Condensed Matter Physics, 2024, vol. 27, No. 3

Title: Differential geometry, a possible avenue for thermal ablation in oncology?
Author(s):
  A. Manapany (Laboratoire de Physique et Chimie Théoriques, CNRS - Université de Lorraine, UMR 7019, Nancy, France; L4 collaboration, Leipzig-Lorraine-Lviv-Coventry, Europe),
  L. Didier (Laboratoire de Physique et Chimie Théoriques, CNRS - Université de Lorraine, UMR 7019, Nancy, France),
  L. la Moueddene (Laboratoire de Physique et Chimie Théoriques, CNRS - Université de Lorraine, UMR 7019, Nancy, France; L4 collaboration, Leipzig-Lorraine-Lviv-Coventry, Europe),
  B. Berche (Laboratoire de Physique et Chimie Théoriques, CNRS - Université de Lorraine, UMR 7019, Nancy, France and L4 collaboration, Leipzig-Lorraine-Lviv-Coventry, Europe),
  S. Fumeron (Laboratoire de Physique et Chimie Théoriques, CNRS - Université de Lorraine, UMR 7019, Nancy, France)

We report a model for hyperthermia therapies based on heat diffusion in a biological tissue containing a topological defect. Biological tissues behave like active liquid crystals with the presence of topological defects which are likely to anchor tumors during the metastatic phase of cancer evolution and the therapy challenge is to destroy the cancer cells without damaging surrounding healthy tissues. The defect creates an effective non-Euclidean geometry for low-energy excitations, modifying the bio-heat equation. Applications to protocols of thermal ablation for various biological tissues (liver, prostate, and skin) is analyzed and discussed.

Key words: differential geometry, bioheat transport, thermal ablation


<< List of papers