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The one-body free volume, which determines the entropy of a hard disk system, has extensive (cavity) and
intensive (cell) contributions. So far these contributions have not been unified and considered separately. The
presented theory incorporates both contributions, and their sum is shown to determine the free volume and
partition function. The approach is based on multiple intersections of the circles concentric with the disks but of
twice larger radius. The result is exact formulae for the extensive and intensive entropy contributions in terms of
the intersections of just two, three, four, and five circles. Themethod has an important advantage for applications
in numerical simulations: the formulae enable one to convert the disk coordinates into the entropy contribution
directly without any additional geometric construction. The theory can be straightforwardly applied to a system
of hard spheres.
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1. Introduction

Spheres and their arrangement in space have been playing a very notable role in practical life and,
in particular, in mathematics and physics. Recently Maryna Vjazovska received the Fields Medal for
solving the problem of dense hard sphere packing in 8 [1] and 24 [2] dimensions. In physics, however,
the analytical achievements are more modest. In statistical physics we are interested in a random packing
problem of hard spheres in a macroscopic volume. Over more than a century, the idea to model molecules
as hard spheres has been widely used in the theory of liquids [3–5]. The model of spheres, interacting
only by their hard cores, plays the role similar to that of Ising’s model in the theory of magnetism, but
despite apparent simplicity, the behavior of hard sphere systems is so complex mathematically that no
exact analytical result has been obtained in the physical dimensions 3 and 2. Under these circumstances,
the numerical Monte Carlo and molecular dynamics approaches have become the main tools in the study
of 3D hard sphere and 2D hard disk (HD) systems (see review [6] and numerous references therein).
However, even using the modern powerful numerical methods one encounters the fundamental theoretical
problem of computing the main thermodynamic potential of hard sphere and HD systems, the entropy.
Although the problem of hard spheres is very similar to that of HDs, for simplicity, in this paper the
presentation will be mainly related to HDs.

The potential energy of a HD system is zero and the entropy provides the total thermodynamic
information and, in particular, equation of state and possible subtleties of the phase behavior as a function
of density which is the single parameter of the system state. The numerical simulations consist in
producing different independent configurations of the coordinates of the disks which is the task input,
and then certain related theory must provide calculation of the entropy, equation of state, and other
quantities of interest which are the task outcome. In principle, the ultimate theory must give the outcome
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directly from the coordinates of the disks (with the consequent averaging over different configurations),
but actually the available theoretical methods relate the coordinates of the disk with the expected outcome
only through intermediate and quite sophisticated geometrical constructions. The main elements of such
constructions are the so-called free volume, cavity, “private” one-disk cell, and the surface thereof. For
a brief review and to present the main idea of this paper, we first introduce these quantities.

A HD of radius 𝜎/2, the core, is supplemented with a concentric circle of radius 𝜎 which is called
here 𝜎 circle. The cores cannot overlap, but their 𝜎 circles can overlap and are transparent for cores. A
configuration of 𝑁 HDs in a 2D volume𝑉 consists of 𝑁 nonoverlapping cores and 𝑁 connected 𝜎 circles
which can overlap, figure 1. The free volume 𝑉𝑁 of a disk in a given configuration of an equilibrium 𝑁

HD system is the volume accessible for its center in this configuration, which is the total 𝑉 minus union
of the rest 𝑁 − 1 𝜎 circles; 𝑉𝑁 can comprise more than one disconnected piece (in figure 1, a single
piece is shown). The cavity 𝐶𝑁 in a HD system of 𝑁 HDs is the area where an additional HD can be
inserted which is total 𝑉 minus union of all 𝑁 𝜎 circles. The private cell 𝑐𝑁 of a disk in a HD system of
𝑁 HDs is the free volume of this disk 𝑉𝑁 without the cavity 𝐶𝑁 (stroked area, figure 1); if the cavity is
zero and no additional HD can be inserted, then private cell is the total free volume of the disk. The free
volume, cavity, and private cell in the case of a single free area are illustrated in figure 1. It is seen that the
division on cavity and private cell of the dashed disk depends on the position of this disk, but the total
free volume 𝑉𝑁 = 𝐶𝑁 + 𝑐𝑁 does not depend on its coordinate. The average free volume 〈𝑉𝑁 〉𝑁 , average
cavity 〈𝐶𝑁 〉𝑁 , and average private cell per disk 〈𝑐𝑁 〉𝑁 are those for a single configuration of 𝑁 disks
averaged over the configurations of the equilibrium system of the same 𝑁 disks. The perimeters (surfaces
in 3D) of all the three volumes introduced are complex lines (surfaces) whose shapes and lengths are not
in a one-to-one relation with the volume size. In the above definition, we emphasized that the quantities
related to an 𝑁 disk system are defined for the equilibrium system of the same 𝑁 disks.
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Figure 1. (Colour online) Fragment of a system of 𝑁 HDs. The 𝑁 − 1 HDs of radius 𝜎/2 are represented
by dark circles and the connected concentric 𝜎 circles by light circles. The 𝑁-th disk and circle are shown
by dashes. The white area in between is the free volume of 𝑁-th disk since its center can be anywhere in
this area. Only the stroked fraction of the white area is the cavity in the 𝑁 HD system. The clear fraction
of the white area is not cavity, but is available for the center of dashed disk center. This clear white area
is equal to the area of dashed 𝜎 circle, π𝜎2, minus its fraction overlapped by other 𝜎 circles.

In 1977 Speedy introduced the spare volume and defined it as follows: “The spare volume 𝑉𝑠 of an
assembly of 𝑁 spheres of diameter 𝜎 in a volume 𝑉 is defined as the average over configurations of the
volume which is not within 𝜎 of a sphere center, . . . , the probability that another sphere can be placed
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at a random point in the assembly” [7]. Clearly, this is equivalent to a cavity available for an additional,
𝑁 + 1 disk in a system of 𝑁 disks, and which is averaged over configurations of 𝑁 HDs. As a result,
Speedy related the partition function (PF) of a HD system with the product of cavities 〈𝐶𝑁 ′〉𝑁 ′−1 in the
systems of a number of disks reduced by one, i.e., of 𝑁 − 1, 𝑁 − 2, . . . , 1, 0 disks, which are averaged
over the equilibrium systems of respectively 𝑁 − 1, 𝑁 − 2, . . . , 1, 0 disks in the same volume 𝑉 [7]. The
way this PF was obtained was going back to the earlier results by Adams [8] and Andrews [9] which had
in turn been inspired by Widom’s approach [10]. But Speedy was the first to address the calculation of
the spare volume in a HD system in terms of intersections of the disks [11] which has greatly influenced
the further development of this area [12]. Later Speedy explicitly shifted from the nomenclature of spare
volumes to cavities [11].

Actually, however, the formula for the PF has not been further employed. Instead, in 1980 Speedy
proposed the equation of state which relates the pressure with the ratio (average cavity volume)/(average
cavity surface area) [11, 13]. Since then different geometrical methods of finding the cavities and
their surface have become the main emphasis in the ongoing studies of hard particle systems [14–
21]. However, the complex shape and connectedness of cavity space makes it very difficult to perform
precise measurements of the quantities characterizing them, which resulted in new and new geometrical
constructions that are highly nontrivial to implement [14–16, 19, 20]. The main problem of this approach
is that, even for densities far from the crystallization density, cavities become so rare that finding them
was sometimes called a task futile [16]. The root of this problem is that a cavity in an 𝑁 HD system has
been mainly computed as that of 𝑁-th disk in an equilibrium system of 𝑁 − 1 HDs. However, while in an
equilibrium system of 𝑁 HDs the place for 𝑁-th disk is ensured, in a dense equilibrium system of 𝑁 − 1
HDs, a place for an additional 𝑁-th disk is a very rare event. The paradox is that relating the cavity with
a system of a smaller number of disks when considering an 𝑁 disk system, one finds no place for 𝑁-th
disk. This problem was pointed out by Schindler and Maggs who had to invent a modified numerical
algorithm for finding the cavities and distinguishing them from free volumes [20].

The cavity is an extensive quantity that scales with the number of disks and volume. At the same
time, even when an additional, 𝑁 + 1 disk cannot be inserted, the original 𝑁 disks can vibrate in their
cages created by their neighbors. This implies that the total entropy is nonzero and the volumes of such
cages are its source even in the absence of cavities which is the case of densities approaching that of
crystallization. These cages are what is called private disk cells in the cell models [22–25]. Even before
Speedy’s publication [7], Hoover and coworkers [22–24] correctly argued that along with the extensive
cavity volume, there must be an intensive one which scales as𝑉/𝑁 and consists of individual single-disk
cells. The free volume is the sum of these two terms, and when the cavity is getting smaller and smaller,
the total free volume reduces to the volume of individual cells. Based on this important idea, as early as in
1972, Hoover, Ashurst, and Groover showed that the pressure can be expressed via the average ratio of the
free volume to its surface which incorporates the cell contribution [23]. The cell model can quantitatively
describe the HD equation of state near the freezing density in numerical simulations [22–24] and even
allows one to obtain qualitatively accurate results analytically [25]. The cell models also have the problem
of describing the cell distribution with a strong geometric component, but the main problem is to connect
the one-body cell approach with a many-body one, i.e., to incorporate the intensive and extensive free
volumes and entropy contributions in a unified theory.

In this paper we present such a theory in which the extensive and intensive terms have the same
status and are computed in the framework of the same approach. We develop the method of multiple
intersections of 𝜎 circles and, in terms of their intersection volumes, express the free volume, its extensive
and intensive parts, and the PF of a system of 𝑁 HDs. Due to the fact that only up to five 𝜎 circles can
intersect without overlapping of their cores, the theory needs only four quantities, i.e., the intersection
volumes of two, three, four, and five 𝜎 circles. These four quantities are fully specified by the disks
coordinates and can be calculated analytically using the formulae obtained in [26–28]. The theory does
not resort to a system of reduced number of HDs and gives the values of a cavity, private cell, and total
free volume in a system of 𝑁 HDs only in terms of this very 𝑁 HD system. No geometrical or any other
intermediate constructions appear between the input, coordinates of the disks, and the output, quantities
of interest, and the only source of inaccuracy is that of the numerical simulations.

The paper is organized as follows. In section 2, the method of multiple disk intersections is introduced
and the general formula for the free volume of a single disk is derived. Section 3 is devoted to the
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connection between the single disk volume and many-body description. First Speedy-Widom’s approach
is used to derive the PF. It is shown that this PF is exactly Speedy’s PF [11] in the form of a product
of cavities in the equilibrium systems of the reduced number of disks. Next it is shown that, in the
thermodynamic limit, the correct PF is the product of the free volumes averaged in the proper systems. In
section 4, the formulae relating the extensive and intensive free volume contributions with intersections of
𝜎 circles are obtained and their application to the average values is explained. In section 5, the analytical
computation of all the intersections of 𝜎 circles and the intensive and extensive terms for the densely
packed triangular HD lattice is presented in detail. It shows that both terms in this state vanish identically.
Final section 6 is a brief conclusion.

2. Hard disk interaction and multiple disk intersections

The configuration PF of a 2D system of 𝑁 particles in the 2D volume 𝑉 with paiwise interaction 𝑈𝑖 𝑗

is the following integral:

𝑍𝑁 =

∫
𝑉

d𝑥𝑁 exp
(
− 1

2

𝑁∑︁
𝑖, 𝑗=1

𝑈𝑖 𝑗

)
(2.1)

=

∫
𝑉

d𝑥𝑁−1 exp
(
− 1

2

𝑁−1∑︁
𝑖, 𝑗=1

𝑈𝑖 𝑗

) ∫
𝑉

d𝑥𝑁 exp
(
− 1

2

𝑁−1∑︁
𝑖=1

𝑈𝑁𝑖

)
,

where 𝑥𝑖 are the two component vectors of coordinates of the disks, d𝑥𝑁 = d𝑥1 . . . d𝑥𝑁 , and we separated
the 𝑥𝑁 integral. For HDs of the radius 𝜎/2, the potential 𝑈𝑖 𝑗 = ∞ for 𝑥 𝑗 within the circle of radius 𝜎

centered at 𝑥𝑖 , and 𝑈𝑖 𝑗 = 0 for 𝑥 𝑗 outside this circle. We introduce a circle 𝐵𝑖 , 𝑖 = 1, . . . , 𝑁 − 1:

𝐵𝑖 = {𝑥𝑁 : |𝑥𝑖 − 𝑥𝑁 | 6 𝜎}. (2.2)

By definition, the indicator 𝜏𝑖 (𝐵𝑖) of the set of points 𝑥𝑁 ∈ 𝐵𝑖 is

𝜏𝑖 = 𝜏(𝐵𝑖) =
{

1, 𝑥𝑁 ∈ 𝐵𝑖 ,

0, 𝑥𝑁 ∉ 𝐵𝑖 .
(2.3)

The product of 𝑛 indicators of 𝑛 different sets is the indicator of the intersection set shared by all of them.
Such product of two indicators, which is nonzero only if the two related circles intersect, can be defined
as

𝜏𝑡 𝑗 = 𝜏𝑖𝜏𝑗 =


1, 𝑥𝑁 ∈ 𝐵𝑖 ∩ 𝐵 𝑗 ,

0, 𝑥𝑁 ∉ 𝐵𝑖 ∩ 𝐵 𝑗 ,

0, 𝐵𝑖 ∩ 𝐵 𝑗 = ∅.
(2.4)

Then, by definition,

𝜏𝑖1...𝑖𝑛 = 𝜏

𝑛⋂
𝑘=1

𝐵𝑖𝑘 (2.5)

=


1, 𝑥𝑁 ∈

𝑛⋂
𝑘=1

𝐵𝑖𝑘 ,

0, 𝑥𝑁 ∉
𝑛⋂

𝑘=1
𝐵𝑖𝑘 ,

0,
𝑛⋂

𝑘=1
𝐵𝑖𝑘 = ∅,

where
⋂𝑛

𝑘=1 𝐵𝑖𝑘 is the set of points 𝑥𝑁 shared by all circles 𝐵𝑖 , i.e., their intersection.
Now, the utmost right exponential in 𝑍𝑁 (2.1) for the HD interaction can be presented in terms of 𝜏’s.

It is easy to see that the HD interaction is equivalent to the following formula:

e−𝑈𝑁𝑖/2 = 1 − 𝜏𝑖 . (2.6)
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This formula shows that the center of disk 𝑁 ≠ 𝑖 cannot enter the circle 𝐵𝑖 centered at 𝑥𝑖 which has the
radius 𝜎 twice the HD radius 𝜎/2. The product of two exponentials is

e−(𝑈𝑁𝑖+𝑈𝑁 𝑗 )/2 = (1 − 𝜏𝑖) (1 − 𝜏𝑗 ). (2.7)

Similarly,

exp
(
− 1

2

𝑁−1∑︁
𝑖=1

𝑈𝑁𝑖

)
=

𝑁−1∏
𝑖=1

(1 − 𝜏𝑖)

= 1 −
𝑁−1∑︁
𝑖=1

𝜏𝑖 +
𝑁−1∑︁
𝑖> 𝑗

𝜏𝑖𝜏𝑗 −
𝑁−1∑︁
𝑖> 𝑗>𝑘

𝜏𝑖𝜏𝑗𝜏𝑘 + · · · + (−1)𝑁−1
𝑁−1∑︁

𝑖1>𝑖2>· · ·>𝑖𝑁−1

𝜏𝑖 . . . 𝜏𝑖𝑁−1 . (2.8)

It is well-known that more than five circles of a radius 𝜎 cannot intersect without intersection of their
cores of radius 𝜎/2 (six HDs intersect at a single point). As a result, all the products of six and more 𝜏’s
do not contribute to the above sum. Thus, the last term in the sum (2.8) is 𝜏𝑖 𝑗𝑘𝑙𝑚 which corresponds to
the intersection of five circles 𝐵, and this formula greatly simplifies:

exp
(
− 1

2

𝑁−1∑︁
𝑖=1

𝑈𝑁𝑖

)
=

= 1 −
( 𝑁−1∑︁

𝑖=1
𝜏𝑖 −

𝑁−1∑︁
𝑖> 𝑗

𝜏𝑖 𝑗 +
𝑁−1∑︁
𝑖> 𝑗>𝑘

𝜏𝑖 𝑗𝑘 −
𝑁−1∑︁

𝑖> 𝑗>𝑘>𝑙

𝜏𝑖 𝑗𝑘𝑙 +
𝑁−1∑︁

𝑖> 𝑗>𝑘>𝑙>𝑚

𝜏𝑖 𝑗𝑘𝑙𝑚

)
. (2.9)

Denote by ` the volume (i.e., the measure in the 2D space, surface area) of a set: `𝑖 = `(𝐵𝑖) = π𝜎2,
`𝑖𝑘 = `(𝐵𝑖 ∩ 𝐵 𝑗 ), `𝑖1...𝑖𝑛 = `

(⋂𝑛
𝑘=1 𝐵𝑖𝑘

)
. Then, the last integral in 𝑍𝑁 (2.1) reduces to the following

form:

𝑉𝑁 (𝑥1, . . . , 𝑥𝑁−1) =
∫
𝑉

d𝑥𝑁 exp
(
− 1

2

𝑁−1∑︁
𝑖=1

𝑈𝑁𝑖

)
= \𝑁 (𝑥1, . . . , 𝑥𝑁−1) (𝑉 −𝑉excl), (2.10)

where

𝑉excl(𝑥1, . . . , 𝑥𝑁−1) =
𝑁−1∑︁
𝑖=1

`𝑖 −
𝑁−1∑︁
𝑖> 𝑗

`𝑖 𝑗 +
𝑁−1∑︁
𝑖> 𝑗>𝑘

`𝑖 𝑗𝑘 −
𝑁−1∑︁

𝑖> 𝑗>𝑘>𝑙

`𝑖 𝑗𝑘𝑙 +
𝑁−1∑︁

𝑖> 𝑗>𝑘>𝑙>𝑚

`𝑖 𝑗𝑘𝑙𝑚. (2.11)

To exclude configurations 𝑥1, . . . , 𝑥𝑁−1 in which there are disks whose hard cores overlap, we introduced
the hard core indicator \𝑁 (𝑥1, . . . , 𝑥𝑁−1) in a configuration 𝑥1, . . . , 𝑥𝑁−1: \𝑁 = 1 if

��𝑥𝑖 − 𝑥 𝑗

�� > 𝜎 for all
1 6 𝑖 < 𝑗 6 𝑁 − 1 and \𝑁 = 0 if

��𝑥𝑖 − 𝑥 𝑗

�� < 𝜎 at least for one pair 𝑖 < 𝑗 . The quantity 𝑉𝑁 (𝑥1, . . . , 𝑥𝑁−1)
is the integral over all possible locations 𝑥𝑁 of 𝑁-th disk in the system of 𝑁 HDs for given fixed positions
of the rest 𝑁 − 1 HDs. In other words, this is the integral over the volume accessible to the 𝑁-th disk in
the 𝑁 HD system, the free volume of the 𝑁-th disk. It is expected to be the total area 𝑉 minus the total
area covered by the circles 𝐵𝑖 , i.e., 𝑉 minus the union ∪𝑁−1

𝑖=1 𝐵𝑖 . And the formulae (2.10) and (2.11) do
describe the integral over exactly this area. The formula (2.11) can be presented in the form

𝑉excl(𝑥1, . . . , 𝑥𝑁−1) =
∫

∪𝑁−1
𝑖=1 𝐵𝑖

d𝑥𝑁 = `

𝑁−1⋃
𝑖=1

𝐵𝑖 . (2.12)

Indeed, the expression (2.11) for 𝑉excl is exactly the volume of the union ∪𝑁−1
𝑖=1 𝐵𝑖 known in the set

theory, which is restricted to the intersections of maximum five sets 𝐵𝑖 and implicitly excludes the core
overlapping. Thus, we have expressed the single 𝑁-th particle integral in terms of the intersections of
the circles 𝐵 connected to the other 𝑁 − 1 HDs. In the next section we show how this result can be
incorporated in the many-body theory. In order to simplify the formulae, in what follows we omit the
explicit presence of the indicator \𝑁 and assume that only acceptable configurations are considered
whereas all configurations with any core overlap give zero contribution to 𝑉𝑁 .
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3. Many-body problem

3.1. The Speedy-Widom approach: PF is the product of cavities

To consider implementation of the obtained result in 𝑍𝑁 we first follow Widom’s idea [10] and
transform the PF like that. Divide and multiply 𝑍𝑁 by the PF 𝑍𝑁−1 for 𝑁 − 1 HDs and introduce the
distribution function (DF) 𝑓𝑁−1 of the coordinates of the 𝑁 − 1 disks in the equilibrium system of 𝑁 − 1
HDs:

𝑓𝑁−1(𝑥1,...,𝑥𝑛−1) = 𝑍−1
𝑁−1 exp

(
− 1

2

𝑁−1∑︁
𝑖=1

𝑈𝑖 𝑗

)
. (3.1)

Then, one has:

𝑍𝑁 = 𝑍𝑁−1

∫
`

d𝑥𝑁−1 𝑓𝑁−1(𝑥1,...,𝑥𝑛−1)𝑉𝑁 (𝑥1,...,𝑥𝑛−1)

= 𝑍𝑁−1 〈𝑉𝑁 〉𝑁−1 , (3.2)

where 〈𝑉𝑁 〉𝑁−1 is the average volume accessible for 𝑁-th disk in the equilibrium system of 𝑁 − 1 disks,
i.e., the cavity 𝐶𝑁 in a system of (𝑁 − 1) HDs. Continuing along this line by introducing the equilibrium
distribution functions of a lower and lower number of HDs, one arrives at the following formula for the
PF:

𝑍𝑁 = 〈𝐶𝑁 〉𝑁−1 〈𝐶𝑁−1〉𝑁−2 . . . 〈𝐶𝑁−𝑁 ′〉𝑁−𝑁 ′−1 . . . 𝑉 . (3.3)
The result is the product of cavities, the average empty voids in the equilibrium systems of 𝑁 − 𝑁 ′ − 1
HDs into which the (𝑁 − 𝑁 ′)-th HD can be inserted, for all 𝑁 ′ from 0 to 𝑁 − 1. This is the second
Speedy’s result [11] which can rightfully be called Speedy-Widom PF. This result is behind the idea
which has been the pivot of practically all of the search for the equation of states based on the notions
of cavity and spare volume. The problem that is encountered in these studies is that, already at liquid
densities, cavities become so rare and finding them in computer simulations so difficult that it was even
dubbed a task futile [16]. This practically means that in sufficiently dense HD and hard sphere systems
that are still far from their close packing, 𝑍𝑁 is zero, the entropy is minus infinity, and higher densities are
inaccessible because the 𝑁-th hard core particle cannot be inserted in such dense systems. This situation
is paradoxical as we started to study a system of 𝑁 particles but found that one particle has no space in
this system. Herein below we shall resolve this paradox and derive a consistent theory in which all HDs
have an ensured space in an 𝑁 HD system.

3.2. PF is the product of single-disk free volumes

How could it happen that the rightful ensured space of 𝑁-th HD got lost in a system of 𝑁 HDs? To
answer let us compare the averaging (3.2) of 𝑉𝑁 (𝑥1, . . . , 𝑥𝑁−1) with the DF 𝑓𝑁−1(𝑥1, . . . , 𝑥𝑁−1) of an
equilibrium system of 𝑁 − 1 HDs, equation (3.1), with the integral over 𝑉𝑁 (𝑥1, . . . , 𝑥𝑁−1) in the second
line of equation (2.1). The PF 𝑓𝑁−1(𝑥1, . . . , 𝑥𝑁−1) is that in a system of 𝑁 − 1 disks and is established
without any effect of an additional disk 𝑁 of which 𝑓𝑁−1(𝑥1, . . . , 𝑥𝑁−1) never knew. Hence, the factor
𝑉𝑁 does not influence 𝑓𝑁−1, its role is passive and reduces to guiding the external disk along the maze
formed by the 𝑁 − 1 “native” HDs. In particular, if the maze leaves no place for an external disk 𝑁 ,
the integral 〈𝑉𝑁 〉𝑁−1 = 0. In a dense system, this situation is most probable since the most probable
distribution of 𝑁 − 1 disk is uniform. By contrast, the integral (2.1) over 𝑉𝑁 is that over 𝑥𝑁 in a system
of 𝑁 HDs. Now, any collection of 𝑁 − 1 disks does know about the presence of another disk which has
the same “native” status, and is therefore adjusted in order to accomodate it with the probability one. In
such a system, the most probable situation is also a uniform distribution, but now of all 𝑁 disks (so that
𝑁 + 1 disk could have found no place, but now this is irrelevant). Thus, 𝑓𝑁−1 has “no idea” of the 𝑁-th
disk whereas all the 𝑁 − 1 coordinates, the arguments of𝑉𝑁 in (2.1), do keep knowledge of the 𝑁-th disk
to which they cannot approach to a distance below 𝜎. To summarize, in the PF (3.3), the average of 𝑉𝑁

in the original statistical integral was replaced by a different average (3.2) with the equilibrium DF for
the different system. Hence, we should base our theory on the integral 𝑉𝑁 .
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The integral 𝑉𝑁 defined in (2.10) depends on the coordinates of all 𝑁 disks, explicitly on 𝑥1, 𝑥2, . . .,
𝑥𝑁−1 and implicitly, via these 𝑁 − 1 coordinates, on 𝑥𝑁 . However, it is not difficult to see that, in
the thermodynamic limit, this integral tends to a constant value which does not depend on all the 𝑁

coordinates. To see this, let us divide the infinite volume 𝑉 into, e.g.,
√
𝑁 equal subvolumes Δ𝑉𝑖 of size

𝑉/
√
𝑁 with 𝑁/

√
𝑁 =

√
𝑁 disks in each and the density 𝜌 =

√
𝑁/(𝑉/

√
𝑁) = 𝑁/𝑉 . The system of HDs

(and hard spheres) is not only ergodic, but possesses a mixing property [29–31] which implies in particular
that, although distributions of disks in different Δ𝑉𝑖 are the same, the actual arrangements of disks in
different Δ𝑉𝑖 are different. In other words, the disks arrangements in different infinite Δ𝑉𝑖 represent an
infinite number of different realizations of distributions of the same number of disks and density 𝑁/𝑉 in
the similar infinite size systems (both 𝑁/

√
𝑁 and 𝑉/

√
𝑁 are infinite). Then, it follows that the integral

𝑉𝑁 over the volume 𝑉 is the thermodynamic average over infinite ensemble of realizations, i.e., is a
constant 〈𝑉𝑁 〉𝑁 which depends only on the density 𝑁/𝑉 . By definition, 〈𝑉𝑁 〉𝑁 is the thermodynamic
limit of the free volume of a single disk in the equilibrium system of density 𝑁/𝑉 . Similarly, defining
the one-particle integral in the system of 𝑁 − 𝑁 ′ HDs, 0 6 𝑁 ′ 6 𝑁 − 1, we obtain the thermodynamic
limit 〈𝑉𝑁−𝑁 ′〉𝑁−𝑁 ′ of a single-particle free volume in the system of 𝑁 − 𝑁 ′ particles. Presenting the PF
in the “factorized” form and continuing this process, in the thermodynamic limit, we obtain the PF in the
following form:

𝑍𝑁 =

𝑁∏
𝑘=2

∫
𝑉

d𝑥𝑘 exp
(
− 1

2

𝑘−1∑︁
𝑖=1

𝑈𝑘𝑖

)
→ 〈𝑉𝑁 〉𝑁 〈𝑉𝑁−1〉𝑁−1 . . . 〈𝑉2〉2𝑉. (3.4)

This PF is the product of the average free volumes of a single particle in the equilibrium systems of
𝑁 , 𝑁 − 1, . . . HDs and is essentially different from the Speedy-Widom PF (3.2). The average free
volume 〈𝑉𝑁−𝑁 ′〉𝑁−𝑁 ′ comprises both the average private cell 〈𝑐𝑁−𝑁 ′〉𝑁−𝑁 ′ and the average cavity
〈𝐶𝑁−𝑁 ′〉𝑁−𝑁 ′ and both are obtained in the equilibrium system of 𝑁 − 𝑁 ′ HDs, i.e., not reduced by one.
The pressure can be computed as 𝑃𝑁 ∝ −𝜕 ln 𝑍𝑁/𝜕𝑉 = −𝑁𝜕 ln 𝑍𝑁/𝜕𝜌. To complete our task, in the
next section we connect the free volume 〈𝑉𝑁−𝑁 ′〉𝑁−𝑁 ′ with the multiple intersections of 𝑁 − 𝑁 ′ disks
of radius 𝜎 in the equilibrium system of the same number 𝑁 − 𝑁 ′ of disks.

4. Relationbetween single-disk free volumeand intersections of themul-
tiple disks

4.1. The total excluded and free volume for a single HD

The free volume of a disk in an 𝑁 disk system is the cavity left by the rest 𝑁 −1 disks. We see that the
practical definition of the free volume is related to removing 𝑁-th disk from the 𝑁 HD system to which it
belongs. However, as we showed above, dealing with such objects one should be careful. Therefore, it is
both convenient and essential to relate the expression for the free volume in a system of 𝑁 disks in terms
of the equilibrium system of this very number of disks 𝑁 . Moreover, the PF (3.4) makes this task crucial.

The formula (2.10) for the free volume of 𝑁-th disk in a system of 𝑁 disks is correct but inconvenient
because it is related to the reduced distribution function of 𝑁 − 1 disks which is highly nontrivial. Let
us consider instead directly the system of 𝑁 disks. Assume that center of disk 𝑁 is at 𝑥′ and let us find
the free volume for this disk. Above we noted that the division on cavity and private cell depends on 𝑥′

but their sum, which is what we actually need, does not. Our task is thus to find this sum in terms of
intersections of all 𝑁 disks. This sum is represented by the total white area in figure 1, i.e., the cavity
left by the rest 𝑁 − 1 disks, but in the 𝑁 disk system! The excluded area of points 𝑥𝑁 ∈ 𝑉 created by all
𝑁 disks,

⋃𝑁
𝑖=1 𝐵𝑖 , exceeds the excluded area due to the rest 𝑁 − 1 disks by the area of the 𝜎 circle 𝐵𝑁 ,

but without all its areas 𝐵𝑁 ∩ 𝐵𝑖 already covered by other 𝑁 − 1 disks (because these areas should not
be counted twice), figure 1. Thus, the single disk excluded volume 𝑉𝑁,excl, where 𝑥′ cannot enter, is the
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integral (2.12) over this inaccessible area:

𝑉𝑁,excl = `

( 𝑁⋃
𝑖=1

𝐵𝑖

)
− π𝜎2 + `

[ 𝑁−1⋃
𝑖=1

(𝐵𝑁 ∩ 𝐵𝑖)
]
. (4.1)

Making use of equation (2.10) and (2.11), one obtains the formula which expresses the free volume of a
single disk 𝑖0 in a system of 𝑁 HDs via multiple intersections of 𝑁 𝜎 circles:

𝑉𝑁 = 𝑉 −
[ 𝑁∑︁
𝑖=1

(
`𝑖 +

𝑁∑︁
𝑖> 𝑗

`𝑖 𝑗 −
𝑁∑︁

𝑖> 𝑗>𝑘

`𝑖 𝑗𝑘 +
𝑁∑︁

𝑖> 𝑗>𝑘>𝑙

`𝑖 𝑗𝑘𝑙 −
𝑁∑︁

𝑖> 𝑗>𝑘>𝑙>𝑚

`𝑖 𝑗𝑘𝑙𝑚

)
−
(
π𝜎2 −

∑︁
𝑖

`𝑖0𝑖 +
∑︁
𝑗>𝑘

`𝑖0 𝑗𝑘 −
∑︁
𝑗>𝑘>𝑙

`𝑖0 𝑗𝑘𝑙 +
∑︁

𝑗>𝑘>𝑙>𝑚

`𝑖0 𝑗𝑘𝑙𝑚

)
𝑖, 𝑗 ,𝑘,𝑙,𝑚≠𝑖0

]
. (4.2)

This formula shows that the total free volume for the disk 𝑖0 is equal to the cavity in the 𝑁 disk system
plus π𝜎2 minus the area of intersection of disk 𝑖0 with the rest 𝑁 − 1 disks. Both formulae (4.1) and (4.2)
do not refer to any system of 𝑁 − 1 HDs: the upper summation limit 𝑁 − 1 in the excluded volume in
the form (2.12) is replaced by 𝑁 , the second term in (4.1) also determines the intersection areas in the
𝑁 HD system as indicated by the presence of 𝐵𝑁 . In the thermodynamic limit, the above 𝑉𝑁 tends to
the constant 〈𝑉𝑁 〉 = lim𝑁,𝑉→∞𝑉𝑁 which is the function of 𝑁/𝑉 . It can be expressed in terms of the
following average values 𝑣𝑁,𝑛 which are different intersections of an individal 𝜎 circle averaged over all
𝜎 circles:

`𝑖 = π𝜎2,

1
𝑁

𝑁∑︁
𝑖=1

( 𝑁∑︁
𝑗≠𝑖

`𝑖 𝑗

)
= 𝑣𝑁2,

1
𝑁

𝑁∑︁
𝑖=1

( 𝑁∑︁
𝑗>𝑘

`𝑖 𝑗𝑘𝑁

)
𝑖≠ 𝑗 ,𝑘

= 𝑣𝑁3, (4.3)

1
𝑁

𝑁∑︁
𝑖=1

( 𝑁∑︁
𝑗>𝑘>𝑙

`𝑖 𝑗𝑘𝑙𝑁

)
𝑖≠ 𝑗 ,𝑘,𝑙

= 𝑣𝑁4,

1
𝑁

𝑁∑︁
𝑖=1

( 𝑁∑︁
𝑗>𝑘>𝑙>𝑚

`𝑖 𝑗𝑘𝑙𝑚

)
𝑖≠ 𝑗 ,𝑘,𝑙,𝑚

= 𝑣𝑁5,

where index 𝑁 indicates that the average is computed in an 𝑁 HD system and another index indicates
the number of intersecting 𝜎 circles. We remember that for a fixed 𝑖, the maximum number of terms in
the above sums is five so that the summations are actually not extensive. In terms of simulation results,
the procedure of finding 𝑣𝑁,𝑛 consists of computing all intersections of each disk with other 𝑛 − 1 𝜎

circles and then averaging over the results. It is essential that the areas of all intersections of our interest
are uniquely determined by the coordinates of the participating disks and can be computed analytically
making use of the formulae derived in [26–28]. The detailed computation of the intersection volumes
𝑣𝑁𝑛 in the densely packed triangular HD lattice is presented in section 5.

4.2. Extensive and intensive free volume terms: the cavity and the private cage cell

Separating the extensive and intensive terms in (4.2) in the context of (4.3), one finally obtains:

〈𝑉𝑁 〉 = 𝑉𝑁,exten +𝑉𝑁,inten, (4.4)

where
𝑉𝑁,exten = 〈𝐶𝑁 〉𝑁 = 𝑉 − 𝑁

(
π𝜎2 − 𝑣𝑁2/2 + 𝑣𝑁3/3 − 𝑣𝑁4/4 + 𝑣𝑁5/5

)
, (4.5)
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𝑉𝑁,inten = 〈𝑐𝑁 〉𝑁 = π𝜎2 − 𝑣𝑁2 + 𝑣𝑁3 − 𝑣𝑁4 + 𝑣𝑁5. (4.6)

The denominators in 𝑉𝑁,exten reflect the fact that in the sum over all disks, any intersection of 𝑛 circles
is counted 𝑛 times; at the same time, the intersections of a single circle in 𝑉𝑁,inten are counted only
once. The free volume contains two contributions, the extensive 𝑉𝑁,exten = 〈𝐶𝑁 〉𝑁 , which is the average
cavity volume in the 𝑁 HD system, and the intensive 𝑉𝑁,inten = 〈𝑐𝑁 〉𝑁 , which is the ensured volume
of a cell connected to or, better to say, containing a single HD. This cell of size 〈𝑐𝑁 〉𝑁 is available
for any single disk even if the cavity practically vanishes, which is the case of high densities. We say
practically because in an infinite system a fluctuation in the form of cavity, whatever small its probability
may be, must still exist. This situation is expected to be similar to that with the so-called windowlike
defects in a quasi-one-dimensional HD system [33]: in the thermodynamic limit, the probability to have
such a “window” in the crystalline zigzag vanishes only at the close packing [32–34]. Coming back to
our two-dimensional HD system, we see that at densities close to crystallization densities, the intensive
term, which is fully negligible at lower densities where cavity dominates, becomes the only source of
entropy. In that case, 〈𝑉𝑁 〉 is the volume of a cell, 〈𝑐𝑁 〉𝑁 , in which a single HD is caged by its neighbors.
Note that the size of this cell, equation (4.6), is determined not only by the next neighbors of the central
disk but also by next next neighbors that can contribute to the intersection if their centers are within
the 𝜎 circle of the central disk. Such intersections with the next and next next neighbors have been
taken into account, at a phenomenological level, in the cell models of the equation of state for HD
systems [22–25]. It is the size of this cell that was the main task of the cell models: the counterpart of
𝑉𝑁,inten was computed in configurations that were assumed to contribute the most (usually these were
the symmetric configurations related to the triangular lattice). Our formulae show the way to find the
cell size as thermodynamic average. Moreover, formulae (4.5) and (4.6) give the total free volume in an
𝑁 HD system so that a) the cavities and cells are not considered separately, b) they can be computed
directly from the coordinates of the disks even analytically, and c) only the original, the very same 𝑁 HD
system needs to be considered. Thus, the idea of both extensive and intensive free volume contributions
put forward by Hoover and Ree [22] and Hoover, Ashurst, and Grover [23] is embodied in our theory
unifying both terms in the framework of the intersection device of the disks first pointed out by Speedy
[11]. In the next section we present an example of analytical calculation of both 〈𝐶𝑁 〉 and 〈𝑐𝑁 〉𝑁 at a
densely packed triangular lattice which shows that the two terms in this state vanish as expected. This
demonstrates their independence and different status.

5. Vanishing of the cavity and intensive cell volume in a close packed
triangular lattice

Here, the procedure of counting and computing areas of all possible multiple intersections of the 𝜎

circles for a single disk and computing the cavity and cell volume is demonstrated for a close packed
triangular lattice which has a single configuration and does not need averaging. A fragment of this lattice
is shown in figure 2. Cores of the disks, which are in contact with each other, are filled and have radius
𝜎/2; the attached concentric 𝜎 circles of radius 𝜎 are shown by dashes (shown only for five disks).
The central disk 0 is shown along with its six next neighbors, 1, 2, 3, 4, 5, 6, and with its six next next
neighbors 7, 8, 9, 10, 11, 12; the distance of these next next neighbors to 0 is less than 𝜎 so that their
𝜎 circles can overlap with the central 𝜎 circle. The upper fragment with the five shown 𝜎 circles is
sufficient for establishing all the neighbor 𝜎 circles overlapping with the central circle because it is one
of the three similar fragments. No other disks in the lattice have their 𝜎 circles overlapping with 0 circle.
First we notice that no five circles intersect in this lattice. Next, for the circles indicated by dashes, we
find and list different 𝜎 pairs, 𝜎 triples, 𝜎 quadruples, which include 0 circle; then, we compute their
surface areas and count the total numbers of such different terms, and finally we use the formulae (4.6)
and (4.5).

Surface area of two disk intersection 𝑆2. There are six pairs of circles similar to 01 and six pairs
similar to 07, which gives for the total contribution of pairs 𝑆2 = 6𝑆01 + 6𝑆07. The 𝑆01 is the area 0216
bounded by circle 0 from above and circle 1 from below, its area is 𝑆01 = 2(π/3−

√
3/4)𝜎2; the area 𝑆07

is the lobe with the vertices 1 and 2, 𝑆07 = 2(π/6 −
√

3/4)𝜎2 : 𝑆2/𝜎2 = 6(π −
√

3).
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Figure 2. (Colour online) A fragment of triangular densely packed HD lattice. The core of the disks are
filled circles of the radius 𝜎/2. Five 𝜎 circles centered at 0, 2, 7, 12, and 6 are indicated by dashes. The
central disk 0 has next neighbors centered at 1, 2, 3, 4, 5, and 6, and next next neighbors centered at
7, 8, 9, 10, 11, and 12. 𝜎 circles of all disks in the lattice, which are not shown, do not overlap with the
𝜎 circle centered at 0.

Surface area of three disk intersection 𝑆3. Similarly, 𝑆3 = 6𝑆102 + 12𝑆017 + 6𝑆602 = 6𝑆102 + 18𝑆017
as 𝑆602 = 𝑆017. The area 𝑆102 is that of the curvilinear triangle 102, 𝑆102 = [

√
3/4 + 3(π/6 −

√
3/4)]𝜎2;

another triple area 𝑆017 is that of the lobe with the vertices 1 and 2, so that 𝑆017 = 𝑆07 = 2(π/6−
√

3/4)𝜎2 :
𝑆3/𝜎2 = −48

√
3/4 + 9π.

Surface area of four disk intersection 𝑆4. 𝑆4 = 6𝑆0216 + 6𝑆0172 = 12𝑆0216. Finally, the area 𝑆0216 is
the lobe with vertices 0 and 1 which is equal to 𝑆07, 𝑆0216 = 2(π/6 −

√
3/4)𝜎2 : 𝑆4 = 4π − 6

√
3.

Now we are ready to compute the close packing values of the intensive cell volume 𝑐𝑐𝑝 = 𝑉𝑐𝑝,int and
the cavity 𝐶𝑐𝑝 = 𝑉 −𝑉𝑐𝑝,ext using the formulae (4.6) and (4.5). Substituting the above values of 𝑆𝑛, one
finds:

𝑐𝑐𝑝/𝜎2 = π −
[
6(π −

√
3) − (9π − 48

√
3/4) + 4π − 6

√
3
]
= 0. (5.1)

The cavity is extensive and, in order to deal with the size independent quantities, we divide 𝑉 − 𝑉𝑁,exten
by 𝑁𝜎2. The expression 𝑉/𝑁𝜎2 = π/(4[𝑐𝑝), where [𝑐𝑝 = 𝑁π𝜎2/4𝑉 is the packing fraction at close
packing, [𝑐𝑝 = π/2

√
3. Substituting the above values of 𝑆𝑛 in 𝑉𝑝𝑐,exten one gets:

𝐶𝑐𝑝/𝑁𝜎2 = π/4[𝑐𝑝 − π + π −
√

3/2 = 0. (5.2)

It is essential that not only the total free volume, but both intensive and extensive free volumes vanish
separately which shows their functional independence. It is also important to realize that, as evident from
figure 2, a small increase in the separation of the disks will result in a nonzero intensive 𝑐 whereas the
extensive 𝐶 will remain zero until, at some density, which might be close to that of crystallization, it
will start to grow. As each factor in the PF 𝑍𝑁 (3.4) corresponds to a different density (𝑁 − 𝑁 ′)/𝑉 , this
point will be appearing consequentially in the factors 〈𝑉𝑁−𝑁 ′〉 with progressively lower 𝑁 − 𝑁 ′. Can
this process cause a discontinuity of 𝑍𝑁? This is one of the questions the method presented in this paper
is expected to answer.
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6. Concluding remarks

Preliminary results for the free volumes and entropy of a two-dimensional HD system, calculated
by the formulae of this paper, were recently obtained from a molecular dynamics simulation [35]. The
results show robustness of this method and its capability of picking the main peculiarities of the phase
behavior of a two-dimensional HD system. The work is in progress.

In conclusion we would like to speculate about possible implication of the results obtained in this
paper for an analytical approach. Our results show that the entropy can be computed provided the four
functions of the system density 𝜌 are known, i.e., 𝑣𝑁2(𝜌), 𝑣𝑁3(𝜌), 𝑣𝑁4(𝜌), and 𝑣𝑁5(𝜌). The simulations
can give us an idea about these 𝜌 dependences which can advance our “analytical” understanding of
the two-dimensional HD system. The formulae obtained in this paper are equally applicable for a three-
dimensional system of hard spheres. The main difference is that, in the last case, the computations are
expected to be much more extensive because one will need to deal with the intersection of up to eleven
𝜎 spheres allowed without their hard core overlap.
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Об’єднання iнтенсивного i екстенсивного внескiв в ентропiю
твердих дискiв в теорiї перетину дискiв

В. М. Пергаменщик12
1 Iнститут фiзики, Нацiональна Академiя Наук України, просп. Науки, 46, Київ 03039
2 Центр теоретичної фiзики, Польська академiя наук, алея Авiаторiв 32/46, 02-668, Варшава, Польща
(теперiшня адреса)

Одночастинковий вiльний об’єм,що визначає ентропiю системи твердих дискiв, має екстенсивну та iнтен-
сивну компоненти. Поки що цi компоненти так i не було об’єднано i їх розглядають окремо. Представлена
теорiя об’єднує обидва члени i показує, що їхня сума визначає статистичну суму. Пiдхiд ґрунтується на
методi перетинiв багатьох кругiв, якi є концентричними з дисками, але мають удвiчi бiльший радiус. Ре-
зультатом є формули для екстенсивної та iнтенсивної компонент ентропiї, вираженi через перетини лише
двох, трьох, чотирьох, та п’ятьох кругiв. Цей результат має важливу перевагу для застосування в чисель-
ному модулюваннi: формули дозволяють конвертувати координати дискiв безпосередньо в ентропiйний
член без будь-яких додаткових геометричних конструкцiй. Теорiю можна безпосередньо застосувати до
системи твердих сфер.

Ключовi слова: твердi диски, вiльний об’єм, статистична сума, перетини
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