞
` (𝑇𝑐) =

−𝑏 ±
√
𝑏2 − 4𝑎𝑐
2𝑎

> 0. (3.39)

We can see that Higgs mode splits to three branches. For the first mode (3.38), the energy gap (the mass
of Higgs boson) vanishes at the critical temperature, as in single-band superconductors, and amplitudes
of these modes relate as 𝐴 = 𝐵 = 𝐶. At the same time, the energy gap of the second and third
modes (3.39) does not vanish at the critical temperature. Thus, let us consider a case of symmetrical
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bands 𝛼1 = 𝛼2 = 𝛼3 ≡ 𝛼, �̃�1 = �̃�2 = �̃�3 ≡ �̃� , 𝑚1 = 𝑚2 = 𝑚3 ≡ 𝑚 and the drag effect is absent:
[12 = [13 = [23 = 0, then, the massive modes have the same spectrum (𝑏2 − 4𝑎𝑐 = 0):

𝑞`𝑞
` (𝑇𝑐) = −12

ℏ2 𝑚�̃�, (3.40)

where �̃� < 0. Amplitudes of these modes relate as, for example, 𝐴 = −𝐶, 𝐵 = 0 and 𝐴 = 𝐶, 𝐵 = −(𝐴+𝐶),
accordingly.

In [1] it was demonstrated how the energy gap ℏ𝜔0 (q = 0) is related to the coherence length b:
b2 = 2𝜐2/𝜔2

0 (or from the uncertainty principle: ℏ𝜔0b/𝜐 ∼ ℏ ⇒ b ∼ 𝜐/𝜔0, since the energy of Higgs
mode plays the role of the uncertainty of energy in a superconductor). Thus, there are three coherence
lengths according to the branches (3.38) and (3.39). For example, for the symmetrical bands without the
drag effect, we obtain at 𝑇 = 𝑇𝑐:

b2
1 = ∞, (3.41)

b2
2 = b2

3 =
ℏ2

6𝑚 |�̃� | < ∞. (3.42)

The first coherence length diverges at 𝑇 = 𝑇𝑐. On the contrary, the second and third lengths remain finite
and they vary only a little with temperature.

Thus, Higgs modes are oscillations of SC densities 𝑛s𝑖 = 2|Ψ𝑖 |2. At the same time, the normal density
must oscillate in anti-phase, so that the total density is constant 𝑛 = 𝑛s+𝑛n = const, hence, 𝑛sv𝑠+𝑛nv𝑛 = 0.
Then, in order to change SC density, one Cooper pair must be broken as minimum, that is the energy
of order of 2|Δ| must be spent. Thus, in [1] it was demonstrated that in single-band superconductors
𝑞`𝑞

` = 4|Δ|2. Thus, to excite any Higgs mode at𝑇 = 𝑇𝑐 it is not necessary to spend this threshold energy,
since |Δ(𝑇𝑐) | = 0. However, for the second and third branches — equation (3.39) or equation (3.40),
we have 𝑞`𝑞

` (𝑇𝑐) ≠ 0, which is a nonphysical property. Thus, we must assume equation (3.26), then
from equation (3.37) we can see that 𝑎 = 𝑏 = 0. Hence, the anti-phase Higgs modes are absent, and the
common mode oscillations with zero energy gap at 𝑇 = 𝑇𝑐 remain only:

𝑞`𝑞
` = −𝑑

𝑐
=

4
ℏ2

[ (
𝛼1𝛼2𝛼3 + 2�̃�12�̃�13�̃�23 − 𝛼1�̃�

2
23 − 𝛼2�̃�

2
13 − 𝛼3�̃�

2
12

)
/
(
𝛼2𝛼3 − �̃�2

23
𝑚1

+
𝛼1𝛼3 − �̃�2

13
𝑚2

+
𝛼1𝛼2 − �̃�2

12
𝑚3

− 2
𝛼3�̃�12 − �̃�13�̃�23√

𝑚1𝑚2
− 2

𝛼2�̃�13 − �̃�12�̃�23√
𝑚1𝑚3

− 2
𝛼1�̃�23 − �̃�12�̃�13√

𝑚2𝑚3

) ]
. (3.43)

Respectively, there is only one coherence length b (𝑇):

b2 =
2𝜐2

𝜔2
0
= −2𝑐

𝑑
. (3.44)

For symmetrical bands, we have the following dispersion law for the Higgs mode:

𝑞`𝑞
` =

4𝑚
3ℏ2 (𝛼 − 2|�̃� |), (3.45)

whose energy gap vanishes at 𝑇 = 𝑇𝑐: from equations (2.9) and (3.33) we have 𝛼(𝑇𝑐) = 𝑎(𝑇𝑐) = 2|�̃� |,
hence, 𝑞`𝑞

` (𝑇𝑐) = 0. The corresponding coherence length is:

b2 =
3ℏ2

2𝑚
1

|𝛼 − 2|�̃� | | , (3.46)

so that b (𝑇𝑐) = ∞.
We could see from the properties of Higgs modes that the existence of several coherence lengthes

with corresponding properties is incompatible with the second-order phase transition. Then, if equa-
tion (3.26) takes place, then Leggett modes are absent, and the common mode oscillations with acoustic
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spectrum (3.24) remain only. Thus, as in single-band superconductors, in three-band superconductors
the common mode oscillations exist only. The anti-phase Goldstone mode (i.e., Leggett modes) and the
anti-phase Higgs modes are absent, which ensures only one coherence length b (𝑇) diverging at 𝑇 = 𝑇𝑐.
At the same time, the Goldstone mode is accompanied by current. Therefore, the gauge field 𝐴` ab-
sorbs the Goldstone boson \, as in single-band superconductors, i.e., Anderson-Higgs mechanism takes
place [1]. The condition (3.26) generalizes the condition obtained in [5, 8] for two-band superconductors,
which prohibits type 1.5 superconductors.

Let us consider the regime of almost independent condensates in each band. This means: 1) temper-
ature must be low, i.e., 𝑇 � 𝑇𝑐1, 𝑇𝑐2, 𝑇𝑐3, 2) the weak interband coupling 𝜖2

𝑖𝑘
� 𝑎𝑖𝑎𝑘 must take place.

Using equation (3.30), the energy gap ℏ𝜔0 (q = 0) of Higgs mode (3.43) can be reduced to a form:

(ℏ𝜔0)2 = 4𝜐2 𝛼1𝛼2𝛼3
(𝛼2𝛼3/𝑚1) + (𝛼1𝛼3/𝑚2) + (𝛼1𝛼2/𝑚3)

= 8𝜐2 |𝑎1 | |𝑎2 | |𝑎3 |
( |𝑎2 | |𝑎3 |/𝑚1) + (|𝑎1 | |𝑎3 |/𝑚2) + (|𝑎1 | |𝑎2 |/𝑚3)

=
8
3
𝜐2


√︃
𝑎2

1 |𝑎2 | |𝑎3 |𝑏2𝑏3

( |𝑎2 | |𝑎3 |/𝑚1) + (|𝑎1 | |𝑎3 |/𝑚2) + (|𝑎1 | |𝑎2 |/𝑚3)
Ψ02Ψ03

+

√︃
𝑎2

2 |𝑎1 | |𝑎3 |𝑏1𝑏3

( |𝑎2 | |𝑎3 |/𝑚1) + (|𝑎1 | |𝑎3 |/𝑚2) + (|𝑎1 | |𝑎2 |/𝑚3)
Ψ01Ψ03

+

√︃
𝑎2

3 |𝑎1 | |𝑎2 |𝑏1𝑏2

( |𝑎2 | |𝑎3 |/𝑚1) + (|𝑎1 | |𝑎3 |/𝑚2) + (|𝑎1 | |𝑎2 |/𝑚3)
Ψ01Ψ02

 . (3.47)

Then, multipliers before Ψ0𝑖Ψ0𝑘 depend on temperature very weakly, and this energy is symmetrical
with respect to the bands. Using the relationship between the “wave function” of Cooper pairs Ψ and the
energy gap Δ [1, 40, 41]:

Ψ𝑖 =
[14Z (3)𝑛𝑖]1/2

4π𝑇𝑐𝑖
Δ𝑖 , (3.48)

where 𝑛𝑖 = 𝑘3
𝐹𝑖
/3π2 is electron density for a band 𝑖. Then, we can see that (ℏ𝜔0)2 ∝ |Δ𝑖 | |Δ𝑘 |, and we

can assume:
(ℏ𝜔0)2 = 𝜒12Δ01Δ02 + 𝜒13Δ01Δ03 + 𝜒23Δ02Δ03, (3.49)

where 𝜒𝑖𝑘 = const (dimensionless) are such that in superconductor with symmetrical𝑚1 = 𝑚2 = 𝑚3, 𝑛1 =

𝑛2 = 𝑛3, 𝑎1 = 𝑎2 = 𝑎3, 𝑏1 = 𝑏2 = 𝑏3, 𝑇𝑐1 = 𝑇𝑐2 = 𝑇𝑐3 ⇒ Δ1 = Δ2 = Δ3 and almost independent bands
(i.e., 𝜖2

𝑖𝑘
� 𝑎𝑖𝑎𝑘 at 𝑇 � 𝑇𝑐1, 𝑇𝑐2, 𝑇𝑐3), we should have 𝜐 = 𝜐F/3, since in single-band superconductors

we have 𝜐 = 𝜐F/
√

3 and we can determine the “dielectric permittivity” as Y = 𝑐2/𝜐2 = 𝑐2/(𝜐2
F/3) [1],

then a “mixture” of three superconductors is equivalent to three parallel dielectrics (capacitors), then the
total permittivity is Y = Y1 + Y2 + Y3 = 3𝑐2/

(
𝜐2

F/3
)
; hence, we obtain for the “mixture”: 𝜐 = 𝜐F/3. The

coefficients 𝑎𝑖 , 𝑏𝑖 are [42]:

𝑎𝑖 =
6π2𝑇𝑐𝑖

7Z (3)Y𝐹𝑖

(𝑇 − 𝑇𝑐𝑖) , 𝑏𝑖 =
6π2𝑇𝑐𝑖

7Z (3)Y𝐹𝑖

𝑇𝑐𝑖

𝑛𝑖
. (3.50)

Let us suppose that 𝜒12 ≈ 𝜒13 ≈ 𝜒23 ≡ 𝜒 = const, and consider symmetrical bands (in particular
𝜐F1 = 𝜐F2 = 𝜐F3 ≡ 𝜐F). Substituting equations (3.47), (3.48) and (3.50) in equation (3.49) we obtain:

𝜐2 =
3𝜒
4
𝜐2

F ⇒ 𝜒 =
4
27

. (3.51)

For the material with different bands at 𝑇 � 𝑇𝑐1, 𝑇𝑐2, 𝑇𝑐3 we can obtain the following approximation:

𝜐2 ≈ 1
9

(
𝑇𝑐2𝑇𝑐3
𝑇𝑐1

𝜐2
F1 +

𝑇𝑐1𝑇𝑐3
𝑇𝑐2

𝜐2
F2 +

𝑇𝑐1𝑇𝑐2
𝑇𝑐3

𝜐2
F3

)
1

𝑇𝑐1 + 𝑇𝑐2 + 𝑇𝑐3
. (3.52)
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Thus, the speed of “light” 𝜐 is of the order of Fermi speeds 𝜐F1, 𝜐F2, 𝜐F3 in the corresponding bands, as
in single-band superconductors, where 𝜐 = 𝜐F/

√
3 [1].

4. Results

In this work we investigate equilibrium states, magnetic response and the normal oscillations of
internal degrees of freedom of three-band superconductors with the accounting of the terms of the “drag”
effect [𝑖𝑘

{
𝐷`Ψ𝑖 (𝐷`Ψ𝑘)+ + (𝐷`Ψ𝑖)+𝐷`Ψ𝑘

}
. Our results are as follows:

1) The obtained equation for critical temperature (2.8) demonstrates that 𝑇𝑐 depends on the signs
of the coefficients of internal proximity effect (𝜖𝑖𝑘 < 0 for attractive interband interaction, 𝜖𝑖𝑘 > 0 for
repulsive interband interaction): 𝑇𝑐 (𝜖12𝜖13𝜖23 < 0) > 𝑇𝑐 (𝜖12𝜖13𝜖23 > 0). As in two-band systems, the
effect of interband coupling is nonperturbative: the application of the weak interband coupling washes
out all OP up to a new critical temperature, as illustrated in figure 2. The magnetic penetration depth is
determined with SC densities in each band, although the drag terms renormalize the carrier masses see
equation (2.14).

2) Due to the internal proximity effect, the Goldstone mode splits into three branches: common
mode oscillations with the acoustic spectrum, and the oscillations of the relative phases \𝑖 − \𝑘 between
SC condensates with an energy gap in the spectrum determined by interband couplings 𝜖𝑖𝑘 , which
are analogous to the Leggett mode in two-band superconductors. The common mode oscillations are
absorbed by the gauge field 𝐴`. That is why oscillations are accompanied by current, as in single-band
superconductors [1]. At the same time, the massive modes are not accompanied by current. Therefore,
they “survive”. If we assume that the coefficients of the drag effect [𝑖𝑘 are such as in equation (3.26),
then the Leggett modes are absent, and the common mode oscillations (3.24) remain only.

3) Higgs oscillations also split into three branches. The energy gap of the common mode vanishes at
critical temperature 𝑇𝑐, for the other two anti-phase modes their energy gaps do not vanish at 𝑇𝑐 and are
determined by the interband couplings 𝜖𝑖𝑘 . The mass of Higgs mode is related to the coherence length b.
Hence, we obtain three coherence lengths accordingly. The first coherence length diverges at 𝑇 = 𝑇𝑐,
while on the contrary, the second and third lengths remain finite at all temperatures. The effect of the
splitting of Goldstone and Higgs modes into three branches each takes place even at the infinitely small
coefficients 𝜖𝑖𝑘 . Thus, the effect of interband coupling 𝜖 ≠ 0 is nonperturbative. As for Goldstone modes,
if we assume that coefficients of the drag effect [𝑖𝑘 are such as in equation (3.26), then the anti-phase
Higgs modes are absent and the common mode oscillations (3.43) with zero energy gap at 𝑇 = 𝑇𝑐 remain
only.

4) The excitation of one quant of Higgs oscillations requires the breaking of one Cooper pair as
minimum, i.e., the energy of the order of 2|Δ| must be spent. Hence, to excite any Higgs mode at 𝑇 = 𝑇𝑐
it is not necessary to spend this threshold energy. In three-band superconductors for anti-phase Higgs
modes, we have a nonphysical property 𝑞`𝑞

` (𝑇𝑐) ≠ 0. As and for Goldstone modes, if we assume that
coefficients of the drag effect [𝑖𝑘 are the same as in equation (3.26), then the anti-phase Higgs modes
are absent and the common mode oscillations with zero energy gap at 𝑇 = 𝑇𝑐 remain only. Thus, as in
single-band superconductors, in three-band superconductors the common mode oscillations exist only.
The anti-phase Goldstone mode (i.e., Leggett modes) and the anti-phase Higgs modes are absent, which
ensures only single coherence length b (𝑇) diverging at 𝑇 = 𝑇𝑐.

5) The square of the energy gap of Higgs mode in three-band superconductors can be represent in the
form of a sum of products of gaps Δ0𝑖Δ0𝑘 see equation (3.49), which is similar to two-band superconduc-
tors [8], and it differs from the mass of Higgs mode in single-band superconductors: ℏ𝜔0 = 2|Δ|, where
this mode exists in the free quasiparticle continuum. On the contrary, in two-band superconductors and in
three-band superconductors it can be

√︁
|Δ𝑖 | |Δ𝑘 | < 2 min( |Δ1 |, |Δ2 |, |Δ3 |), then the Higgs mode becomes

stable. The speed of “light” 𝜐 is of the order of Fermi velocities in each band 𝜐F1, 𝜐F2, 𝜐F3 and depends
on the single-band “critical” temperatures 𝑇𝑐1, 𝑇𝑐2, 𝑇𝑐3 see equation (3.52).

6) Unlike the two-band systems, the Higgs modes and the Goldstone modes can be hybridized at
𝜖12𝜖13𝜖23 > 0. For the case 𝜖12𝜖13𝜖23 < 0, the hybridization is absent. All previous results were obtained
in the approximation of splitting of the correlation between amplitude and phase oscillations.

23702-18



Collective excitations in three-band superconductors

Acknowledgements

This research was supported by grant of National Research Foundation of Ukraine “Models of
nonequilibrium processes in colloidal systems” 2020.02/0220, by theme grant of Department of physics
and astronomy of NAS of Ukraine: “Noise-induced dynamics and correlations in nonequilibrium systems”
0120U101347 and by grant of Simons Foundation.

A. Some symmetric 3HDM potentials

Following to [36] a scalar 3HDM potential symmetric under a group 𝐺 can be written as

𝑉 = 𝑉0 +𝑉𝐺 , (A.1)

where

𝑉0 =

3∑︁
𝑖=1

𝑎𝑖 |Ψ𝑖 |2 +
𝑏𝑖

2
|Ψ𝑖 |4

+ 𝑏12 |Ψ1 |2 |Ψ2 |2 + 𝑏13 |Ψ1 |2 |Ψ3 |2 + 𝑏23 |Ψ2 |2 |Ψ3 |2

+ 𝑏′12(Ψ
+
1Ψ2) (Ψ+

2Ψ1) + 𝑏′13(Ψ
+
1Ψ3) (Ψ+

3Ψ1) + 𝑏′23(Ψ
+
2Ψ3) (Ψ+

3Ψ2) (A.2)

is invariant under the most general 𝑈 (1) × 𝑈 (1) gauge transformation and 𝑈𝐺 is a collection of extra
terms ensuring the symmetry group 𝐺. The 𝑈 (1) ×𝑈 (1) group is generated by

©«
e−i𝛼 0 0

0 ei𝛼 0
0 0 1

ª®¬ ©«
e−2i𝛽/3 0 0

0 ei𝛽/3 0
0 0 ei𝛽/3

ª®¬ . (A.3)

However, in the present work we use the minimum model, where 𝑏𝑖𝑘 = 𝑏′
𝑖𝑘

= 0. A potential symmetric
under the 𝑈 (1) group is

𝑉𝑈 (1) = 𝑉0 + _123
[
(Ψ+

1Ψ3) (Ψ+
2Ψ3) + (Ψ1Ψ

+
3 ) (Ψ2Ψ

+
3 )

]
. (A.4)

The 𝑈 (1) group is generated by ©«
e−i𝛼 0 0

0 ei𝛼 0
0 0 1

ª®¬ . (A.5)

A potential symmetric under the 𝑈 (1) × 𝑍2 group is

𝑉𝑈 (1)×𝑍2 = 𝑉0 + _23
[
(Ψ+

2Ψ3)2 + (Ψ2Ψ
+
3 )

2] . (A.6)

The 𝑈 (1) × 𝑍2 group is generated by

©«
e−2i𝛽/3 0 0

0 ei𝛽/3 0
0 0 ei𝛽/3

ª®¬ ©«
−1 0 0
0 −1 0
0 0 1

ª®¬ . (A.7)

A potential symmetric under the 𝑍2 group is

𝑉𝑍2 = 𝑉0 + 𝜖12
[
Ψ+

1Ψ2 + Ψ1Ψ
+
2
]
+ _12

[ (
Ψ+

1Ψ2
)2 +

(
Ψ1Ψ

+
2
)2

]
+ _13

[ (
Ψ+

1Ψ3
)2 +

(
Ψ1Ψ

+
3
)2

]
+ _23

[ (
Ψ+

2Ψ3
)2 +

(
Ψ2Ψ

+
3
)2

]
. (A.8)

The 𝑍2 group is generated by ©«
−1 0 0
0 −1 0
0 0 1

ª®¬ . (A.9)

23702-19



K. V. Grigorishin

References
1. Grigorishin K. V., J. Low Temp. Phys., 2021 203, 262, doi:10.1007/s10909-021-02580-0.
2. Arseev P. I., Loiko S. O., Fedorov N. K., Phys. Usp., 2006, 49, 1,

doi:10.1070/PU2006v049n01ABEH002577.
3. Volovik G. E., Zubkov M. A., J. Low Temp. Phys., 2014, 175, 486, doi:10.1007/s10909-013-0905-7.
4. Askerzade I. N., Unconventional Superconductors: Anisotropy and Multiband Effects, Springer, Berlin, 2012.
5. Grigorishin K. V., Phys. Lett. A, 2016, 380, 1781, doi:10.1016/j.physleta.2016.03.023.
6. Askerzade I. N., Phys. Usp., 2006, 49, 1003, doi:10.1070/PU2006v049n10ABEH006055.
7. Yerin Y. S., Omelyanchouk A. N., Low Temp. Phys., 2007, 33, 401, doi:10.1063/1.2737547.
8. Grigorishin K. V., J. Low Temp. Phys., 2022, 206, 360, doi:10.1007/s10909-022-02668-1.
9. Ponomarev Ya. G., Kuzmichev S. A., Mikheev M. G., Sudakova M. V., Tchesnokov S. N., Timergaleev N. Z.,

Yarigin A. V., Maksimov E. G., Krasnosvobodtsev S. I., Varlashkin A. V., Hein M. A., Müller G., Piel H.,
Sevastyanova L. G., Kravchenko O. V., Burdina K. P., Bulychev B. M., Solid State Commun., 2004, 129, 85,
doi:10.1016/j.ssc.2003.09.024.

10. Ponomarev Ya. G., Kuzmichev S. A., Mikheev M. G., Sudakova M. V., Tchesnokov S. N., Van Hoai H.,
Bulychev B. M., Maksimov E. G., Krasnosvobodtsev S. I., JETP Lett., 2007, 85, 46,
doi:10.1134/S0021364007010092.

11. Kuzmicheva T. E., Kuzmichev S. A., Morozov I. V., Wurmehl S., Büchner B., JETP Lett., 2020, 111, 350,
doi:10.1134/S002136402006003X.

12. Kuzmicheva T. E., Kuzmichev S. A., JETP Lett., 2021, 114, 630, doi:10.1134/S0021364021220070.
13. Kordyuk A. A., Zabolotnyy V. B., Evtushinsky D. V., Yaresko A. N., Büchner B., Borisenko S. V.,

J. Supercond. Novel Magn., 2013, 26, 2837, doi:10.1007/s10948-013-2210-8.
14. Scaffidi T., Ph.D. Thesis, Merton College University of Oxford, 2016.
15. Tanaka Y., Yanagisawa T., J. Phys. Soc. Jpn., 2010, 79, 114706, doi:10.1143/JPSJ.79.114706.
16. Stanev V., Tešanović Z., Phys. Rev. B, 2010, 81, 134522, doi:10.1103/PhysRevB.81.134522.
17. Stanev V., Phys. Rev. B, 2012, 85, 174520, doi:10.1103/PhysRevB.85.174520.
18. Stanev V., Supercond. Sci. Technol., 2015, 28, 014006, doi:10.1088/0953-2048/28/1/014006.
19. Bojesen T. A., Babaev E., Sudbø A., Phys. Rev. B, 2013, 88, 220511(R), doi:10.1103/PhysRevB.88.220511.
20. Maiti S., Chubukov A. V., Phys. Rev. B, 2013, 87, 144511, doi:10.1103/PhysRevB.87.144511.
21. Wilson B. J., Das M. P., J. Phys.: Condens. Matter, 2013, 25, 425702, doi:10.1088/0953-8984/25/42/425702.
22. Dias R. G., Marques A. M., Supercond. Sci. Technol., 2011, 24, 085009, doi:10.1088/0953-2048/24/8/085009.
23. Yerin Y., Omelyanchouk A., Drechsler S. L., Efremov D. V., van den Brink J., Phys. Rev. B, 2017, 96, 144513,

doi:10.1103/PhysRevB.96.144513.
24. Lin S., Hu X., Phys. Rev. Lett., 2012, 108, 177005, doi:10.1103/PhysRevLett.108.177005.
25. Kobayashi K., Machida M., Ota Y., Nori F., Phys. Rev. B, 2013, 88, 224516, doi:10.1103/PhysRevB.88.224516.
26. Yerin Y., Drechsler S. L., Phys. Rev. B, 2021, 104, 014518, doi:10.1103/PhysRevB.104.014518.
27. Lin S., Hu X., New J. Phys., 2012, 14, 063021, doi:10.1088/1367-2630/14/6/063021.
28. Garaud J., Carlström J., Babaev E., Phys. Rev. Lett., 2011, 107, 197001, doi:10.1103/PhysRevLett.107.197001.
29. Carlström J., Garaud J., Babaev E., Phys. Rev. B, 2011, 84, 134518, doi:10.1103/PhysRevB.84.134518.
30. Hu X., Wang Z., Phys. Rev. B, 2012, 85, 064516, doi:10.1103/PhysRevB.85.064516.
31. Huang Z., Hu X., Appl. Phys. Lett., 2014, 104, 162602, doi:10.1063/1.4872261.
32. Askerzade I., Matrasulov D., Salati M., J. Supercond. Novel Magn., 2022, 35, 2749, doi:10.1007/s10948-022-

06343-0.
33. Yerin Y. S., Omelyanchouk A. N., Low Temp. Phys., 2014, 40, 943, doi:10.1063/1.4897416.
34. Yerin Y. S., Kiyko A. S., Omelyanchouk A. N., Il’ichev E., Low Temp. Phys., 2015, 41, 885,

doi:10.1063/1.4935255.
35. Yanagisawa T., Hase I., J. Phys. Soc. Jpn., 2013, 82, 124704, doi:10.7566/JPSJ.82.124704.
36. Keus V., King S. F., Moretti S., J. High Energy Phys., 2014, 2014, 52, doi:10.1007/JHEP01(2014)052.
37. Kochorbe F. G., Palistrant M. E., Physica C, 1998, 298, 217, doi:10.1016/S0921-4534(98)00004-5.
38. Palistrant V. A., Theor. Math. Phys., 1993, 95, 432, doi:10.1007/BF01015898.
39. Ota Y., Machida M., Koyama T., Aoki H., Phys. Rev. B, 2011, 83, 060507(R), doi:10.1103/PhysRevB.83.060507.
40. Sadovskii M. V., Diagrammatics: Lectures on Selected Problems in Condensed Matter Theory, World Scientific,

2006.
41. Levitov L. S., Shitov A. V., Green’s Functions. Problems and Solutions, Fizmatlit, Moscow, 2003, (in Russian).
42. Sadovskii M. V., Statistical Physics, De Gruyte, Berlin, 2012.

23702-20

https://doi.org/10.1007/s10909-021-02580-0
https://doi.org/10.1070/PU2006v049n01ABEH002577
https://doi.org/10.1007/s10909-013-0905-7
https://doi.org/10.1016/j.physleta.2016.03.023
https://doi.org/10.1070/PU2006v049n10ABEH006055
https://doi.org/10.1063/1.2737547
https://doi.org/10.1007/s10909-022-02668-1
https://doi.org/10.1016/j.ssc.2003.09.024
https://doi.org/10.1134/S0021364007010092
https://doi.org/10.1134/S002136402006003X
https://doi.org/10.1134/S0021364021220070
https://doi.org/10.1007/s10948-013-2210-8
https://doi.org/10.1143/JPSJ.79.114706
https://doi.org/10.1103/PhysRevB.81.134522
https://doi.org/10.1103/PhysRevB.85.174520
https://doi.org/10.1088/0953-2048/28/1/014006
https://doi.org/10.1103/PhysRevB.88.220511
https://doi.org/10.1103/PhysRevB.87.144511
https://doi.org/10.1088/0953-8984/25/42/425702
https://doi.org/10.1088/0953-2048/24/8/085009
https://doi.org/10.1103/PhysRevB.96.144513
https://doi.org/10.1103/PhysRevLett.108.177005
https://doi.org/10.1103/PhysRevB.88.224516
https://doi.org/10.1103/PhysRevB.104.014518
https://doi.org/10.1088/1367-2630/14/6/063021
https://doi.org/10.1103/PhysRevLett.107.197001
https://doi.org/10.1103/PhysRevB.84.134518
https://doi.org/10.1103/PhysRevB.85.064516
https://doi.org/10.1063/1.4872261
https://doi.org/10.1007/s10948-022-06343-0
https://doi.org/10.1007/s10948-022-06343-0
https://doi.org/10.1063/1.4897416
https://doi.org/10.1063/1.4935255
https://doi.org/10.7566/JPSJ.82.124704
https://doi.org/10.1007/JHEP01(2014)052
https://doi.org/10.1016/S0921-4534(98)00004-5
https://doi.org/10.1007/BF01015898
https://doi.org/10.1103/PhysRevB.83.060507


Collective excitations in three-band superconductors

Коллективнi збудження у тризонному надпровiднику

К. В. Григоришин
Iнститут теоретичної фiзики iм. М.М. Боголюбова НАН України, вул. Метрологiчна 14-б, 03143 Київ,
Україна

Дослiджено стани рiвноваги, магнiтний вiдгук i нормальнi коливання внутрiшнiх ступенiв вiльностi (моди
Хiггса та моди Голдстоуна) тризонних надпровiдникiв з урахуванням як внутрiшнього ефекту близькостi,
так i ефекту “захоплення” (мiжградiєнтної взаємодiї) в лагранжiанi. Як мода Голдстоуна, так i мода Хiггса
розщеплюються на три гiлки кожна: синфазнi коливання та двi моди протифазних коливань, що аналогiч-
нi модi Леггетта в двозонних надпровiдниках. Показано, що друга i третя гiлки є нефiзичними, i їх можна
усунути спецiальним пiдбором коефiцiєнтiв при членах “захоплення” в лагранжiанi. У результатi тризон-
нi надпровiдники характеризуються лише однiєю довжиною когерентностi. Отримано спектр синфазних
коливань Хiггса. Глибинамагнiтного проникнення визначається густиноюнадпровiдних електронiв у кож-
нiй зонi, однак мiжградiєнтна взаємодiя перенормує маси носiїв.

Ключовi слова: лоренц-коварiантнiсть, мода Хiггса, мода Голдстоуна, мода Леггетта, мiжзонна
взаємодiя, ефект захоплення
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