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We relate the the Kubelka-Munk equations for the description of the intensity transfer of light in turbid media to
a one-dimensional diffusion equation, which is obtained by averaging the three-dimensional diffusion equation
over the lateral directions. This enables us to identify uniquely the Kubelka-Munk parameters and derive ex-
pressions for diffuse reflection and transmission coefficients including the effect of internal reflections. Without
internal reflections we recover the Kubelka-Munk formulae for these coefficients. We show that the Kubelka-
Munk equations are the proper radiative-transfer equations for the one-dimensional diffusion problem.
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1. Introduction

Investigating the reflectance and transmission of turbid media is a widely-used tool for materials
characterization with applications ranging from soil science, over medicine, the production of paper and
paint, to the design of laser car headlights [[1H5]. In the analysis of the observed spectra the theory of diffuse
reflectance and transmissance of Kubelka and Munk [6H8]], has been widely used. The microscopical
significance of the phenomenological parameters S and K appearing in this theory was discussed in many
treatments [[1, OH18]], but with differing results for these coefficients.

Here we show that for a geometry of rectangular incidence onto a turbid material, in which the
scattering is strong enough to lead to diffusive motion of the light intensity, the Kubelka-Munk equations
are equivalent to the one-dimensional projection of the 3-dimensional diffusion equation of the light
intensity in the medium. This is done in the second section. In the third section we derive expressions
for the diffuse reflectance and transmission coefficients, including the effect of internal reflection. The
standard Kubelka-Munk results without internal reflection [6l [7] are recovered. In the fourth section
we show that the Kubelka-Munk equations are, in fact, the proper radiative-transfer equations for the
quasi-onedimensional scattering problem. In the fifth section some conclusions are drawn.

2. Diffusion and Kubelka-Munk equations

In the diffusion approximation [9} [19] the light intensity U(r) and the current density j(r) obey the
steady-state energy-balance and Fick equations

Vj(r) = -2,U(r)+J(r),
1,
VU(r) = -=j(r), (H
D
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which are equivalent to the (steady-state) diffusion equation
A,U(r) = DV*U(r) + J (x). )
Here, J (r) is a source term.
The quantity D, which is the diffusivity divided by the light velocity in the materiav = c/n is given

by [20] |

- 3
Aa +34; )
A4, s and A, are the inverse mean free paths due to absorption, scattering and transport. The latter two
are related as

D=D/v=

A = A5(1 = (cos y)), 4)

where v is the scattering angle and (cos y) is the anisotropy parameter.
The relation of the diffusivity to the absorption parameter A,, equation (3) had been subject to a
dispute in the literature. It was argued [21H23] that the time-dependent diffusion equation?|

9 _
(a_ + /la)U(r, ) =DV*U(r,7) + J(x), Q)
-
with a diffusivity that depends on A,, violates the scaling property, obeyed by the radiative transfer
equation, that the solution of the equation in the presence of absorption should be of the form

U(r,7) = e "Uy(r, 1), 6)

where Uy(r, 7) is the solution of the equation with 1, = 0. Therefore, it was argued in [21H23]] that
the diffusivity should not depend on the absorptivity A,. The counter argument is that the proper
generalization of the steady-state diffusion equation (2) is nor equation (3)), but a damped telegrapher’s
equation [[19} 20], which obeys the proper scaling. However, this equation should reduce to the wave
equation of light for short times [20]. This condition enforces the form (@B of the diffusivity, rather than
the form D = [3(A, + ;)] ! according to the conventional literature (e.g. [9]). We repeat Durian’s [20]
argument in the Appendix.

Let us now consider the geometry of a diffusive-reflection (or -transmission) setup with uniform
illumination, i.e., an incoming plane wave in the z direction onto a sample with surface at the z = 0 plane,
thickness 7 in z direction and a large incidence area A — oo in (x, y) direction (see figure|[I).

Instead of considering a three-dimensional diffusion problem, in which the the material parameters are
assumed to depend only on the z direction, as usually done [9} 24], we consider the photon density U(z),
photon current j(z), and source function 7 (z), averaged over the lateral (x, y) directions:

_ 1 - 1 )
00 = 4 |awom. o= [ awie.
A A
- 1
I@ = 5| wwrm. )
A
It is evident that these quantities obey the following (quasi-) one-dimensional equations
0 - - -
5./ = U@+ I (),
Z
0 - .
8_U(Z) = —=j(2), 3
Z
which lead to the one-dimensional diffusion equation
_ ~ 4% _ -
AaU(2) = D——U(2) + J (2). €))
0z

Ic is the light velocity and # is the index of refraction.
27 = vt is the velocity-scaled time.
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Figure 1. (Colour online) Geometry for the discussion of diffuse reflectance and transmission with uniform
illumination (plane-wave incidence). We consider a slab of thickness ¢, which is infinitely extended in x

and y direction.

Defining now the incoming and outgoing currents as

1.(2) = 2 [0() £ 7).
2

we obtain from the diffusion equations (8] the Kubelka-Munk equations

0
((3_2 +K)I+(Z)

0
(— a—z + K)I_(Z)

with

equation (I2)) can also be written as

3. Derivation of reflectance and transmission coefficients

1
D

= —S(I(2) - 1-(2)) + T (2)s

= =S(I-(2) - .(2)) + T (2)s

=K +28S.

Instead of solving equations (TT)) we solve the diffusion equation (©).
The general solution of the homogeneous diffusion equation [setting . = 0 in equation @)] is

U(z) = Ae®™ + Be™ %,

with the inverse diffusion length

@ =+/K/D = K(K +285).

From the solution (14) we get the incoming and outgoing currents [25] [26]

1.(z) =

N —

with

[A(1 ¥ B)e® + B(1+p)e” %],

§ = Da = VKD = yEJ(K+25).

(10)

(1D

(12)

(13)

(14)

(15)

(16)

a7
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3.1. Optically thick samples
3.1.1. Noreflectionatz =0

The appropriate boundary conditions corresponding to optically thick samples without reflection at
z =0 are as follows:

L,(0) =0y,  I.(co)=0. (18)

The second boundary condition implies A = 0. The incoming and outgoing currents are therefore as
follows:

I.(z) = %B(l + B)e” 9%, (19)

From the first boundary condition we obtain

-2
B=Uy——, 20
T35 (20)
from which we obtain the incoming current at z = 0
- 1-B
1-(0) =U 21
0) =Uo17 3 21
and hence the reflectivity
I1_(0 1-
- O _1-5 22)
1L(0) 1+p
For the Kubelka-Munk function we obtain, using equation (12)
S 1|{1+Rs)’ 2R 3
K 2{\1-Rs (1-R)? 22,
3.1.2. Reflectionatz =0
The first boundary condition is now
1,.(0) = Ug + RoI_(0), (24)
where Ry is the reflectivity at the z = 0 boundary. Inserting the expressions for 1..(0) we get
2 1.(0)=B=R 2 1.(0) = 2 Uo+ RoRwB (25)
(Y- T I I R
from which it follows
1+ 1
B= . 26
2 VT RoRa (26)
The current in reverse direction is given by
I =(1-Ro)I-(0) 27)
and hence
1 1-R
R=—I_ = Ro——. (28)
Uy 1 - RypR
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3.2. Optically thin samples

For optically thin samples with reflectivity R; at the back (z = t) of the sample and Reflectivity Ry at

the front (z = 0) of the sample we have the boundary conditions

1.(0) = Uy + RoI-(0), 1-(1) = R 1:(2).

(29)

Using the definition of R.., equation (22), we get from the boundary conditions a linear set of equations

for the coefficients A and B

2 2 - 2 -
1.(0) =RoA+B=——|Uy+ RplI-(0)| = ——=Up + Ryp|A + BR |,
1+ﬁ+() + 1+,3[0+0 0)] T3 0+ Ro[A+ |
which can be put into the form
Re — Ry 1 — RwRy A\_J ﬁ[fo
(I_RooRl)e(n (Roo_Rl)eiat B - ,8 0 ’

The determinant of the coefficient matrix is
D = (Reo — Rp)(Roo — R1)e™™ — (1 = RwRo)(1 — RR1)e™.

Thus, we get from Kramer’s rule

Uy 2
A= —O—e_‘”(Roo -Ry),
D1+p
U, 2
B=-=2 e (1 - R1Rw).
D1+p
We obtain for the currents at z = 0 and at z = ¢:
1+ Uy

1_(0) = T[A +RoB] = 3[e—f”(Roo —R1) = Reoe™ (1 - RiR)],

L(1) = # [RewAe® + Be™ | = % [R%, -1].

from which we ge the reflectivity R

I I1-(0
RZ_—Z(I—RO) —()
Uy Uy
(1 —RwRy)) —e (1 -R|/Rs
~ (1= Ro)Re e ( 1) —e”( 1/Re)

(1 = RoRo)(1 — RwR1)e® — (Re — Ry)(Reo — Ry)e™
and the transmittivity 7

L) _ - R,

T — = .
Uy (1 — RooRo)(l - RooRl)e‘” - (Roo - R())(Roo - Rl)e“”

Introducing the Kubelka-Munk parameters

1({1 1({1
Q—E(E+Rm), b—C},’/S—E(K—Ro@),

we get
Ribcosh(at)Rib + (1 — Rya) sinh at

b(1 - RoRy) coshat + [a(1 = RoR1) — Ry — Ry sinhat’

R =(1-Ro)

(30)

€1V

(32)

(33)

(34)

(35)

(36)

(37

(38)

(39)

(40)
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T = b - . 41)
b(1 = RoR;) cosh at + [a(l — RoRy) — Ry — Rl] sinh at
If we set Ry = 0, we get the formulae of Kubelka [7]]
1—-Rya+ Ribcothat

R = 42
a— R; +bcothat (42)

and b
(43)

~ bcoshat + (a — Ry)sinhat’

For Ry = R; = 0 we get the standard Kubelka-Munk formulae [7, 25! 26], which do not contain the effect
of internal reflections.

R e ye B sinh at 44)
- e‘”i—e’mR ~ asinhat + bcoshat’
! R
re— R 7 b (45)
B e‘”i _evip ~ asinhat +bcoshat’
R ®
Another interesting limit is that of very small R, i.e., Rec — O:
R Rle—a/t ~ Rle—Z(n (46)
T ear — RoRie~ T - R()R]efzat,
1 —at
T= = (47)

e — RyRje~ ! 1- R()R]e_z‘” ’

4. Kubelka-Munk equations as one-dimensional radiative-transfer equa-
tions

We now want to demonstrate that the Kubelka-Munk equations (IT]) are the proper radiadive-transfer
equations for the diffuse-reflection geometry depicted in figure[T}
We recall the three-dimensional radiative transfer equations of the light intensity in a turbid medium

[1q+s-V]I(r,s) = —qus/(l(r,s)—l(r,s’))

4 I(r,8) + ) g (r,8), (48)
s/

I(r, s) is the distribution density of light rays passing through r with the direction s = k/k, where k is
the wave vector. gs = | f(s,s’)|? is the phase function, i.e., the scattering cross-section from s to s’ with
f (s, s”) being the corresponding amplitude. } o is an integral over the entire solid angle, with the original
direction s being excluded. The second line of equation (#8)) is obtained from the sum rule

Z gss = Z gss = As. (49)
s’ s’

The three-dimensional diffusion equations (1)) and (2)) are obtained from equation by expanding
the angle dependence of I(r,s) and ¢(s, sh’) = g(s-s’) = g(cosvy) in terms of Legendre polynomials
and stop after the 1st term (P1 approximation) and then integrating s over the total solid angle [9, [24].

The two terms of the three-dimensional /(r, s) in P1 approximation are [9} [19]]:

I(r,s) = A3pU(r) + Bsps - j(r) (50)
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with

Uy = Y I(rs),  jr)= ) sirs),
S S

A ! 1/4 B ! 3/4

3D T T T T, 3D = = .
2s 2sS- S
The corresponding expression in one dimension is
I(x,s) = AipU(x) + Bips - j(x), (51)

with Ajp = Bjp = 1/ Z = 1/2, which is just equation ll Since we have shown in the beginning that

the diffusion equatlons (9) are equivalent to the Kubelka-Munk equations (TI) we conclude that the P1
approximation, and hence the diffusion approximation in one dimension is exact. This has already been
pointed out in [19] 27].

Thus, we can state that the Kubelka-Munk equations (IT)) are (i) identical to the three-dimensional
diffusion equation, averaged over the lateral dimensions, and (i7) are the proper radiative-transfer equations
for the one-dimensional diffuse-reflection problem.

5. Conclusion

We have shown that the Kubelka-Munk equations are identical to the one-dimensional diffusion
equation, which is obtained by averaging the three-dimensional diffusion equation with respect to the
lateral directions. We obtain as Kubelka-Munk parameters K = 1, (absorptive inverse scattering length)
and S = %/lt = %/ls(l — {cosy)), where A; and A, are the transport and scattering inverse scattering
lengths, and {cosy) is the anisotropy parameter. Using the 1D diffusion equation we have derived the
formulae for a diffuse reflection and transmission, which includes possible internal reflections. In the
absence of internal reflections these expressions reduce to those given by Kubelka and Munk. We have
demonstrated that the Kubelka-Munk equations are the appropriate radiative transfer equations for the
reflection problem with plane-wave incidence (uniform illumination).
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Appendix. Diffusion and the telegrapher’s equation

If we include the time dependence, the P1-approximated radiative-transfer equations do not give a
diffusion equation, but instead a telegrapher’s equation [19]]. This equation preserves the 1, — 7 scaling
of the solution U(r, 1)

U(r,7) = e *"Uy(r, 1), (A.1)

where Up(r, 7) is the solution in the absence of absorption.
Durian [20] showed that the most general form of a telegrapher’s equation, which preserves this
scaling is

2

SQ%U(L ) +3(A +ady) aiU(r, 7) +324 (A +@da)U(r, 1) = V2U(r, 7). (A.2)
T T

In the steady state, the usual steady-state diffusion equation (with still unspecified prefactor a of 4,)
is obtained. It can be easily checked that equation (A.2)) fulfils the 1, — 7 scaling for any value of a.
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Durian [20]] now argues that for small times, which describes the initial spreading of a point source, the

proper wave equation
62
ﬁu(r, 7) = V2U(r, 1) (A.3)

must be recovered. This enforces the value of @ = 3, and hence a diffusivity of the form of equation .

1
3
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Diffusion of light in turbid media with internal reflections

Andysia cBiTNa B MYTHUX cepeAoBULLLAX 3 BHYTPiLUHIMU
Big6MBaHHAMMN

B. UJMpmaxepm, AX. PyOKKom

L IHcTUTYT Qisnkn, CtayaiHrep Ber 7, YHiBepcuteT MaiiHua, D-55099 MaiiHu, HimeyumnHa

2 LleHTp HaHOTexHonorin CanieHua, ITaniicbknii TexHonoriyHmiA iHcTuTyT, 295 Npocn. Koponeswu EneHu, 1-00161,
Pum, Itanis

3 disnuHmit dakynbTeT, PMcbkuin YHiBepcuteT “Nla CanieHua”, Anbao Mopo 5, 1-00185, Puwm, Itanis

BctaHOBNEHO CNiBBiAHOLLEHHS MiX PiBHAHHAM Kybenkun-MyHKa Ans onvcy iHTeHCMBHOCTI NOLUMPeHHS CBiTha B
MYTHUX Cepef0BU1LLAX Ta PIBHAHHAM OAHOBUMIPHOT AndYs3ii, iKe OTPUMaHO LUASXOM ycepeAHeHHS TPMBUMipHO-
ro piBHAHHA Andys3ii 33 nonepeyHUMMN HanpsaMKamu. Lie gae HaM MOXAMBICTb O4HO3HAYHO 3HaMTV NapameTpu
Kybenku-MyHka Ta BrBeCT\ BUpasn N5 KoediLieHTiB Andy3iliHOro BiAb1BaHHS Ta MPONyCkaHHA 3 BpaxyBaHHAM
BN/IMBY BHYTPILLHIX BiOMBaHb. 3a BiACYyTHOCTI BHYTPILLHIX BiA6VBaHb OTpUMYLOTbCA popMmynun Kybenkn-MyHka
A5 umx KoediuieHTiB. MokasaHo, Wo cniBBigHOWeHHsA Kybenku-MyHka € BNacTMBUMY PiBHSHHSIMUW BUMPOMi-
HIOBANbHOrO MepeHocy ANA 3ajadi Npo 0AHOBMMIPHY Andysito.

KnouoBi cnoBa: gugysis, MyTHi cepesoBuLya, PiBHAHHS NepeHocy
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