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Structural transition induced by a local conformational change in biomolecules is formulated based on the gen-
eralized Langevin theory for the structural fluctuation of a molecule in solution, and the linear response theory,
derived by Kim and Hirata in 2012. A chemical/mechanical change introduced at a moiety of biomolecules, such
as an amino acid substitution or a structural change of a chromophore by the photo-excitation, is considered
as a perturbation, and the rest of the protein as the reference system. The linear-response equation consists of
two parts: a mechanical/chemical perturbation introduced at the moiety, and the variance-covariance matrix of
the reference system that works as a response function. The physical meaning of the equation is transparent:
the force exerted by atoms in the moiety induces the displacement in an atom of protein, which propagates
through the variance-covariance matrix to cause a global conformational change in the molecule. A few exam-
ples of possible application of the theory, including those in industry, are suggested.
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1. Introduction

It is a ubiquitous process in a biomolecule that a local perturbation of the structure, chemical or/and
mechanical, induces a global conformational change of the molecule. The conformational change so
induced affects the activity which biomolecules play in a variety of life phenomena [1, 2].

One of such processes is seen in the biosynthesis in a bacterium in which a structural change of the
retinal moiety bound at a residue of bacteriorhodopsin from “cis” to “trans” triggers a conformational
change in the host molecule, which in turn induces successive chemical reactions including the charge
transfer at the photoactive center [1].

Another example of such conformational changes induced by a local chemical-perturbation is seen
in the mutation or amino acid substitution of a protein, that induces a change in the global structure,
which in turn causes acquisition or loss in activity of the biomolecule. Since the microorganism uses the
mutation to survive against a drug, it is important to find the conformational change of target protein,
induced by the amino acid substitution, as soon as possible [1, 3].

The purpose of the present paper is to provide a theoretical framework to predict the global confor-
mational change of a biomolecule, induced by a chemical or/and mechanical perturbation introduced at a
moiety of the molecule, by means of the generalized Langevin theory (GLT) of the structural fluctuation
of a biomolecule, or the Kim–Hirata theory, combined with the statistical mechanics theory of molecular
liquids, or RISM/3D-RISM theory [4, 5].

In 2013, Kim and Hirata published a paper [4], based on the generalized Langevin theory, that
concerns a theoretical characterization of the structural fluctuation of a protein in solution. The most
important conclusion the authors extracted from the theoretical results is that the force to restore the
equilibrium conformation is proportional to the displacement vector, or fluctuation, of atoms in protein,
just akin to a harmonic oscillator. The result is equivalent to say that the probability distribution of the
conformational fluctuation is Gaussian. Therefore, the conformational fluctuation of protein in solution
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can be identified as a composite of many Gaussian-distributions with different variances, which are
hierarchically ordered [4, 5].

A direct experimental evidence that the structural fluctuation of protein is Gaussian can be seen in
the so-called Guinier plot of protein, in which the intensity of the small angle X-ray scattering (SAXS)
is plotted against the square of wave number, 𝑄2 [6]. As it has been observed by Kataoka et al., the plot
shows a linear behavior for a variety of conformations of protein, including native, denatured, molten
globule, and so on, in the low wave vector region [7]. The behavior indicates unambiguously that the
distribution of the conformational fluctuation of protein is Gaussian no matter what the structure is.
Of course, the plot deviates from the straight line as the wave number increases, but it just reflects the
hierarchical ordering of the modes, or the variance of a Gaussian distribution, which becomes less as the
wave number 𝑄 becomes greater [5, 7].

The Gaussian behavior of the structural fluctuation of protein in solution is also verified by the
molecular-dynamics simulation combined with the RISM/3D-RISM method, carried out by Chong and
Ham [8, 9]. In the study, the authors calculated the solvation free energy by means of the RISM/3D-RISM
theory for each snapshot of the molecular dynamics trajectory, and found that the free energy including
both the direct interactions among atoms in protein and the solvation free energy forms the Gaussian
distribution, while the direct interaction by itself does not produce such distribution [8].

It is a rational strategy in the statistical mechanics theory to apply the linear response theory, developed
by Kubo, to such a system in which the fluctuational response is proportional to a perturbation [5, 10, 11].
In the same JCP paper in 2013, Kim and Hirata derived an equation of the linear response theory for the
conformational change of a protein in water induced by a perturbation. The equation is in accord with that
derived earlier by Ikeguchi et al. through an alternative route [4, 12]. The theory was applied to formulate
the conformational change of protein induced by a thermodynamic perturbation such as pressure [13].

In the present study, the author employs the linear response theory for the conformational change of
a biomolecules, induced by a mechanical/chemical perturbation introduced at a moiety of the molecule.
In what follows, the Kim–Hirata theory including the linear response theory is briefly reviewed, and is
applied to the structural transition induced by a local conformational change in biomolecules.

2. Theory

2.1. Brief review of the Kim-Hirata theory

The Kim–Hirata theory [4] begins with the Liouville equation which describes the time evolution of
dynamic variables A(𝑡) in the phase space,

dA(𝑡)
d𝑡

= i𝐿A(𝑡). (1)

In the equation, the vector A(𝑡) is defined by,

A(𝑡) ≡
©«

ΔR𝛼 (𝑡)
P𝛼 (𝑡)

𝛿𝜌𝑎 (r, 𝑡)
J𝑎 (r, 𝑡)

ª®®®¬ , (2)

where the Greek subscript 𝛼 and the Roman subscript 𝑎 denote atoms in protein and solvent molecules,
respectively. The variables ΔR𝛼 (𝑡) and P𝛼 (𝑡) represent the structural fluctuation of protein, and its
conjugate momentum, while 𝛿𝜌𝑎 (r, 𝑡), and J𝑎 (r, 𝑡) are the density fluctuation of solvent around protein
and its momentum or the flux, defined by,

ΔR𝛼 (𝑡) ≡ R𝛼 (𝑡) − ⟨R𝛼⟩ , P𝛼 (𝑡) ≡ 𝑀𝛼

dΔR𝛼

d𝑡
, (3)

𝛿𝜌𝑎 (r, 𝑡) ≡
∑︁
𝑖

𝛿(r − r𝑎𝑖 (𝑡)) − ⟨𝜌𝑎⟩ , J𝑎 (r, 𝑡) ≡
∑︁
𝑖

p𝑎
𝑖 𝛿(r − r𝑎𝑖 ), (4)
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where ⟨· · · ⟩ denote an ensemble average of the variables.
Following the recipe of the generalized Langevin theory (GLT), Kim and Hirata projected all the

mechanical variables in the phase space onto A(𝑡) to derive essentially two GLEs for the time evolution of
the dynamic variables, one for the dynamics of a biomolecule, the other for that of solvent [4, 5, 11, 14].
Here, we just focus on that relevant to the structural fluctuation of a solute molecule, which leads,

𝑀𝛼

d2ΔR𝛼 (𝑡)
d𝑡2

= −
∑︁
𝛽

𝐴𝛼𝛽ΔR𝛽 (𝑡) −
𝑡∫

0

d𝑠
∑︁
Γ𝛼𝛽

(𝑡 − 𝑠) · dΔR𝛼 (𝑠)
d𝑠

+𝑊𝛼 (𝑡), (5)

where the second and third terms in the right-hand-side represent the frictional force exerted by solvent
and the random force due to the thermal agitation, which are related with each other by the fluctuation
dissipation theorem. (Here, details of the expressions concerning the two terms are entirely skipped.)

It is the first term on which we focus in the present paper, which looks like that of a harmonic oscillator:
the restoring force is proportional to the displacement of atoms from their equilibrium positions, or to the
structural fluctuation. In this respect, the equation is formally equivalent to that of a dumped harmonic
oscillator in a viscus fluid. By neglecting the second and third terms of equation (5), one finds an equation
analogous to stationary dynamics of a harmonic oscillator,

𝑀𝛼

d2ΔR𝛼 (𝑡)
d𝑡2

= −
∑︁
𝛽

𝐴𝛼𝛽ΔR𝛽 (𝑡). (6)

In the equation, the characteristic or intrinsic frequency 𝐴𝛼𝛽 is related to (𝛼, 𝛽)-element of the inverse
of matrix L by

𝐴𝛼𝛽 = 𝑘𝐵𝑇

(
L−1

)
𝛼𝛽

, (7)

where L is the variance-covariance matrix of the structural fluctuation of the biomolecule, defined as,

L ≡ ⟨ΔRΔR⟩ . (8)

The form of equation (6) indicates that the energy surface to originate the restoring force is quadratic in
the displacement vector or fluctuation, and the probability distribution of the fluctuation is Gaussian, the
variance-covariance matrix of which is L defined by equation (8).

At this point, some readers may raise the following questions. Why the free energy surface of
the protein in water can possibly be quadratic? What is the capability of probability distribution of the
structural fluctuation to become Gaussian? The quick answer to the question is: because it is a consequence
of the central limiting theorem [5, 15, 16]. Of course, the potential energy surface of protein in water
itself is never quadratic. As is seen in any computer-program of the molecular dynamics simulation,
the interactions among atoms in protein as well as those with water molecules involve non-harmonic
interactions, including the Lennard-Jones as well as Coulomb interactions. For such systems, the potential
energy surface becomes strictly harmonic only when the system is cooled down to the global minimum.
That is the essential requirement for the normal mode analysis (NMA) carried out earlier by several
authors [17, 18].

On the other hand, the protein structure in the thermal equilibrium is in the minimum of the free
energy surface by definition, that consists of the interaction energy among atoms in protein and the
solvation free energy, that is,

𝐹 ({R}) = 𝑈 ({R}) + Δ` ({R}) , (9)
where {R} represents a set of coordinates of atoms in a biomolecule, and𝑈 andΔ` denote the intramolec-
ular interaction energy of the biomolecule and the solvation free energy, respectively [5]. Although it is
not explicitly expressed, the quantity is a function of the solvent coordinates, the degrees of freedom of
which are infinitely large. It is well regarded in the statistical mechanics that the fluctuation of such a
system consisting of an infinite degrees of freedom strictly satisfies the central limiting theorem, and that
the probability distribution of the fluctuation becomes Gaussian [5, 15, 16]

𝑤conf ({ΔR}) =
√︄

𝐴

(2π)3𝑁 exp

[
−1

2

∑︁
𝛼

∑︁
𝛽

𝐴𝛼𝛽ΔR𝛼ΔR𝛽

]
. (10)
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Based on the logical entailment, Kim and Hirata proposed an ansatz that plays a crucial role for further
developing the theory [4]. The ansatz is to equate the force constant 𝐴𝛼𝛽 of the restoring force acting
on protein atoms, or the inverse of the variance-covariance matrix, to the second derivative of the free
energy surface of a protein molecule in solution. That is,

𝐴𝛼𝛽 =
𝜕2𝐹 ({R})
𝜕ΔR𝛼𝜕ΔR𝛽

. (11)

Since it is possible to calculate the solvation free energy 𝐹 ({ΔR}) by means of the RISM/3D-RISM
theory, the ansatz makes feasible the calculation of the force constant in solution. The ansatz has a
mathematical isomorphism with the ordinary force constant 𝑘𝛼𝛽 in the harmonic oscillator, which is
defined by,

𝑘𝛼𝛽 =
𝜕2𝑈 ({R})
𝜕ΔR𝛼𝜕ΔR𝛽

, (12)

where 𝑈 ({R}) is the interaction energy among atoms in the molecule.
The expression (11) for the force constant is quite useful to construct a linear response theory to

describe conformational changes of a biomolecule, induced by some perturbation applied to the system.
The equation (11) suggests that the free energy of protein at equilibrium is expressed in the following

form:
𝐹 ({R}) = 1

2

∑︁
𝛼𝛽

ΔR𝛼𝐴𝛼𝛽ΔR𝛽 . (13)

Let us apply a perturbation to the system,

𝐹 ({R}) = 1
2

∑︁
𝛼𝛽

ΔR𝛼𝐴𝛼𝛽ΔR𝛽 +
∑︁
𝛼

ΔR𝛼 · f𝛼, (14)

where f𝛼 is the perturbation acting on the atom 𝛼 of the molecule.The conformational change induced
by the perturbation can be derived by the variational principle,

𝜕𝐹 ({R})
𝜕ΔR𝛽

= 0, (15)

which leads
⟨ΔR𝛼⟩1 =

1
𝑘𝐵𝑇

∑︁
𝛽

〈
ΔR𝛼ΔR𝛽

〉
0 · f𝛽 . (16)

2.2. Structural transition induced by a local conformational change in biomolecules

The present section is devoted to the formulation of the theory to describe the structural change of a
biomolecule induced by a local conformational change, such as the photo-excitation of a chromophore,
and the substitution of an amino acid, based on the linear response theory described in the preceding
section. For that purpose, the potential energy 𝑈 of the biomolecule in equation (9) is decomposed into
the three contributions as follows,

𝑈 ({R}) = 𝑈𝑟 ({R}𝑟 ) +𝑈𝑚 ({R}𝑚) +𝑈𝑟𝑚 ({R}𝑟 , {R}𝑚) , (17)

where, {R}𝑚 and {R}𝑟 represent a set of coordinates of atoms in the moiety and that of reference protein
without the moiety, respectively, 𝑈𝑚 and 𝑈𝑟 denote the potential energy of the respective portion of the
protein, and 𝑈𝑟𝑚 denotes interactions of atoms between the two portions.

Now, we make a thought experiment in which only the moiety portion of the entire biomolecule is
replaced by a new one. The difference in the potential energy before and after the replacement may be
written as,

Δ𝑈 ({R}) = Δ𝑈𝑚 ({R}𝑚) + Δ𝑈𝑟𝑚 ({R}𝑟 , {R}𝑚) , (18)
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Figure 1. (Colour online) Schematic picture of the reaction: the quadratic curves depict the free energy
surface of reactant and product, and Δ𝑈 ({R}) represents the perturbation defined by equation (18).

where Δ𝑈𝑚 and Δ𝑈𝑟𝑚 are the change in potential energy among atoms in the moiety and that between
the moiety and the reference protein, respectively.

The expression for the perturbation can be obtained by substituting Δ𝑈 into equation (16) as,

f𝛽 = −𝜕Δ𝑈

𝜕R𝛽

= −𝜕Δ𝑈𝑟𝑚 ({R}𝑟 , {R}𝑚)
𝜕R𝛽

, (19)

where R𝛽 denotes the coordinate of an atom in the reference system, and Δ𝑈𝑟𝑚 is the difference between
the interaction energy between atoms in the reference protein and those in the moiety before and after
the moiety is modified. It should be noted that the derivative of 𝑈𝑚 disappeared, because it is irrelevant
to the coordinate of the atom 𝛽 in the reference protein.

By substituting equation (19) into equation (16), one finds,

⟨ΔR𝛼⟩1 =
1

𝑘𝐵𝑇

∑︁
𝛽

〈
ΔR𝛼ΔR𝛽

〉
0 ·

(
−𝜕Δ𝑈𝑟𝑚 ({R}𝑟 , {R}𝑚)

𝜕R𝛽

)
, (20)

in which
〈
ΔR𝛼ΔR𝛽

〉
0 is the variance-covariance matrix of the reference system, that is, the protein

without the moiety. The linear response expressions, equation (20), is interpreted as follows. The force
exerted by atoms in the moiety induces the displacement in atom 𝛽 of protein, which propagates through
the variance-covariance matrix

〈
ΔR𝛼ΔR𝛽

〉
0 to cause a global conformational change of the molecule,

⟨ΔR𝛼⟩1.
The schematic picture that illustrates the reaction is presented in figure 1, in which the vertical

excitation due to the perturbation, Δ𝑈 ({R}), induces the successive chemical reaction.
A question may be raised with respect to the applicability of equation (20) to a process of mechanical

and/or chemical perturbation. The question is as follows. The response to the perturbation may not
necessarily be linear if the perturbation is too large, and the protein may lose the native conformation. In
fact, there are many such cases taking place in nature, in which the protein loses its native conformation
due to a chemical or mechanical perturbation. However, such cases are not of interest for us, because in
such a case the perturbation causes the protein to lose its activity. Only proteins which may survive in
nature are those that have some biological activity. In other words, we are interested in native protein, the
structural fluctuation of which is linear against a perturbation.

There is another concern with respect to the computational protocol to implement the theory to an
actual process of structural change of protein. It may largely depend on the computational procedure.
Actual process to implement the theory can be treated by an idea proposed by Hirata and Akasaka in the
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context of the conformational change of protein induced by a thermodynamic perturbation [13]. The idea
is to use the analytical continuation to keep the perturbation and response within the linear regime.

Let us divide the entire mechanical/chemical perturbation into 𝑁 steps, each step of which can be
described by the linear response theory, or equation (20). Then, the entire change of the conformation
after 𝑁-steps may be expressed by,

⟨ΔR𝛼⟩ =
1

𝑘𝐵𝑇

𝑁∑︁
𝑗=1

∑︁
𝛽

〈
ΔR𝛼ΔR𝛽

〉
𝑗
·
(
−𝜕Δ𝑈

( 𝑗 )
𝑟𝑚 ({R}𝑟 , {R}𝑚)

𝜕R𝛽

)
. (21)

For an implementation of the theory to an actual biophysical problem, a careful choice of 𝑁 , or scheduling,
may be required.

3. Discussions

The present section is devoted to discuss the feasibility of calculation to realize the theory derived in the
preceding section, and to provide a few examples to which the theory may be applied. In equation (19),
Δ𝑈𝑟𝑚 and its derivative with respect to the atomic coordinate of a biomolecule can be calculated
analytically by means of the molecular mechanics using the simulation programs such as AMBER [19].
Thus, it is a trivial problem for the current state of the art.

The crucial part of the calculation concerns the variance-covariance matrix〈
ΔR𝛼ΔR𝛽

〉
0. The calculation is non-trivial, because it involves an ensemble average over the con-

figuration space of solvent molecules, the number of which is ∼ 1023 or the thermodynamic limit. As is
clarified in the introduction, such a limit is the requirement for the central limiting theorem as well as the
linear response theory, on which the present treatment is based. It will be quite evident that the molecular
dynamic simulation never meets the requirement, no matter what the hardware or/and the computational
algorithm is.

It is the statistical mechanics of molecular liquids, or RISM/3D-RISM, that makes the calculation of〈
ΔR𝛼ΔR𝛽

〉
0 feasible, with the ansatz expressed by equation (11). According to the ansatz, the variance-

covariance matrix is the inverse of the Hessian matrix, which is the second derivative of the free energy
surface 𝐹 ({R}), defined by equation (9), with respect to the atomic coordinates of protein. It has been
demonstrated recently by Sugita and Hirata [20] that the second derivative can be calculated along
the numerical solution of the RISM/3D-RISM equations with the procedure proposed earlier by Yu
and Karplus [21]. The spectrum of small wave-number regions of alanine dipeptide, calculated from
the Hessian, showed a reasonable agreement with the results of the RIKES spectrum [22]. Applying
the method to a real protein may require much larger computational time, but it is just the matter of
a hardware, not the matter which touches a basic principle of nature, or the central limiting theorem.
Examples of possible applications of the theory proposed in the previous sections to a biophysical and/or
biochemical process are discussed in what follows.

One of the applications concerns the drug discovery. It is well documented that a crucial step for
designing drug compounds, either by a wet chemistry or in silico, is not only to identify a target protein but
also to find its molecular structure. The current state of the art in the business is to determine the structure
by means of the X-ray crystallography, or the two-dimensional NMR, both of which are quite laborious
as well as time consuming. For example, in case of the X-ray crystallography, one has to crystallize the
molecule first to be able to get the diffraction pattern, from which one extracts the structure. In case
there are multiple candidate-proteins for a drug target, the process becomes formidable some time. If the
mutation of the micro-organism is very quick, such efforts become entirely hopeless, as was demonstrated
unambiguously by the latest pandemic of COVID-19. The theory proposed here can be applied to such
a problem to find the structure of a target protein, which is derived from the native protein by an amino
acid substitution. We still need to identify which amino acid is substituted by which. However, such an
identification would be neither very difficult nor time-consuming by means of the current state of the art,
for example, by the NMR spectroscopy.

Another example of the application is the mutagenesis to improve the activity of an enzyme, or to add a
new activity to the biocatalyst [1]. In that case, too, it is important to confirm that the native conformation
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of the enzyme is intact after substituting an amino acid by a new one. If the biomolecule is denatured by
the mutation, it will lose or reduce the activity as a biocatalyst. Since the substitution of amino acid is
made currently in trial and error basis by means of a wet chemistry, the process becomes quite laborious
as well as time consuming. Therefore, it is desirable to predict the structure of the biomolecule after each
trial of an amino acid substitution employing the method proposed in the present paper.

4. Concluding remarks and perspective

Based on the Kim–Hirata theory for the structural fluctuation of a biomolecule in aqueous solution,
the author has proposed a new theoretical method to predict the conformation of the biomolecule, a
moiety of which is modified chemically or/and mechanically by such a process as photo-excitation or
amino acid substitution. The method is expected to be applied to the medical as well as biomimetic
processes in industry, in order to find the conformation of biomolecules after chemical or/and mechanical
modifications. It is a key to the successful application of the RISM/3D-RISM method in order to calculate
the free energy surface of the protein, including solvation free energy, and its second derivative with
respect to the atomic coordinate of the biomolecule.

The benefit of using the RISM/3D-RISM is not limited to the application described in the present
paper. Using the 3D-RISM theory in a series of chemical processes may accelerate an industrial innova-
tion, for example, the discovery of a new drug. Let us mention such two examples in which the use of
RISM/3D-RISM theory may accelerate the industrial processes.

One of such processes concerns the drug discovery. A drug discovery consists of many steps; finding
the target protein, screening the candidate compounds for the target protein, synthesizing the compounds,
solubility tests, clinical tests, and so forth. Among those steps, it is the compound screening in which
the in-silico approach may play a crucial role. The compound screening is to find a compound among
many candidate compounds, which has the highest binding affinity to the target protein, malfunctioning
of which is fatal for the host micro-organism. The RISM/3D-RISM method has been applied to many
target proteins and the candidate compounds to predict the binding affinity successfully. However, the
applications have been limited so far to those in which the structural information of the target protein
is provided. Such cases in which the conformation is unknown has been entirely “out of scope” for
the method. The method proposed in the present paper may be applied to such cases to determine
the conformation of biomolecules created by mutations. Then, the screening of drug compounds may
be dramatically accelerated, because the wet chemistry to determine the structure of mutant protein is
replaced also by the in-silico process.

The other process, to which the present theory may be applied, is the rate of chemical reaction in
biomolecular solutions. An example of such reactions is the photochemical reaction, in which the reaction
induced at a chromophore, such as a cis-trans isomerization of retinal, triggers a successive conforma-
tional change in the entire protein. The initial photochemical reaction is so fast that the conformational
change of the entire protein becomes the rate-determining step. Recently, the author has proposed an
Arrhenius-type theory of the reaction rate, in which the activation barrier is defined by the crossing point
of two parabolas representing the free energy surfaces of the reactant and product along the reaction
coordinate [23]. It is supposed in the theory that the equilibrium conformations of the both reactant and
product states are provided. Then, all the quantities required to calculate the reaction rate, the equilibrium
free energy of the reactant and product states as well as the curvature of the free energy surfaces, can be
calculated by means of the RISM/3D-RISM method. It may be more productive if one can predict the
structure of the product state in silico by method proposed in the present paper, since it will help to skip
a wet chemistry to determine the structure of the product state.
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Структурний перехiд пiд впливом локального
хiмiчного/механiчного збурення в бiомолекулах

Ф. Хiрата
Нацiональний iнститут природничих наук, Iнститут молекулярних дослiджень, Мiодайджi, Окадзакi, Айтi
444–8585, Японiя

Структурний перехiд пiд впливом локальної конформацiйної перебудови у бiомолекулах описано на осно-
вi узагальненої теорiї Ланжевена для структурних флуктуацiй молекули в розчинi та теорiї лiнiйного вiд-
гуку, розробленої Кiмом i Хiратою в 2012 р. Хiмiчна/механiчна перебудова, що вiдбувається у фрагментi
бiомолекул така як амiно-кислотне замiщення чи структурна перебудова хромофора при фотозбудженнi,
трактується як збурення, а решта протеїну — як система вiдлiку. Рiвняння лiнiйного вiдгуку складається
з двох частин: тiєї, яку формує механiчне/хiмiчне збурення, внесене фрагментом бiомолекули, та iншої,
що задається коварiацiйною матрицею системи вiдлiку i пов’язана з узагальненою сприйнятливiстю. Це
рiвняння має прозорий фiзичний змiст: сила, з якою дiють атоми у фрагментi бiомолекули, викликає змi-
щення атома протеїну, поширення якого вiдображається через коварiацiйну матрицю, що приводить до
глобальної конформацiйної перебудови молекули. Запропоновано кiлька прикладiв можливого застосу-
вання теорiї, в тому числi в промисловостi.

Ключовi слова: структурнi фазовi переходи, рiвняння Ланжевена, теорiя лiнiйного вiдгуку, бiомолекули
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