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We investigate equilibrium states, magnetic response and the normal oscillations of internal degrees of free-
dom (Higgs modes and Goldstone modes) of three-band superconductors accounting the terms of both internal
proximity effect and the “drag"” effect (intergradient interaction) in the Lagrangian. Both the Goldstone mode
and the Higgs mode are split into three branches each: common mode oscillations and two modes of anti-phase
oscillations, which are analogous to the Leggett mode in two-band superconductors. It is demonstrated that the
second and third branches are nonphysical, and they can be removed by special choice of coefficients at the
“drag” terms in Lagrangian. As a result, three-band superconductors are characterized by only single coherence
length. Spectrum of the common mode Higgs oscillations has been obtained. The magnetic penetration depth
is determined with densities of superconducting electrons in each band, although the drag terms renormalize
the carrier masses.

Key words: Lorentz covariance, Higgs mode, Goldstone mode, Leggett mode, interband coupling, the drag
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1. Introduction

As well known, there is some analogy between particle physics and condensed matter. Thus, the
nonrelativistic analog of the Higgs effect represents penetration of magnetic field in a superconductor. As
aresult of spontaneous broken gauge symmetry below 7., the magnetic field gains the mass, the reciprocal
value of which characterizes the penetration depth of the magnetic field in the superconductor. In the
work [[1] it is demonstrated that there are two types of collective excitations with the quasi-relativistic

spectra in the single-band superconducting (SC) system: the Higgs mode E? = m%lv4 +p*v?, where my is

the mass of a Higgs boson, so that mpv? = 2|A|, and the Goldstone mode E = pv. The value v = vgp/V3,
where vp is the Fermi velocity, plays the role of the speed of light, |A| is the energy gap in SC state. The
Higgs mode is represented by oscillations of modulus of the Ginzburg-Landau order parameter (OP)
|¥(z,r)| and it can be presented as counterflows of SC and normal components so that ngv, + n,v, = 0.
This oscillation mode is unstable due to the decay into the above-condensate quasiparticles, since its
energy is such that E(g) > 2|A|. The Goldstone mode is represented by oscillations of the phase 6(¢, r) of
the OP |¥|e'?, which are the eddy currents divJ = 0 that are absorbed into the gauge field A¥ according
to Anderson-Higgs mechanism. Thus, both Higgs mode and Goldstone mode are not accompanied by
the charge density oscillations. At the same time, according to another model [2], Coulomb interaction
“pushes” the frequency of the acoustic oscillations to the plasma frequency w, = 47ne*/m. Thus, the
Goldstone mode becomes inherently unobservable since it turns to plasma oscillations. It should be noted
that the Higgs and Goldstone bosons are typical of condensed matter. Thus, except superconductors, these
bosons are observed in superfluid *He-B and *He-A [3]], although unlike the particle physics, the observed
Higgs bosons are not fundamental: it comes as a composite object emerging in the fermionic vacuum.
The dynamics of multi-band superconductors is much more complicated than the dynamics of
single-band superconductors due to the presence of several coupled OP ¥, ¥;,...,¥,, i.e., multiband
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superconductors have a new property, such as the interband phase differences 6; — 6. Two-band systems
are the simplest but the most numerous class of multi-band superconductors. Their typical representatives
are classical two-band superconductor magnesium diboride MgB,, nonmagnetic borocarbides LuNi; B, C,
YNiyB,C and some oxypnictide compounds [4]. Two-band superconductor is understood as two single-
band superconductors with the corresponding condensates of Cooper pairs ¥; and ¥, (so that densities of
SC electrons are ng; = 2|¥;|? and ng, = 2|¥,|? accordingly), where these two condensates are coupled by
both the internal proximity effect € (¥}, + ¥1¥;) and the “drag” effect n (V¥ V¥; + V¥ V¥,) [4-
7. If we switch off the interband interactions € = 0 and = 0, then we will have two independent
superconductors with different critical temperatures 7, and 7., because the intraband interactions can
be different. The sign of € determines the equilibrium phase difference of the OP |¥;|e!?! and |¥;|e!?:
01—6, =0,ife <0, |6; —0,| = m,if € > 0. The case € < 0 corresponds to attractive interband interaction
(for example, in MgB,), the case € > 0 corresponds to repulsive interband interaction (for example, in
iron-based superconductors). It should be noted that the effect of interband coupling € # 0, even if the
coupling is weak, is nonperturbative: the application of a weak interband coupling washes out all OP up
to a new critical temperature [8].

In the work [8]] there were investigated normal oscillations of internal degrees of freedom (Higgs mode
and Goldstone mode) of two-band superconductors using generalization of the extended time-dependent
Ginzburg-Landau (ETDGL) theory [1]], for the case of two coupled OP by both the internal proximity
effect and the drag effect. It is demonstrated that, due to the internal proximity effect, the Goldstone
mode splits into two branches: common mode oscillations with acoustic spectrum, which is absorbed
by the gauge field, and anti-phase oscillations with an energy gap (mass) in the spectrum determined
with the interband coupling €, which can be associated with the Leggett mode. Analogously, due to the
internal proximity effect, Higgs oscillations also split into two branches. The energy gap of the common
mode vanishes at a critical temperature 7. For another anti-phase mode, its energy gap does not vanish
at T, and is determined by the interband coupling €. It is demonstrated that the second branch of Higgs
mode is nonphysical [since |A; 2(T.)| = 0, then the mass of Higgs mode must be my(7.) = 0], and it,
together with the Leggett mode, can be removed by special choice of the coefficient at the “drag” term in
Lagrangian: n> = 1/mm,, ne < 0 (where m; 2 are electron masses in each band). Such a choice permits
only one coherence length, thereby prohibiting the so-called type-1.5 superconductors. Thus, the drag
effect is principally important: by special choice of the coefficient  we ensure correct properties of the
collective excitations in two-band superconductors. Experimental data of references [9} [10] on the effect
of resonant enhancement of the current through a Josephson junction between two-band superconductors
is analyzed. It is demonstrated that the data can be explained by the coupling of Josephson oscillations
with Higgs oscillations of two-band superconductors fiw = \/ [A1]|Az] o< \/ |'¥1]|¥>|, and hence, these
experiments cannot be considered as experimental confirmation of the Leggett mode.

The physics of three-band SC systems (for example, some ferropnictides LiFeAs, NaFeAs,
Ba;_K,FeyAs, [11H13] and strontium ruthenate SrpRuQOy [14]) is much richer and more complicated
than the physics of two-band superconductors. In the three-band case, the equilibrium phase differences
are not only O or w, but they can be non-integer numbers of © depending on the signs of the interband
interactions €;; [15H17]]. Thus, the equilibrium values of OP ¥ ;> in two-band superconductors are as-
sumed to be real in the absence of current and magnetic field, although for three-band superconductors
it is not always possible to make all OP ¥ » 3 real, for example, when all interband couplings are re-
pulsive (€12 > 0, €13 > 0, €23 > 0) or when one coupling is repulsive but the other two are attractive
(for example, €12 > 0, €13 < 0, e23 < 0). As a consequence, the chiral ground state, frustration and
the time-reversal symmetry breaking (TRSB) [15H23]], the massless Leggett mode [24} [25], topological
excitations [26H28], type-1.5 regimes [29] can occur. In addition, the TRSB state and the frustration
essentially effects the Josephson current and magnetic penetration depth in junctions between three-band
superconductors [30,31]] and between single-band and three-band superconductors [32-34]. As demon-
strated in references 17} 29]], unlike two-band superconductors, the Higgs modes and the Leggett modes
can be hybridized. Furthermore, the effect of hybridization is essential if the interband coupling is strong.
The dynamics of two- and three-band systems was generalized for multi-band systems in reference [33]],
where it was demonstrated that there are 2 massive Leggett modes and N — 3 massless Leggett modes
in N-band systems (N > 2). At the same time, in most works on multi-band superconductivity, the drag
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effect has not been taken into account, and, respectively, its role remains unknown.

Proceeding from the aforesaid, we aim at obtaining the spectrum of normal oscillations of internal
degrees of freedom (Higgs modes and Goldstone modes), the coherence length, the “light” speed v and
the magnetic penetration depth using the method developed in the work [8] for the case of three order
parameters coupled by both the internal proximity effect and the drag effect.

2. Stationary regime

Three-band superconductors are characterized by three OP-“wave functions” ¥; = [P ', ¥, =
|W,]e'?%, W3 = |W;]el® corresponding to the condensates of Cooper pairs in each band, so that the
densities of SC electrons are ng; = 2|W¥;|?, ng = 2|W,|?, ng = 2|W3/|?, accordingly. In a bulk isotropic
three-band superconductor, the Ginzburg-Landau free energy functional can be written as:

F

; hZ ) h2 ) h2 ) h2 . N
J d’r m |DIP1| + 4—}712 |D‘P2| + 4._m |DLP3| + ZU]Z {D"P](D"PQ) + (DT]) D‘Fz}

n? 2
oM {D¥\(D¥3)* + (DY) DV¥s} + 73 {DY¥>(DY¥3)* + (DW,)"DVs}

b b b
+ a9 +az [Pal? + a3 |5 + ?1 1P + ?2 ¥, + ?3 |5t

2

+ €2 (LPTTZ + T]‘P;) + €13 (TT‘I@ + ‘I"]‘P;) + €23 (‘P;‘I@ + ‘PQ‘P;) + IS-I_JT, , (2.1)
where D = V —i(2¢/ch)A is a covariant gradient operator, H?/8t = (curl A)?/8x is the energy of
magnetic field, m 3 denotes the effective mass of carriers in the corresponding band, the coefficients
ay 23 are given as a; = y; (T — T;), where y; are some constants, the coefficients b » 3 are independent
of temperature, the coeflicients ¢;; and n;; describe the interband coupling of the OP (proximity effect)
and their gradients (drag effect), respectively. If we switch off the interband interactions €123 = 0 and
n1.2,3 = 0, then we will have three independent superconductors with different critical temperatures 7.,
T2, Tes.

The potential Vg = Z?:l a; W) + % |¥;[* is a sum of independent potentials of each condensate.
This energy is invariant under any phase rotation. Since the condensates in three-band superconductors
are coupled by the Josephson terms €; (‘Pf‘l’k + ‘P,‘PI‘:) = €1|¥;||¥i]| cos(8; — Oy), the broken U(1)
symmetry of the ground state in each band is shared throughout the system: the presence of the condensate
(¥;) # 0 in some band induces the Cooper condensation in other bands (V%) # 0, that is the internal
proximity effect takes place. At the same time, the Josephson terms breaks the global U(1) gauge
invariance, because these terms depend on the phase differences 6; — 6y, that is the Josephson terms have
a physical sense as the interference between the condensates ¥, ¥, W3. Hence, the phase difference
modes (the Leggett modes) acquire masses because the phase differences are fixed near the minima of
the Josephson potential.

It should be noted that the free energy does not have the symmetry U (1) X Z;, unlike the statement
in references [19} 29]. Indeed, the transformation Z, makes the sign change of any two condensates, for
example, V| — -¥;, ¥, — —¥; (which corresponds to the phase change 6; — 6| + &, 6, — 6, + ),
but the third condensate does not change its sign W3 — W3 (corresponding transformations are illustrated
in appendix [A). Obviously, the sum of the Josephson terms in the free energy (2.1)) are not invariant
under this transformation. It should be noted that the considered model can be referred to as the three-
Higgs-doublet models (3HDM) [36], but without any specific symmetry in the above sense. For clarity, we
present some invariant potentials under the simplest transformations in appendix[A] Thus, the potential Vy
has U(1) x U(1) global gauge symmetry, but it is fully broken by the Josephson terms. In reference [33],
the total rule was formulated: in the N-band system, the global symmetry U(1)V~! is broken by the
Josephson terms to U(1)N~3 symmetry. Thus, in N > 3-band system, N — 3 massless Leggett modes
must be present. Ultimately, the system described with the free energy (2.1) is invariant under common
U(1) gauge transformation only, i.e., when each OP is turned by the same phase 6: ¥, — ¥,e'?. Hence,
as demonstrated for two-band superconductors in reference [8l], the common mode phase oscillations are
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absorbed by the gauge field, although oscillations of the phase differences 6; — 8y occur. The role of the
intergradient couplings is the same as the Josephson coupling and does not introduce anything new at

this stage.
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Figure 1. The configurations of mutual arrangement of the OP ¥, ¥,, W3 corresponding to some limit
cases. It is supposed that the weak interband coupling |e€12| = |€13] = |€23] < |a; (0)].

Minimization of the free energy functional with respect to the OP, if V¥ 2.3 = 0 and A = 0, gives
ar'¥y + en®s + €33 + by | W) |*¥) = 0,
a2 + €W + €3W3 + by| W [*W, = 0,
a3‘I’3 + €13‘P1 + 623lP2 + b3|\P3|le’3 =0. (2.2)

Equation (2.2)) can be rewritten in a form:
a1|1| + €2 P2le! 27 4 3| W5el(%9) 1 by 9|} = 0,
a2 |Wa| + €12 W11 7%) + 603 |P5[el (B 4 by W]} = 0,
a3| 3] + €131 [0 7)1 63| Pole! (% 7%) 4 by W57 = 0, (2.3)

or in an expanded form:
a1|W1] + €12|W2| cos(62 — 1) + €13 W3] cos(83 — 61) + by |4 |* = 0,
ar|Ws| + €12|W1] cos(61 — 62) + €3]W3| cos(83 — 62) + by || =0,
a3|Ws| + €3] 1| cos(8 — 03) + €3|¥2| cos(0, — 63) + by |¥5]* = 0,
€12|W2| sin(62 — 61) + €13|¥3] sin(63 - 61) = 0,
2| P1sin(01 — 62) + e3|W3] sin(63 — 62) = 0,
E]3|"P] | sin(H] - 93) + 623|"I"2| sin(92 - 93) =0. (2.4)
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Hence, possible signs of €;; and the phase differences of the OP |¥;|el?", |¥,|e'?, |Ws]e!® are:

€r <0, € <0, €g<0, then cos(6; —0;)=cos(0; —0;) =cos(0x — ;) =1,
€r <0, € >0, €;>0, then cos(6; —0;)=1, cos(8; —6;) =cos(0r—6;) =-1, (2.5)

for the cases, when €j,€1363 < 0. Therefore, OP ¥, ¥,, W3 can be assumed to be real simultaneously,
as in two-band superconductors. The cases €12€13€23 > 0 need numerical solution of equation . As
a result, the phase differences 6;; = 0; — 6, can be functions of temperature 6;4 (7). Only in the case of
absolutely symmetrical bands a; = a; = as, by = by = b3, |€12] = |€13]| = |€23| we obtain

€r >0, € >0, ¢€g>0, then cos(8; — ) =cos(8; — ;) =cos(0x — ;) =—1/2,
€r >0, €; <0, €; <0, then cos(6; — ) =—1/2, cos(6; —0;) =cos(r —6;) =1/2. (2.6)

As an approximation in the case of weak coupling |e12], |€13], |€23] < |a1(0)], |a2(0)], |a3(0)|, we can
assume |¥; (0)| = +/|a;(0)|/b; and then substitute them in equation li to find the angles 6; — 0. Then,
using the found phase differences, we find new |¥; (T')| from equation (2.4)) for all temperatures. Possible
configurations corresponding to some limit cases are illustrated in figure [T} However, it should be noted
that, as demonstrated in reference [23] by numerical calculations, in the case €j2€13€3 > 0, the regime
of nontrivial phase differences 8, — 61, 83 — 6, # 0, m (that is the TRSB state can be realized) exists only
within a relative small volume in the six-dimensional parameter space (|¥;|, €;x).

[

Figure 2. The sketch of temperature dependencies of OP W (T), W,(T), W3(T) as solutions of equa-
tion (Z.4), if the interband couplings are absent, i.e., €;x = 0 (dash lines), and if the weak interband
interaction takes place, i.e., €;x # 0, |€;x| < |aj(0)| (solid lines). The application of the weak interband
coupling washes out the smaller parameters W1 5 up to a new critical temperature 7 > T.. The effect
on the larger parameter W3 is not so essential. As the couplings |€;| increase, ¥ » 3(T) take the forms
shown with dot lines.

Near critical temperature 7, we have |‘I’1,2’3|2 — 0. Hence, we can find the critical temperature
equating to zero the determinant of the linearized system (2.2)):

2 2 2
a1a2a3 — Q| €y — A2€); — A3€], + 2€2€13623 = 0. 2.7

In an equivalent way, we can find the critical temperature equating to zero the determinant of the linearized
system of the first three equations from equation (2.4)):

ajaraz — a16223 0082(91 - 02) - a2€123 0082(91 - 93) - a36122 0082(91 — 92)
+ 2ep€1363cos(0) — 03) cos(8) — 03) cos(0, — 63) =0, (2.8)

where phase differences 6; — 6 are equilibrium values, that is, those that ensure the coincidence of the
solutions of the equations (2.7) and (2.8]), and the critical temperature 7, of the system is the largest of these
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solutions. Solving any of these equations we find T, > T., T¢2, T3, and besides T, (e12€13€23 < 0) >
T, (e1p€13€23 > 0). The case €, < 0 corresponds to attractive interband interaction, the case €;x > 0
corresponds to repulsive interband interaction. For symmetrical bands 7.1 = Ty = T3 = T3, ¥1 =
v2 = y3 = y and the same modulus of interband interactions |€12| = |€13] = |€23] = € > 0 equation
is reduced to

€nepnes <0 = (a+6)2(a—26)—0 = T.=T.123 +2€/y,

€neEpnes >0 = (a+ )(a—e)—O = T.=T.3+€/y. 2.9)

The solutions of equation (2.4) are illustrated in figure [2] for the case of strongly asymmetrical bands
Te1,c2 < T,3. As in the two-band system, the effect of interband coupling €;x # 0, even if the coupling is
weak |€;x| < |a;(0)], is non-perturbative for the smaller OP ¥ » — the application of the weak interband
coupling washes out the smaller OP up to a new critical temperature 7. > T, 2. At the same time,
the effect on the largest parameter W5 is not so significant — the application of the interband coupling
slightly increases the critical temperature 7. > T3 only.

Let us consider a superconductor in the weak magnetic field A(r) (i.e., |'¥'| = const). Then, the free
energy functional (2.1)) can be reduced to the form:

72 2¢ \2 2 2e |\
Id%g = f Br | 21w, 2 (ve, - Z2A| + —|l1'2|2 V6, - A
4dm, fic fic

2 2¢ \* ® 2 2
b w2 (Vs = A+ T 1 (Ve - Z2A) [VE, - ZEA] cos(6; - 65)
4ms hic 2 hic hic

F

K2 2e 2e
+  =ni|Pi||W3] | VO — —A|[VO3 — —A]cos(0; — 63)
2 fic fic

n? 2 2 1A)?
b 1] V6, = 22A) (Vos — 294 ) cos(6, — 03) + AL
2 hic hic 8n
3
b.
+ Z (a,»|\y,-|2 + 3‘|ql,-|4) + Z eir (W + W9 | (2.10)
i=1 i+k
Corresponding Lagrange equation
0¥ 0y
]—— - = = 2.11
" oculA) ~ 9A .11
gives the supercurrent:
fie 2e he 2e
J = — 9P (vel - —A) |l112|2 (ve2 - —A) —|¥;)? (ve3 - —A)
m fic ms3 fic
+ hen12|T1||T2| (VG] + V92 - A) 005(91 92)
+ hen13|‘1’1||‘1‘3| (V91 + V93 - A) 005(91 93)
+ her]23|‘1’2| |lP3| (VQQ + V93 -2— A) 008(92 - 93) (2.12)

that can be rewritten in the following form:
he . o he . o he 20 5 2 5 2%
J=— V1]Vl + — V2| VO + —|W3]"VO3 — | —|¥1[" + — 2"+ —[¥3]7| A, (2.13)
mp my ms mic mypc msc

where m; is the effective mass of an electron in a band i due to the drag effect:
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11 || |V
— = — (1 +nymi—— 0; — 0x) +nigm; —— 0;—6p)|. 2.14
m, o om Nikm; LA cos(6; k) +nim; | cos(6; 1) ( )
The magnetic field can be gauge transformed as
, hc
A=A"+ 2— (aV@l +ﬁV92 + )/Vgg) , (2.15)
e
where
Y2 /m P, |? ;)2
- I‘P1|2| }wlm/z 1 e P e | Twlvgl/zmz e VT e | Twlvgl/zm RN (2-16)
T T T
so that 5 ) 5 ) 5 )
|2 W5 |11 [Pl |11 [Pal
+B+y=1, = = 2.17
Q'By my ‘m3a my m3'8 mg mzy ( )
Then, equation (2.13) is reduced to the London law:
2¢2 2¢? 2e? 1
J=- —|‘I’1|2+—|‘I’2|2+—|‘P3|2) =-—A. (2.18)
mic myc msc A

Thus, magnetic response of three-band superconductors is analogous to the response of single-band
superconductors, but with contribution into SC density from each band |¥;|> with the corresponding
effective electron mass (2.14)), which is determined with the coefficients of the drag effect 7;y.

3. Goldstone and Higgs oscillations in three-band superconductors

3.1. Ginzburg-Landau Lagrangian for three-band superconductors

In general case, the OP ¥, 3 are both spatially inhomogeneous and they can change over time:
Y23 = ¥i123(r, t). The OP in the modulus-phase representation are equivalent to two real fields each:
modulus |¥(r, 7)| and phase 6(r, 7):

Wi(r,1) = Wi (e 0|40, Wa(n,0) = [Wa(r, )]0, Wa(r,0) = [¥s(r,0)] 0. 3.)

For the stationary case W23 = W1 2,3(r), the steady configuration of the field ¥; 2 3(r) minimizes the
free energy functional . For the nonstationary case ¥ » 3(r, t), according to the method described
in [1], we consider some 4D Minkowski space {vt,r}, where the parameter v plays the role of the
“light” speed, which should be determined by the dynamical properties of the system. At the same time,
the dynamics of conduction electrons remains non-relativistic. Then, the two-component scalar fields
¥ .2,3(r, t) minimize some action S in the Minkowski space:

1 _
§=- J LW, W5, W1 W1 W Ay, AR vdr &, (3.2)
v

where A u= (59, -A), AH = (49, A) are covariant and contravariant potential of electromagnetic field.
The Lagrangian £ is built by generalizing the density of free energy in equation (2.1)) to the “relativistic”
invariant form by substitution of covariant and contravariant differential operators:

o~ 10 = 10

o=(—-=,V|, o¥=|-—,-V], 3.3

a (U ot ) (U ot ) 3-3)

instead of the gradient operators: V¥ — 5,,‘1’, V¥ — 9P, and by substitution the covariant and
contravariant operators in presence of electromagnetic field A,

~ i2e~ ~, i2e~
D,=90,+—A,, D! =ot+—AH, 3.4
H oy H hv 34)
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instead of the operators D in the free energy functional li Here, e = Ze, so that eA, u = eA,. Then,
the Lagrangian will be written as:

n? n?

72
s —D,W,DH ‘P++—D o DHPY + D (W3 DI
4m, 4m 4m

hZ
+ Zr]lz {D#‘Pl (D‘ulpz)Jr + (DHT1)+D#1P2}

72 72
+oms {D,¥\(D"¥3)" + (D"W¥))*D, Y3} + 2 {D,¥,(D"¥3)" + (D"W¥,)* D, ¥3}

b by b3
- a Wi - @l - a9 - - - sl

1
167
where the same speed v is used for the condensates Wi 3 with the masses m >, 3 accordlngly The

speed v plays the role of the speed of light in SC medium, and it will be found below. F, uy = 6 A (9 A
is the Faraday tensor.

The modulus-phase representation can be considered as the local gauge U(1) transformation
¥, — |¥;|. Then, the gauge field A, « should be transformed as

— e (P + V1) — €13 (P73 + P PT) — €03 (W55 + WL PE) - Fu ™, (3.5)

_ K — _ —
A=A, + Z—feﬂ (801 + 8302 + 73,03 (3.6)

where coefficients «, B8, y are determined with equation (2.16). The transformation (3.6) excludes
the phases 61, 6>, 63 [using properties (2.17)] from Lagrangian (3.5) individually leaving only their
differences:

K2 K2 K2
= —D,|¥|D*|¥| + — D ,|¥{|D*|¥,| + — D ,|'¥;| D |¥
L o ul W1 |DH ] o, ulP1[DH [P o ul P3| DH |5

K2 K2
+ ?7712D,u|qj1|Dﬂ|lP2| cos(0; — 6) + ?7713D,,|‘P1|D“|‘I‘3| cos(6; — 03)

h2
+ 37723D,u|‘1’2|D”|‘P3| cos(0y — 03) — 2e12|W1||W2| cos(01 — 62) — 2€13]¥1||W3] cos(01 — 63)

w2 w, |2
kil B+ [¥:] ——a? + 2n12|¥1||¥2| @B cos (6 — 92)}
mi my

Wy 2 2
[l 1 ¥ +| kel @ + 213 |1 || W3]y cos(8; — 93)]
mi ms

h2
- 2e3|¥2||W3|cos(62 — 63) + [

X By (61— 62) 3" (01 - 62) +

2
T
. —~ w2 [ 19, |? ¥
X G003 0 -0+ | D20 *'

[P |2

,3 + 2123 |2 | |3 By cos (62 — 93)] 0y (62— 63)

X 6“(92—93)——[ 2yB = 2n12| Y1 |[P2|ay cos(01 — 02) — 213 Wi ||Ws]aB cos(6; — 03)

|‘1’2|2

+ 23|25 ]@® cos (6 — 93)}5,1 (61 — 02) 8 (01 — 03) — — 2ay

+  2n12|W||Wa|By cos(61 — 62) — 2131|3187 cos (61 — 63) + 2a3| W2 || P3]aB cos (6 — 93)}

|52

X 8y (01— 62) 3" (62— 63) — —[ 2B + 2112 W |2 ]y? cos (6 — 62)
+  2m13|W1||Ws]By cos(01 — 603) — 2no3| W2 || W5 ]ay cos(62 — 93)}5;1 (01 — 63) " (02 — 63)

+ LWLl 1) B ). (3.7)
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Here, £ (|lp1 |, [Wal, W], F,,Vfw) =-y3, (a|‘1',~|2 + g|~y,~|4) — L F,, F#” is the sum of terms of the
Lagrangian, which do not depend on the phases 6;: single-band potential energies and Lagrangian of
electromagnetic field. Thus, the gauge field A « absorbs the Goldstone bosons 61 > 3 so that the Lagrangian
becomes dependent on the phase differences 6 — 6, 8; — 63, 8, — 63 only. At the same time, the phase
differences are not normal coordinates, because, firstly, they are not independent as we can see from
figure 1} we can suppose, for example, 6, — 63 = 6; — 03 — () — 6»); secondly, we can see that there
are off-diagonal terms, as 5” (61 — 6) M (8, — 83), in Lagrangian . Thus, in order to find normal
oscillations, we must diagonalize Lagrangian . However, due to mathematical cumbersomeness, to
find normal oscillations we will proceed from the original Lagrangian (3.3).

Before considering the problem of finding the normal frequencies, let us consider “potential energy”
in the Lagrangian (3.3)). Substituting the modulus-phase representation (3.1)) in the Lagrangian (3.5)) and
assuming A, = 0, we obtain:

b b b
U = a [P +a |l +a3 ¥+ 5 (94 59l + 3 9

+ 2en|¥||W2] cos(01 — 62) + 2€13|¥1|[W3] cos(8) — 03) + 2€23| P2 ||W3| cos(62 — 63).  (3.8)

AtT < T., we can consider small variations of the modulus of OP from its equilibrium value: |¥ 23| =
Wo1,02,03 + $1,2,3, where |1 23] < Wor,02,03. Then, |¥|* ~ W3 +2Wo¢ + ¢2, || ~ Wy +4¥3 0 + 6% 92,
|P1]|¥2] = Wo1Po2 + Po1¢2 + Y1 + ¢1¢2. Moreover, we can consider small variations of the phase
differences of OP from their equilibrium value:

cosbijx = cos (O — H?k + G?k) = cos (0 — H?k) cos G?k — sin (0;x — Q?k) sin G?k

Q

2 .
[1 - (6 = 6%) /2] cos 8%, — (6ix — 6%) sin 67,
where we have introduced the notations 6; — 6 = ;. Then, the energy (3.8) takes the form:
b3
2
+ 2€ppco8 9(1)2‘11()1 lP()Q + 2€13 cos 9%‘1’01 lPog + 2623 cos 9%‘1’02‘1’03, (39)

b b
U = (LI¢+(ng+(LI¢9+a1‘P§1+?I'~P31+a2‘1’32+72‘1132+a3'{"(2)3+ ¥,

where the last nine terms determine global potential (as the “mexican hat”), U4 determines a potential
for the module excitations ¢1 2 3:

Uy = ¢} (ar+30193 ) + 83 (@ +30293,) + 03 (a2 + 3053,
+  @1¢22€12 cos 9(1)2 + ¢ Pp32€3 cOs 9(1)3 + prp32€23 COS 983
+ 2¢1 (612 COS 9(1)2lp()2 + €13 COS 9(1)3?03 + 611‘1’01 + bllpgl)
+ 2(]52 (612 Ccos 9(1)2‘{’01 + €23 COS 9%‘1”03 +ar P + bglpgz)
+ 2(]53 (613 COS 9(1)3‘{’01 + €23 COS 9%‘1’02 + a3‘I’03 + b3‘P83) . (310)
The terms at ¢ 2 3 should be zero, then

€12 COS 9?2T02 + €13 COS 9?3T03 + al‘I’m + bl\PSl =0,

€12 COS 9?2T01 + €3 COS 933\1103 + az\Poz + bQ‘PSZ =0,

€13 COS 9(1)311101 + €23 COS 9%‘1”02 + a3‘P03 + b3‘I’33 =0, (3.11)

which corresponds to the first three equations in equation (2.4). Uy determines a potential for the phase
excitations 6 2 3:

2 0\2 0 \2
(612 - 69,) (613 - 6;) (623 — 63;)
Uy = —2612T01‘P02T12 - 2613‘1’01%3% - 2623‘1‘02‘1’03T23
- 2612‘1’01‘1’02(912 — 9(1)2) sin 9(1)2 - 261311101\1}03 (913 - 9(1)3) sin 9(1)3
- 2623"1"02'{"03 (923 - 9(2)3) sin 9(2)3. (3.12)
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For the linear terms (6;; — 9? j) not to affect the equations of motion, the following condition must be
satisfied:
Woo sin 69, + €13%03 sin 6Y; = 0
€12%02 sin 6}, + €;3%Pp3 sin 6} = 0,
612‘{’01 sin 0(1)2 + 623lP03 sin 9(3)2 =0,
613lP()1 sin 9(1)3 + 623‘1102 sin 9(2)3 =0, (3.13)

which corresponds to the second three equations in equation (2.4). Use determines the interaction
between the module excitations and the phase excitations:

2 .
Uypo = —¢142€2 [(912 — 61)" cos 6, +2(612 — 6, sin 9?2]

- P193€13 [(913 - 91 ) cos 913 +2(613 — sm@%]

- Padzens [(923 - 9(2)3) cos 923 +2(023 — sin 9(2)3]

2
€13 COS 9%‘1’03]

2

€33 COS 933 ‘1‘03]

(

(

- [(912 - 12) €12 COS 912‘{’02 + (913

- [(912 12) €12 COS glzlPOl + (923
(

013)
633)
013)
033)

- @3 [(913 - 13) €13 COS 9131P01 + (623 — )623 sm923‘1’02]
013)
033)
033) €2

- 2(]51 [(912 12)612 51n612‘1’02+ (913 - €13 sin 913‘?03]
- 2¢2 [(912 - 12 €12 sin 912T01 + (923 €23 sin 923l1103]
- 2¢3 [(913 13 613 sin 913‘1’01 + (923 - €3 sin 92311102] (3.14)

We can see that the first six terms are of the third ¢; ¢ (0% — G?k), ¢i(0;; — 0%)2 and the forth ¢; ¢ (0% —
G?k)2 order. Hence, they can be neglected. At the same time, the last three terms are of the second
order ¢;(0;r — H?k). In the case e12€13623 < 0, we have all G?k = 0 or =, that is sin H?k = 0, hence the
oscillations of the amplitudes and of the phases are not hybridized in this case. Thus, the Goldstone and
the Higgs modes are hybridized in the case €)2€13€23 > 0 only, that is the phase-amplitude mode can take
place [17}129].

The drag terms cause the analogous situation:

(B wi5mwy + 315, )
= [(5,,(]5,‘5’1(]5]( + 5,u¢k5#¢i) + T01‘P02(5#9i5"9k + 5ﬂ9k5'u9i)] Cos H?k
- [\P()i (5ﬂ¢i5'u9k + 5p9k5#¢i) — ‘P()k(gl,aﬁ”(pk + 5#(]51(5”9,')] sin Q?k' (3.15)

We can see that in the case €12€13€623 < 0, the oscillations of the phase € and amplitude ¢ are not hybridized
the same as for potential energy (3.14). It should be noted that the phase-amplitude hybridization is absent
in two-band superconductors due to this property. In addition, as demonstrated in reference [37], the effect
of the mixing of the oscillations of phases and amplitudes of OP from different bands is essential for
a reduced charge carrier density 4 < wp (u is chemical potential, wp is Debye frequency). For a large
charge carrier density, the oscillations of phases and amplitudes can be supposed independent.
Accounting of the hybridization results in the dispersion equation of the sixth order, instead of two
equations (3.21) and (3.36) of the third order. The sixth order equation cannot be solved analytically.
In order to obtain an analytical spectrum of quasiparticles, we are forced to use the decoupling of
correlations. As will be demonstrated below, the spectrum of collective excitations is determined not
only by the coefficients of the proximity effect €;, but also by the coefficients of the drag effect n;y.
As in two-band superconductors, the properties of the Higgs modes at T = T, force us to regard the
coefficients 17;x in such way that it leaves only the common mode Higgs and Goldstone oscillations. Special
choice of the coefficients 1;x, which eliminates the spectrum branches with anti-phase oscillations, is
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the same both for the Leggett modes and for the Higgs modes if we neglect their hybridization, and
regardless of the sign of €jp€13€23. Hence, at the first stage, we can consider the normal oscillations
without the phase-amplitude hybridization. Accounting of the phase-amplitude hybridization requires
special consideration.

3.2. Goldstone modes

Let us consider the movement of the phases only. Using the modulus-phase representation (3.1)) and
assuming |V} 23| = const and A, = 0, the Lagrangian (3.5)) takes the form:

72 ~ = 72 ~ = s ~ ~
= ——|¥,1%0,0,0"0; + — |¥,|*0,,0,0" 0, + —|¥5]20,,0:0"6
L 4m1| 11704601 1+4m2| 270,62 2+4m3| 3|70,,030" 03

72 -~ ~ =
+ ZU]Q|‘P1||‘P2|(6‘,1916”92 +8#926‘u91) COS(91 — 92)

2

A -~ -
+ ZT]13|‘P1||‘P3|((9#916”93 +(9'u93(9'u91) COS(91 - 93)
2

i - - - -

+ Z?’]z3|‘P2||‘I’3|(aﬂ926”93 + 0#936”92) COS(92 - 93)

— 2en|¥|[¥2] cos (61 — 62) — 2€13]W1||'W3] cos (61 — 63)

= 2ex3|¥2||¥3] cos (62 — 03) + L (|W1], [P, [¥3]) - (3.16)

Corresponding Lagrange equation, for example, is

Opy—=———-7—=0= —|¥[0,0"01 + —n12|¥1[|¥2] cos(61 — 62)0,0"6>
" 9@0n) 001 Ay T ’

2

B - -
+Z7713|‘1’1||‘1’3| cos(0y — 03)9,,0"63

—|¥1|[¥2]e12 sin(6y — 62) — [¥1][P3]e13 sin(6y — 63) =0,  (3.17)

where we have omitted nonlinear terms 5,, 00M6. The phases can be written in the form of harmonic
oscillations:

0, = 9(1) + Aellar-o1) = 0(1) + Ae"ianx"
92 — eg + Bei(qr—wt) = 63 +Be—iq”xl‘
03 = 69+Cel ) = g0 4 cemlan", (3.18)

where g, = (w/v, —q), x* = (vt, 1), 91 .3 are equilibrium phases. We should linearize equation (3.17)
assuming cos f;; ~ cos Gik, sin 0;; = sin (H,k - G?k + G?k) ~ (O — H?k) cos G?k + sin G?k, and using the
second three equations from equation (2.4). Then, the linearized equations are

12 I ~ - 12 ~ =
M|\P1|28ﬂ8”91 + Z [7]12 Ccos 9(1)2] |‘P1||‘P2|8ﬂ6“92 + Z [T]13 COs 9(1)3] |T1||\P3|3ﬂ8”93

- |‘P1||‘P2| [€12 cos 9(1)2] (612 — 67,) — 1195 [€13 cos ;] (613 — 693) =0,
—|‘I‘2| 8,016, + —[mzcos 0% | 1% 11¥218,,6" 601 + %2[7123 cos 09, | W2 | W13, 3" 65
+ |l111||lp2| [mcose ](e12 —6Y,) — |W||W5] [ €23 cos 90 ](923 -6%,) =0,
h—2|‘1‘3| (9 LN + — [7713 cos 913] |‘P1||‘Pz|8 0, + — [T]23 cos 923] |‘I’2||‘P3|(9 "0,

+ |l1'1||\113| €13 cos 913] (613 — 69;) + [ ||¥3] [ €23 cos 923] (623 - 65;) = 0. (3.19)
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Substituting equation (3.18)) in equation (3.19)), we obtain equations for the amplitudes A, B, C:

| %5 |'F3 ] |'F2 |

2 2
(——612 cos 9(1)2 — ——€13 €08 9(1)3 - quq" — f ) +B—2 (612 cos 9(1)2 - q#q’*h—mz cos 6?(1)2)
['W1] [W1] 4m [W1] 4

hZ
+ C—3| (613 cos 0(1)3 - quq" 77713 cos 9?3) =0,

[P ( 0 n? 0 st o ¥l 0 n?
A— |encosb, — gug" —mn12c0s 07, | + B|———€12cosd —— €308 05, — quq*
|"P2| 12 H 4 12 |\112| 12~ |"P2| 23 M 4m
['¥5] 0 h* 0
+ C@ €308 053 — q,q" ang cos by, | =0,

il (613 cos 8y — ¢ q"ﬁnu cos 6) )+B—IlPZI (623 cos 633 — ¢ q“h—2n23 00590)
|lP3| 13 H 4 13 |1P3| 23 H 4 23
|'P1] o 172l w
+C (—mﬂs cos 65 — A |623 cos 6 — f]u‘l”m =0. (3.20)

Equating the determinant of the system to zero (3.20), we find a dispersion equation:

3 2
(9.9")" a+ (quq")” b+ (quq") c =0, (3.21)
where
n T, My
a = (—) l—+2771277137723—£—£—£
4] |mmom my  my  m

- (e B ) B )
|‘P3| |T3| mymy 12 [V | k2] myms 13
|‘P2| |lP3|~ 1 2 ~ 7712 ~ ~ ~ 7713 ~ ~
- _ ) JZ ) AL
+ (|‘P1| €t o |‘P1| s 3 €12 o 17137723 €13 s 12123

- 263 |— —ni2ms| |
mi

o = (l‘I’ll~ [%5] )(l‘l‘llg 1%2] - )_+(|‘1’2| = |‘I’3|a3)
[P 1%, )\ 1% 1% € P | [P
y (|‘I’1|~13 Ll I‘I’2| )_ N (l‘I’2| |‘1‘3|~ ) (I‘P1|E l%lgzz) L v 2esasin
[P ;] © 31 EARA P2
U D Iy | O] P b 1 =2 1
+2 +2 -, —+2 + —
€12€237713 €12€137]23 612m3 €12712 (|lp |€]3 Vs |E23 13

Sk P | P NN ey U | 21 I‘I’sl~
+ 2€13113 ( €+ -——€e3|—6€r— +2e3n3 | — 6 + —— (3.22)
Tl T ) Ty T w2
and we denoted:
€k = €k COS 0(.) , Nik = Nik COS G?k. (3.23)
From equation (3 we can see that one of dispersion relations is
quq" =0 = w* = ¢*7, (3.24)

wherein A = B = C. Thus, this mode represents the common mode oscillations, as Goldstone mode
in single-band superconductors. There are other oscillation modes with such spectra, that q,q" =
(=b £ Vb2 —4ac)/2a # 0, i.e., two massive modes. These modes are analogous to the Leggett mode in
two-band superconductors [8]] and correspond to the results of references [[37H39]] for the phase oscillations
in three-band superconductors. It should be noted that if we assume all €;; = 0, then b = ¢ = 0 and the
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dispersion equation will be a (g, g")? = 0. That is, we obtain independent common mode oscillations in
each band. Let us consider a symmetrical three-band system |¥;| = |¥,| = |W3|, m1 = my = m3 = m,
€12 = €13 = €3 = € in the case of the absence of the drag effect 712 = 713 = 123 = 0. Then, massive
modes have the same spectrum:

12 _
quq" = —ame (3.25)

where € < 0. Amplitudes of these modes relate as A = —C, B=0and A = C, B = —(A + C), so that
current J = he |‘I’1 |2Vo, +45 e |‘I’2|2V02 +aE e |‘I’3|2V63 is J # O for the acoustic mode ( -i and J = O for
the massive modes (3.25). These three Goldstone modes are shown in figure 3]

(b) (c)

JA0 J=0 J=0

Figure 3. Normal oscillations of the phases 61, 0, 63 in a symmetrical three-band system |¥{| = |¥,| =
|W3|, m; = my = m3 with repulsive interband interactions €15 = €13 = €p3 > 0 in the case of the absence
of the drag effect n1p = 1713 = 1723 = 0. (a) Common phase oscﬂlatlons with acoustlc spectrum (3.24),
which are accompanied by nonzero current J = he he |y, 12vg, + e |‘I‘2|2V92 + £ |‘P3|2V63 # 0. (b, ¢)
Anti-phase oscillations with the massive spectrum , which are not accompamed by the current, i.e.

J=0.

It is not difficult to see that if we assume
1 _ 1 _ 1

[ —— 3= 23 = T —/—,
\mimy 1 \/mpms T \Vmoms

then, a = b = 0. Hence, the common mode oscillations (3.24) remain only.

M2 = (3.26)

3.3. Higgs modes

Let us consider the movement of the modules only (that is, assuming 6123 = 91 2. 5)> then, the
Lagrangian (3.5) takes the form (when A, = 0):

o~ ~ W~ ~ W~ ~
= ——0, |V |0P W] + —— 0, || OH|Wa| + —— 0, | W3 |0H |
L 4m16"| 110%| 1|+4m26,1| 20| 2|+4m36;4| 3|0% 5]

R = ~ R = ~
- in (Tl W1V ]+ B Pl ) + T (811151 + 8,187 1 )

W (= ~ ~ ~ b b
4 s (Tl W2l 1] + B a1 Wl ) a9 = 2 19 - ax Pl - 22

b — — —
- a3 ¥ - § |3 |* — 2612 |W1||W2] — 26131 || W3] — 26| W2 || Ws]. (3.27)
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AtT < T,, we can consider small variations of the modulus of OP from its equilibrium value: |¥ 2 3| =
Wo1,02,03 + $1,2,3, where |1 23] < Wor,02,03. Then, |¥|* = W5 +2Wo¢ + ¢2, ||* ~ ¥y +4¥] ¢ + 6%} o2,
|V1]|W2] = Wo1WPoz + Po102 + Y21 + 162, and Lagrangian (3.27)) takes the form:

? o~ P~ R~ o~ W = = o~ =
- 1z A u A u T = u u
L= By 01+ o Fu2d 02+ 5030 03+ 0 (3401402 + G201
2 2

R_ = o~ o~ = R_ = o~ o= =
+ 13 (4619993 + 5,030 81 ) + —-iTos (329" 93 + 5,930 42) - 81 (a1 + 30,195,
83 (a2 + 302, - 83 (a2 + 3655, ) - 26120192 — 26130103 — 2320

- 2¢ (512‘1‘02 +€13%W03 + a1 Wor + bl‘I’S]) - 2¢ (512‘1’01 +e3Wo3 + axWor + bzll‘éz)

~ ~ b by
- 2¢3 (E[g‘P(n + 623‘1‘02 + a3T03 + b3lP83) - al‘P(Z)l - ?1‘1‘611 - az‘l‘gz - 7‘1’32
b - ~ —
a3¥g; — 33‘1’613 — 2€12%01%P02 — 2€13P01 W03 — 2€23W02Pos- (3.28)

The last nine terms can be omitted as a constant. The terms at ¢ > 3 should be zero, then

€W + €303 + a1 o1 + b1'P;, =0,

€12%01 + &3%03 + a2 P2 + bW, =0,

€13Wo1 + €3¥02 + a3Wos + b3 ¥, =0, (3.29)
which corresponds to the first three equations in equation @]) AtT >T.1, T2, Te3, wehave a; o3 > 0

and equation Z.8) inT =T, at T < Te1, Tz, Tez We have ay 23 < 0. At T < Ty, Tep, Te3 in the case of
the weak interband coupling efk < ajay, it is not difficult to obtain from equation (3.29)):

W, = laal [, _ __€n bilas| 3 bilasl) _ flail
by 2lailaz| ¥ P2 lail  2+fla|las| V b3 lail by’

W, = las| [, € bylail e bylas|)  [lazl
by 2lazllar| ¥ brlazl  24flas|las| V b3 laz] by’

W, = las| [, €3 bylai|  éx bylasl|  [las| (3.30)
b3 2Jasllar| ¥ b1 lasl  2+flas]|as| V D2 las] b3

That is, the effect of the weak interband coupling on the OP ¥ 7 3 at T = 0 is not essential, and it can be
described as perturbation. At T — T, we have Wy 02,03 — 0, then, the following approximation can be
proposed:
2 -~~~ 2 ~ - ~
lPOl = (—a1a2a3 - 2612613623 + €341 + €302 + e]2a3)/b1 (a2a3 - 623),
2 ) - ~2 -
Wi, = (—a1a2a3 — 2€2€13623 + €33a1 + €542 + €1,a3) [ ba(ara3 — €5),
2 ) ) -2 -2
T03 = (—a1a2a3 - 2612613623 +e€yza1 +€3a2+ 612a3)/b3(a1a2 - 612). (3.31)
Thus, at high temperatures T 2 T, 72, Tc3, the values of the OP Wy 2,03 are determined by the

interband couplings €, so that, if €12 = €13 = €23 = 0, then Wp1 02,03 = 0.
Let us introduce the following notes:

ar =ap + 3b1lpgl, ) =dap+ 3b2‘P§2, a3 =az+ 3]93‘1‘33, (3.32)
then,

ayns > 0, aa T=T,,
—2a103=2|aip3|, at T <Te1,Te2,Tes. (3.33)

1,23

1,23
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The second formula is correct if the weak interband coupling €> < a;a, takes place only. Lagrange
equations for Lagrangian (3.28) are:

o~ ~ K2 K2

ma o1 + —7712(9 s + —77133 s+ a1y +Enga+E3p3 = O,

R o~ ~ K2 K2

ma o ¢y + Zmza ey + Z’Izaa s+ argn + Engy + €33 = O,

h2 h2 hZ

ma 9t s + 177133 ey + Iﬂzza Oy + azgn + €3y + E3d3 = 0. (3.34)

The fields ¢ 3 can be written in the form of harmonic oscillations: ¢; = Aexp(—igux*), ¢o =
Bexp(—igux*), ¢3 = C exp(—ig,x*), where q,x* = wt — qr. Substituting them in equation (3.34), we
obtain equations for the amplitudes A, B, C:

[
L

" M s
A ( ~ quq" am ) +B (612 —quq Zmz) +C (613 —quq Z’m)

h2 K2 h2
A (612 - quq Zmz) +B (0/2 - quq” am, ) +C (623 —quq I'm) = 0,

7‘12 h2 h?
A (613 —quq T"”) +B (623 —quq Z"B) +C (013 - quq” . ) = 0. (3.35)
Equating the determinant of the system to zero (3.35)), we find the dispersion equation:
3 2
(quq”) a+ (quq”) b+ (quq")c+d =0, (3.36)
where
3 = =2 =2
? 1 _ _ 1 n n
a = (Z) (— + 2012013703 — —= — == — 22|
mpmanms3s mi ny ms3
h2 (03} an a3 _ -~ ~ ~ o~ o~ ~ o~ o~
b = (Z) ( - - - — 2€12113723 — 2€137127723 — 2€2371127713
monisy mipms momy
b T+ ool + s, + NCEUE NN EUIE NN 2612’712)’ (3.37)
nyp ns
n &, — mas . e, —alas . e, —ajm
C =
4 mi my ms3

— 2np2(€3éxs — azénn) — 2n13(€12623 — a2€13) — 223 (€12€13 — 0153)],

d = @103 +262€1363 — X165 — 02E, — A3EL.

It should be noted that d(7,.) = 0 according to equations (2.8), (3.23), (3.32)), and (3.33). Hence, we have
the corresponding dispersion relations at a critical temperature:

[
L

quq”(T;) (3.38)

quq"(T¢) > 0. (3.39)

2a

We can see that Higgs mode splits to three branches. For the first mode (3.38), the energy gap (the mass
of Higgs boson) vanishes at the critical temperature, as in single-band superconductors, and amplitudes
of these modes relate as A = B = C. At the same time, the energy gap of the second and third
modes (3.39) does not vanish at the critical temperature. Thus, let us consider a case of symmetrical
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bands @) = @y = a3 = @, €, = €& = € = €, m; = my = m3 = m and the drag effect is absent:
12 = 13 = 123 = 0, then, the massive modes have the same spectrum (b* — 4ac = 0):

12 _
quq"(T;) = — e, (3.40)

where € < 0. Amplitudes of these modes relate as, for example, A = —C,B=0and A = C, B = -(A+C),
accordingly.

In [1]] it was demonstrated how the energy gap 7iwg (q = 0) is related to the coherence length &:
&2 = 0? /(u% (or from the uncertainty principle: fiwoé /v ~ i = & ~ v/wy, since the energy of Higgs
mode plays the role of the uncertainty of energy in a superconductor). Thus, there are three coherence
lengths according to the branches (3.38)) and (3.39). For example, for the symmetrical bands without the
drag effect, we obtain at T = T:

& = oo, (3.41)
2 _ g2 i
62 = 63 m < 00, (342)
The first coherence length diverges at T = T,.. On the contrary, the second and third lengths remain finite
and they vary only a little with temperature.

Thus, Higgs modes are oscillations of SC densities ny; = 2|¥; |. At the same time, the normal density
must oscillate in anti-phase, so that the total density is constant n = ng+n, = const, hence, ngvy+n,v, = 0.
Then, in order to change SC density, one Cooper pair must be broken as minimum, that is the energy
of order of 2|A| must be spent. Thus, in [[1] it was demonstrated that in single-band superconductors
quqt = 4|A?. Thus, to excite any Higgs mode at T = T,. it is not necessary to spend this threshold energy,
since |A(T.)| = 0. However, for the second and third branches — equation or equation (3.40),
we have q,,q*(T;) # 0, which is a nonphysical property. Thus, we must assume equation (3.26), then
from equation ([3.37) we can see that « = b = 0. Hence, the anti-phase Higgs modes are absent, and the
common mode oscillations with zero energy gap at T = T, remain only:

-
d a3 — €
_~ -~ ~ ~2 ~2 ~2 23
f]uqﬂ = 7z = (01101203 + 2612613623 — @1€)3 — Q€73 — 013612)/ —

h2 nmj

=2 =2 — - ~
@13 — €3 + a1az — €, 2013612 — €13€23 ) 2
nmy ms Vmimy \mims3 \mams3

Respectively, there is only one coherence length &(T):

®E€13 — €263 X1E3 — 5253) l (3.43)

2?2 2
=== (3.44)
w; d
For symmetrical bands, we have the following dispersion law for the Higgs mode:
u dm
quq” = ﬁ(a —2|€]), (3.45)

whose energy gap vanishes at T = T.: from equations (2.9) and (3.33) we have «(T,.) = a(T,) = 2|€],
hence, g,g* (T;) = 0. The corresponding coherence length is:

31 1

2

= , 3.46

€ 2nle- 2@ (340
so that £(T;) = oo.

We could see from the properties of Higgs modes that the existence of several coherence lengthes

with corresponding properties is incompatible with the second-order phase transition. Then, if equa-

tion (3.26) takes place, then Leggett modes are absent, and the common mode oscillations with acoustic
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spectrum remain only. Thus, as in single-band superconductors, in three-band superconductors
the common mode oscillations exist only. The anti-phase Goldstone mode (i.e., Leggett modes) and the
anti-phase Higgs modes are absent, which ensures only one coherence length £ (T) diverging atT =T..
At the same time, the Goldstone mode is accompanied by current. Therefore, the gauge field A, ab-
sorbs the Goldstone boson 6, as in single-band superconductors, i.e., Anderson-Higgs mechanism takes
place [[1]]. The condition generalizes the condition obtained in [3} 18] for two-band superconductors,
which prohibits type 1.5 superconductors.

Let us consider the regime of almost independent condensates in each band. This means: 1) temper-
ature must be low, i.e., T < T,1, T2, T¢3, 2) the weak interband coupling eizk < a;ay must take place.
Using equation (3.30), the energy gap fiwy (q = 0) of Higgs mode can be reduced to a form:

12 103
(m2a3/my) + (a1a3/m3) + (a1a2/m3)

_ g2 lai||az]las]
(lazllas|/my) + (la1llaz|/m2) + (ai]]az|/m3)

8 , \Jatlaz|las|babs

= —y Yo,
37 | (aallasl/my) + (arllasl/ma) + (lar|lazl/mz) 0

Jaslaillas|bibs

+ Wo1%Pos
(lazllas|/m1) + (laillaz|/m2) + (|a1||az|/m3)

Ja3laillaalbiby

(lazllas|/my) + (laillas|/m2) + (laillaz| /m3)

(hwo)*

+

Yo, W0 | . (3.47)

Then, multipliers before Wy;Wor depend on temperature very weakly, and this energy is symmetrical
with respect to the bands. Using the relationship between the “wave function” of Cooper pairs ¥ and the
energy gap A [1} 140, 141]:

_ 14@)m)'”?
B 47CTC,'

where n; = k%i /37 is electron density for a band i. Then, we can see that (fiwg)> o |A;||Ax|, and we
can assume:

¥; A, (3.48)

(iwo)® = X12801A02 + x13801A03 + Y23A02A03, (3.49)
where y;; = const (dimensionless) are such that in superconductor with symmetrical m; = my = m3,n; =
np =n3,a; =ap =as, by = by =b3,T;1 =T.p =T,3 = A = Ay = Az and almost independent bands
(i.e., el.zk < ajay at T < T¢1, T2, Te3), we should have v = vp/3, since in single-band superconductors
we have v = vg/V3 and we can determine the “dielectric permittivity” as & = ¢2/v? = cz/(vlz:/3) [,
then a “mixture” of three superconductors is equivalent to three parallel dielectrics (capacitors), then the
total permittivity is € = €| + &2 + &3 = 3¢?/ (vlzz / 3); hence, we obtain for the “mixture”: v = vg/3. The
coeflicients a;, b; are [42]:

ZTC[ 2Tci Tci
=6R—(T—Tci), b[:67c—_'
7¢(3)eFi 7¢(3)eFi ni

Let us suppose that y12 = x13 = y23 = x = const, and consider symmetrical bands (in particular
UF1 = Up = Up3 = Up). Substituting equations (3.47), (3.48) and (3.50) in equation (3.49) we obtain:

a;

(3.50)

3x 4
2 2
=V y= —. 3.51
v 4 VF T X T 5 (3.51)
For the material with different bands at T <« T,1, T., T.3 we can obtain the following approximation:

1 (THT, TT. TT, 1

U2 ~ = ( c2 c3U%1 + cl L3U12:2 + clic2 U12:3) ) (352)
9 Tcl TC2 Tc3 Tcl + TC2 + Tc3
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Thus, the speed of “light” v is of the order of Fermi speeds vy, vry, Up3 in the corresponding bands, as
in single-band superconductors, where v = vg/ V3 [l.

4. Results

In this work we investigate equilibrium states, magnetic response and the normal oscillations of
internal degrees of freedom of three-band superconductors with the accounting of the terms of the “drag”
effect n;x {DM‘I’,-(D/“I’,()Jr + (D/“I’,-)*D,,‘I’k}. Our results are as follows:

1) The obtained equation for critical temperature (2.8) demonstrates that 7. depends on the signs
of the coefficients of internal proximity effect (¢;z < O for attractive interband interaction, €;; > 0 for
repulsive interband interaction): T, (€12€13€23 < 0) > T (€2€13€23 > 0). As in two-band systems, the
effect of interband coupling is nonperturbative: the application of the weak interband coupling washes
out all OP up to a new critical temperature, as illustrated in figure [2] The magnetic penetration depth is
determined with SC densities in each band, although the drag terms renormalize the carrier masses see
equation (2.14).

2) Due to the internal proximity effect, the Goldstone mode splits into three branches: common
mode oscillations with the acoustic spectrum, and the oscillations of the relative phases 6; — 8y between
SC condensates with an energy gap in the spectrum determined by interband couplings €;x, which
are analogous to the Leggett mode in two-band superconductors. The common mode oscillations are
absorbed by the gauge field A,,. That is why oscillations are accompanied by current, as in single-band
superconductors [[1]. At the same time, the massive modes are not accompanied by current. Therefore,
they “survive”. If we assume that the coefficients of the drag effect 7;; are such as in equation (3.26),
then the Leggett modes are absent, and the common mode oscillations (3.24) remain only.

3) Higgs oscillations also split into three branches. The energy gap of the common mode vanishes at
critical temperature 7., for the other two anti-phase modes their energy gaps do not vanish at 7, and are
determined by the interband couplings €;. The mass of Higgs mode is related to the coherence length £.
Hence, we obtain three coherence lengths accordingly. The first coherence length diverges at T = T,
while on the contrary, the second and third lengths remain finite at all temperatures. The effect of the
splitting of Goldstone and Higgs modes into three branches each takes place even at the infinitely small
coefficients €;,. Thus, the effect of interband coupling € # 0 is nonperturbative. As for Goldstone modes,
if we assume that coefficients of the drag effect 7;; are such as in equation (3.26), then the anti-phase
Higgs modes are absent and the common mode oscillations with zero energy gap at T = T, remain
only.

4) The excitation of one quant of Higgs oscillations requires the breaking of one Cooper pair as
minimum, i.e., the energy of the order of 2|A| must be spent. Hence, to excite any Higgs mode at T = T
it is not necessary to spend this threshold energy. In three-band superconductors for anti-phase Higgs
modes, we have a nonphysical property g,g*(T.) # 0. As and for Goldstone modes, if we assume that
coefficients of the drag effect n;; are the same as in equation (3.26), then the anti-phase Higgs modes
are absent and the common mode oscillations with zero energy gap at T = T, remain only. Thus, as in
single-band superconductors, in three-band superconductors the common mode oscillations exist only.
The anti-phase Goldstone mode (i.e., Leggett modes) and the anti-phase Higgs modes are absent, which
ensures only single coherence length &(T) diverging atT =T,.

5) The square of the energy gap of Higgs mode in three-band superconductors can be represent in the
form of a sum of products of gaps Ag; Aoy see equation (3.49), which is similar to two-band superconduc-
tors [8]], and it differs from the mass of Higgs mode in single-band superconductors: fiwg = 2|A|, where
this mode exists in the free quasiparticle continuum. On the contrary, in two-band superconductors and in
three-band superconductors it can be +/|A;||Ax| < 2min(|Ay[, |Az[, |As]), then the Higgs mode becomes
stable. The speed of “light” v is of the order of Fermi velocities in each band vg, up,, vr3 and depends
on the single-band “critical” temperatures T, Tc2, T3 see equation (3.52).

6) Unlike the two-band systems, the Higgs modes and the Goldstone modes can be hybridized at
enezexs > 0. For the case €12€13623 < 0, the hybridization is absent. All previous results were obtained
in the approximation of splitting of the correlation between amplitude and phase oscillations.
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A. Some symmetric 3HDM potentials

Following to [36] a scalar 3HDM potential symmetric under a group G can be written as
V=VW+Vs, (A.l)

where
3 b,
Vo = ;ai | |* + ?l ;|
bio W1 22l + b3 |1 2] + bos W |* W5
b’lz(qrflpz)(q’;lpl) + b’n(‘PT‘I%)(\P;‘PI) + b'zg(\ll;l}%)(\}/;l}’z) (A.2)

+ +

is invariant under the most general U(1) x U(1) gauge transformation and Ug is a collection of extra
terms ensuring the symmetry group G. The U(1) x U(1) group is generated by

el 0 0\[e 0 0
0 € 0 0 e o |. (A.3)
0 0 1 0 0 &3

However, in the present work we use the minimum model, where b = b7, = 0. A potential symmetric
under the U(1) group is

Vuay = Vo + dios [(P7¥3) (P35 ¥3) + (U1 ) (1L 95)] - (A4)
The U(1) group is generated by '
e’ 0 0
0 e 0 |. (A.5)
0 0 1
A potential symmetric under the U(1) X Z, group is
Vuyxz, = Vo + A3 [(P3W3)% + (¥295)?] . (A.6)
The U(1) X Z; group is generated by
e 330 0 -1 0 0
0 € 0 0 -1 0 |. (A7)
0 0 €fs 0 0 1

A potential symmetric under the Z, group is

VZ2 = W+en [‘PT‘PQ + lPllP;] + A2 [(Tflpz)z + (\PllP;)z]

+ A3 [(TT‘I@)z + (lpllp,;r)z] + Ao3 [(IP;‘I’3)2 + (lpzlp';)z] . (A.8)
The Z, group is generated by
-1 0 O
0 -1 0. (A9)
0 0 1
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KonnekTnBHi 36y>KeHHS y TPU30HHOMY HaANpPOBiAHNKY

K. B. FpuyropuinH

IHCTUTYT TeopeTnYHOI $isunkm iMm. M.M. boronto6osa HAH YkpaiHu, Byn. MetponoriuHa 14-6, 03143 Kuis,
YKpaiHa

JocnigxeHo cTaHW piBHOBaru, MarHiTHWIA BiAryK i HOpMasbHi KONMBaHHS BHYTPILLHIX CTYMNeHiB BibHOCTI (MOAM
Xirrca Ta Moau F'onacToyHa) TPU3OHHUX HAANPOBIAHMKIB 3 ypaxyBaHHAM SIK BHYTPILLHbOrO edekTy 6a13bKoCTi,
TaK i edekTy “3axonneHHn” (MiXXrpagieHTHOI B3aEMogii) B narpaHxiaHi. ik moga fonacToyHa, Tak i Mmoga Xirrca
PO3LLEN/IOTLCA Ha TPU MKW KOXHa: CMHGa3HI KOAMBaHHS Ta ABI MOAW NPOTU(A3HMNX KONVBAHB, LLIO aHaNOriy-
Hi Mogi JlerreTta B ABO30HHMX HagNpoOBigHMKaX. Moka3aHo, Lo Apyra i TPeTs rinky € HePi3uUHMMWY, i IX MOXHa
YCYHYTV crielianbHUM Nigbopom KoedilieHTIB Mpy uneHax “3axonneHHs"” B narpaHxiaHi. ¥ pesynbTtaTi TpU30oH-
Hi HaANPOBIAHNKM XapaKTepU3yoTLCS ANLLE OAHIEN AOBXMHOK KOrepeHTHOCTI. OTpMMaHO CnekTp CUHpasHmX
KonmsaHsb Xirrca. MnbrnHa MarHiTHOro NPOHNKHEHHS BU3HAYaETbCA IYCTUHOK HAaANPOBIAHVX eNeKTPOHIB Y KOX-
Hili 30Hi, 04HaK MiXXrpajieHTHa B3aEMOZiA NepeHOPMYE Macu HOCIiB.

KnrouoBi cnoBa: siopeHy-koBapiaHTHICTb, Moga Xirrca, Moga lon4cToyHa, Moga JlerreTra, MiXX30HHa
B33€EMOZisl, epeKT 3aXonneHHs
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