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We present a statistical theory for diffusion-reaction processes of gaseous
mixture in the system “metal-adsorbate-gas”. The theory is based on an
equal consideration of electron-electron, electron-atom and atom-atom in-
teractions between adsorbed, non-adsorbed atoms and atoms of metal
surface. On a metal surface, the bimolecular reactions of the A+ B <+ AB
type are possible between the adsorbed atoms which is typical of catalyt-
ic processes. By means of Zubarev nonequilibrium statistical operator, the
system of transport equations is obtained for a consistent description of
electronic kinetic and diffusion-reaction atomic processes.
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Processes of adsorption, desorption, diffusion of atoms, ions, polar and magnet-
ic molecules or clusters on the surfaces of metals, insulators, semiconductors play
one of central roles in the development of nanostructural thin film technologies for
microelectronics and optoelectronics. Diffusion processes, adsorption and desorp-
tion mechanisms are also decisive in catalytic reactions on active surfaces where the
structure and the electronic structure play a central role. Electronic processes on a
metal surface, which create local electric fields in catalytic reactions are also the pro-
moters of dissociation-association processes of gas molecules. All these phenomena
make the study of mechanics of different catalytic reactions much more complicat-
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ed. Besides, to understand them, a rigorous and detailed study of electronic kinetic
and diffusion-reaction atom-molecular processes should be carried out. Such pro-
cesses and phenomena are the subject of an intensive experimental and theoretical
study in solid state physics. Nowadays, experimental methods of investigation such
as scanning-tunnelling-microscopy (STM), scanning-tunnelling-spectroscopy (STS),
field-ion-microscopy (FIM), and their modifications provide each time a more de-
tailed information about the electronic structure, diffusion processes, structural
transformations on the surfaces of metals, insulators, semiconductors, high tempera-
ture superconductors [1-7]. A more sequential theory of atom transport at scanning
by tunnelling electrons with taking into account the mechanisms of atom heat oscil-
lations and substrate phonon oscillations and with the use of transfer Hamiltonian
“substrate-adsorbate-tip” was presented in papers [8-11]. Of course, the processes of
atom and molecule transport on the surface of a solid state, no matter whether the
STM investigations are pursued or not, critically depend both on the nature of in-
teractions between them, which can be dipolar or magnetic, and on the state of the
substrate: paramagnetic, ferromagnetic, ferrimagnetic, etc. Furthermore, for such
spatially inhomogeneous systems one has another topical problem: the description
of quantum transport processes at small times with taking into account the initial
states and non-Markovian memory effects; the description of chemical catalytic re-
actions on a metal surface. One approach for the construction of quantum kinetic
equations with taking into account the initial states and non-Markovian memory
effects was recently suggested based on the mixed Green functions [12,13]. Processes
of atom and molecule transport on the surface of a solid can be described here based
on the theory of surface diffusion [14,15], or on kinetic equations [16,17].

In the present paper, we present generalized transport equations of a consistent
description of electron kinetic and atomic diffusion-reaction processes in a system
“metal-adsorbate-gas”. To this end, we use the nonequilibrium statistical operator
(NSO) method by D.N.Zubarev [12,18] and obtain a kinetic equation for one-electron
density matrix and relevant to this relation diffusion-reaction equations for adsorbed
and non-adsorbed gas atoms on a metal surface.

2. Nonequilibrium statistical operator and transport equa tions
of electrons and atoms of a system “metal-adsorbate-gas”

For a consistent description of electron kinetics of processes on a metal surface
with adsorbed gas atoms or molecules one needs to take into account many pe-
culiarities connected with screening effects and surface diffusion. We consider here
the system “metal-adsorbate-gas”. Gas molecules become polarized and can disso-
ciate near the metal surface in nonhomogeneous electric field, which is produced by
conduction electrons and localized electrons (for example d-electrons of transition
metals) as well as by metal surface ions. Finally, due to the interaction, the dissocia-
tion products are adsorbed on the metal surface. This is the dissociation mechanism
of gas molecules in numerous catalytic reactions (especially, ammoniac catalysis).
Then, the dissociation products of different molecules, which are adsorbed on a met-
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al surface, join the chemical reactions with energy threshold, which is sufficiently
lower than for the reactions in a volume state without catalyser. Henceforth, it is
more energetically preferable for the reaction products to leave the surface. Modern
catalytic reactions of the surface are mainly bimolecular

A+ B <« AB,

though metal surface atoms actively participate therein. This is displayed through
the electron-ion-molecular interactions.

Let us suppose that after the interaction of gas atoms or molecules with the sur-
face, some portion thereof is adsorbed. Let N, be the total number of non-adsorbed
atoms, whereas N; be the number of atoms adsorbed on a metal surface, N, be
the total number of electrons, and N, be the number of ions of a metal. The total
Hamiltonian of such a system reads:

H=H +H" + Hy+ Hy* + ) Ua(zp) + Hocac, (2.1)

a=a,s,a
1<f<Na

where

N, p2 1 N,
_ J .
H, = le o, + B Zvaa(|rj rj|)
= 4

is the Hamiltonian of a gas subsystem, where p; —is a gas atom momentum, m, — is
its mass, Vo, (|r; —rj|) — is a binary interaction potential of gas atoms on a distance
Ir; — rjy|. Gas atoms interact with electrons of a subsystem “metal — adsorbate ”

metal surface ions and adsorbed atoms. Let us denote this part of interaction energy
HMt:

NayNe NayNs NmNa

H' = Z Vae(lrj =)+ Y Vas(ry = Ryl) + > Vaallr; — Ry]),
it i

where V,, is an electron-atom potential of interaction, V,; is a potential of interaction
of a gas atom with an ion of a metal surface, V,; is a potential of interaction of a gas
atom with an adsorbed atom. Electrons in a subsystem “metal — adsorbate — gas”
interact between themselves, between metal ions with microscopic charge density
ps(R), between the adsorbed on a metal surface gas atoms with microscopic charge
density ps(R). The Hamiltonian of an electron subsystem H, then reads:

eps(R epa(R
ZAHL Zm_rl, Z/dRm Z/dRm

[y

It consists of a kinetic energy, Coulomb interelectron interaction energy and the
potentials of interactions of electrons with metal ions and the adsorbed atoms. r;
are electron coordinates, R are coordinates of corresponding ions and atoms. Aside
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from the electron subsystem, of great importance is to take into account interactions
in an ion subsystem as well. Its Hamiltonian reads:

- R 1 pa(R)pa(R))
int - 'ra a7
Hi" = Qma;AerQ/deR R_R
/3&<R)/53<R,) 1/ /ﬁS<R)/33(RI)
dRAR/ "Mt [ qRAR/ s
+/ R—R| @ 2 R—R/|

where kinetic energy of adsorbed gas atoms on a metal surface is also considered,
other terms describe the interaction between metal ions, adsorbed atoms. U, (zf) is
an inhomogeneous effective potential of a surface which is assembled by collective
effects in a semilimited space, in our case in metal. H ... is the interaction Hamil-
tonian for the chemical reaction between adsorbed atoms or molecules on a metal
surface:

Hreac - Z (<d/7 Z_)/‘(I)reac‘a7 E)QA;{/Q;QZLQB + <C_L/, Z_)/‘(I)reac‘a7 Z_)>*QZJLFQB+QAZL’QAI3’)

sha b
a,b,a’ b

with the amplitude (@', b'|®,eac|a@, b) = (@, b|Preac|@’, ') of reaction between reagents
A, B and the reaction products AB (we use the indices @, b and @'t for the states
of reagents A, B (atoms or molecules) and for the states of atoms in the reaction
product AB). Here ¢, ¢, ¢3, ¢ and Ga, Gy, Ga, G are the atom creation and
annihilation operators for the states a’, v, @ and b of molecules AB, A and B, corre-
spondingly. We study the kinetics of an electron subsystem on a metal surface and
diffusion-reaction processes of adsorbed and nonadsorbed gas atoms or molecules. In
view of this, it is convenient to use the second quantization for electron subsystem
in Hamiltonian (2.1) according to [19]. To this end, one needs to choose a proper
basis of wave functions. Let us suppose that we know the solution to the Shrodinger
equation for an electron

[ A V(e - XQ)} Yra(r — Xa) = cratha(r — Xo), (2.2)

B 2me

in potential fields of a surface atom, non-adsorbed and adsorbed gas atoms. Here
Xo = (ro,R,) are Cartesian coordinates of particles. Eigen functions of equation
(2.2) satisfy the conditions of orthogonality and completeness

[dRu - R R = b
Y it =R —Ry) = (r—7)
for any j = 1,..., Ny, {v,p,&} are quantum numbers and €,o= (E,, €,, E¢?) are

eigen-values of electron energies. Let us use the set of functions ¥,,(r — X,) =
(1ho(r = Ry), ulr —17), p¢%(r — Ry)) as a basis for the expansion of electron field
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operators:
R N+ Na
1/1(1“, S) - Z Z Z ¢V(r - Rf)XU(S)dfua + Z Z Z (pu(r - rl)ga(s)élua
f=1 v o=+h/2 =1 p o==£h/2

+ZZ Y et = Ri)xo(s)éfe,, (2.3)

I=1 ¢ o=h/2

where y,(s) are wave functions of an electron spin operator, o = £h/2 are the
electron spin projections on a quantization axis, s is a spin coordinate. @ f,s, Cuos
Clgo and at oo cltw, cggj)Jr are electron annihilation and creation operators, R y denotes
a position of surface atom, r; — the same gas atom, R; — for an adsorbed atom on
a metal surface, respectively. Then, the Hamiltonian of electron subsystem taking

into account (2.3) in the second quantization representation, reads:

253A30+Zzt05 (AJraAﬁ +A+BAa )
a,v,0 a,B o,y
+ Z > Wh(a, o, BA AT A AP (2.4)

a ﬁ vwopio’

where €2 is one-electron energy in a field of a corresponding atom (surface, adsorbate,
A+o st At Alad)t

non-adsorbate). The operators Aj, assume the values o Cos Cleo whereas
«a A A ~ad :

operators Aﬂw are from the set Gf,y, Ciuo, Cléo and are the electron creation and

annihilation operators on the surface atom, gas atom, adsorbed atom on a metal

surface, correspondingly.

A~ +a pfo

Nye = E A]I/UAJ;,LO'

Jj=1

is the density operator of electrons in the field of corresponding atoms.

= [arte) (5 U)o+ Vanlr)) ),

where V,,(r) are corresponding potentials of electrons in the field of metal ions
adsorbed, non-adsorbed gas atoms or molecules.

- fon(-£

are matrix elements of the Hamiltonian. They describe processes of electron transi-
tions in the field of corresponding atoms and ions.

() + a<z>) Y8 (r)dr

Wittassad) = 3 [ [ oS @hanar

is some Coulomb repulsive integral of the electrons, which are connected with cor-
responding atoms in accordance with (2.3). The analysis of the total Hamiltonian
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(2.4) of the electron subsystem can be made in detail in view of the hybridization
processes between electron states of a surface and the atoms as well as the effects of
interaction between electrons. Such an analysis should be made on the expansions
in overlap integrals of orbitals of corresponding atoms similar to [20]. The current
of the electrons between positions 1 and j in a system can be evaluated from the
equation

Jlj = /Sp (flj(é(;gi — é’;rli))dE,

where G;; , Gjl_ are the spectral functions of time one-electron Green functions.

These functions can be rewritten in the matrix form like this:

G (1.1) G (1,1) ] _ [g@,(l,y) iy
= 1,1

;1)
gl?( ) /) glj( 1

1)

— =

Gi(1,1) =

where gj; are causal, g anticausal and []lj, gg correlation Green functions for elec-
trons:

a1 t) = (R THT W (1), (1)),
95;(1,1Vste) = (ih) (
G Vst0) = —(ih) " (1)

where (1) = (ry,s1,t1), (V) = (v}, s),t,). (1), JH(l’) are field operators of
electrons in Heisenberg representation

?/JlH( ) =Ulto,t )@/31(1'1,81)U(t,t0), Ult, ty) = o—i/ht—to)H

T%% are direct and reverse time ordering operators. g5, g, Qlj, ﬁz? define retarded
and advanced Green functions glj, glj, by the relations

~R _ sc A< _ s> ~a
95 = 913 — 915 = 915 — 95>

~A _ ac ~> A< ~a
9i; = 915 — 915, = 915 — 95+

The functions R R
Gii(1, 13 t0) = (ih) (Tl (1), ¥ (1),

satisfy the equation of Dyson type in Keldysh formalism [12,13,21,22]. T is an op-
erator of time ordering on a Keldysh contour C' [21]. Calculation of averages (...)™
in Green functions is made using a nonequilibrium statistical operator p(t)| ¢~ in
the initial time which should be defined from the solution of the quantum Liou-
ville equation of our system “metal-adsorbate-gas”. Problems of averaging on the
initial nonequilibrium states in Green functions have been analysed in detail in pa-
pers [13,21,22], where a mixed Green functions formalism as a generalization of the
Keldysh-Schwinger formalism is proposed. Such an approach could make it possi-
ble in our case to take into account the influence of diffusion-reaction gas processes
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on a surface on electron processes via averaging in the corresponding Green func-
tion using the nonequilibrium statistical operator of gas subsystem in initial time.
In particular, it can be shown based on [22], that the correlation Green function
g]l(l 1";to) in the limit tg — —oo and t; = ¢} is equal to one-particle density matrix
in r-representation

fij(r1,s1,1y, 8, 1) = —ihtoli@oo Qﬁ(la I to)ty=t; -

It gives the connection of §5(1,1;¢) with the electron current.

For a consistent description of both electron kinetic and diffusion-reaction pro-
cesses of adsorbed and nonadsorbed gas atoms in a system “metal-adsorbate-gas” we
use the method of nonequilibrium statistical operator (NSO) by D.N.Zubarev [12].
This method is based on Bogolubov’s ideas of a shortened description of nonequilib-
rium state of a system using the set of observed parameters. Such parameters of the
shortened description can be nonequilibrium mean values of the electron subsystem:

jvo jvo

(Afe A ) =Sp <A+O‘ AL p(t )) (2.5)

is the nonequilibrium one-electron density matrix; the mean densities of adsorbed
and non-adsorbed gas atoms or molecules on a metal surface are:

(ER)Y = Sp (AZR)p(D) . (Ra(0)) = Sp (a()p()),  (26)
and R R
(da(r))" = Sp (da(r)p(t)) (2.7)

is the mean polarization of density of gas atoms or molecules,

0= disr—x)

is the microscopic polarization of density of gas atoms or molecules, d; is dipole
moment of particle j;

(GU(RR)" = Sp (G (R, R)p(t)) (2.8)

is the nonequilibrium pair of the distribution function of adsorbed atoms or molecules
on the metal surface. Here nZ(R) is the density operator of gas atoms which are ad-
sorbed in a v-state on the metal surface;

Nad

AR Zw R)Jy;(R),

A;LJ-(R), @@Vj(R) are the creation and the annihilation operators in a v-state of the
adsorbed gas atoms on a metal surface.

GYMR,R') = a(R)AY (R 25 r—r;)
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is the microscopic density of gas atoms or molecules. If the chemical bond, stimulated
by the metal surface between the adsorbed atoms appears, then the coordinate of
molecule (cluster), consisting of the two atoms in states p and v, can be found,
with the help of a transition from individual reference systems for each atom nZ(R),
niy (R’) to their mass center reference system. Then (@ZE“ (R,R/))" is a mean density
of molecules, created in the chemical reaction between the adsorbed atoms on the
metal surface. On the contrary, molecules, consisting of two atoms in states p and
v, under the influence of nonhomogeneus magnetic field, can at first dissociate into
atoms and then be adsorbed by the metal surface. In this case, <G;B“ (R,R))!

the nonequilibrium quantum distribution function of the atoms on metal a surface.
Mean values of parameters of shortened description are calculated using p(t)-NSO
of electrons and atoms of our system. This operator satisfies the Liouville equation

9 plt) +iLplt) = 0. (2.9)

where iLy is the Liouville operator which corresponds to the total Hamiltonian
(2.1). One can distinguish in the structure of the operator iLy some classical and
some quantum parts:

iLy = iL% +iLy",

N N,
. “pj 0 150 A
im it

is the classical part that corresponds to an interacting gas. V,5(r;, Ry) are interaction
potentials of gas atoms with other atoms of a system.

A a 174 . .
LA = — [A Ho HP + HY 4 U+ Ho

is the quantum part of the total Liouville operator. The nonequilibrium statistical
operator of electrons, atoms of a “metal-adsorbate-gas” is normalized as

Spp(t) =1,

where
(dx) Na
H N ! 27Th 3N0¢Sp(y§0)( ”)’ dx:drdp’ Na:{Na,Na,Ne,NS},

SP(y¢,») Means summation over all values of spin and other quantum numbers. To
find the nonequilibrium statistical operator p(t) one needs a boundary condition.
Using the NSO method by D.N.Zubarev [12,18], we are looking for the solution of
equation (2.9) in such a form, where time dependency is included indirectly via
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mean values of the set of the shortened description. To this end, let us introduce
some infinitely small source into right hand side of the Liouville equation (2.9) which
destroys its symmetry on time inversion and selects the needed retarded solutions
[12,18]. Thus, we start further from the equation

<88t * ILN) p(t) = =& (p(t) = py(1)) (2.10)

where ¢ — +0 after the thermodynamic limits transition. The auxiliary relevant
statistical operator p,(t) is defined from the condition of extremum of information
entropy of a system and conservation of normalization Sp p,(t) = 1 and fixed values
of parameters of the shortened description. In our case, these parameters are defined
by relations (2.5)—(2.8). Then, proceeding in a standard way [12,18], one obtains the
expression for a relevant statistical operator:

pe(t) = exp{ Zbl U tNur —Z/drua )74 (r)

—ZZ/dRuaRt 4(R) - [ areteind
— ZZ/deR’M”“ (R,R;1)G"(R, R’))}, (2.11)

ab

where

O(t) = lnSpexp{ Zbl,l', Nll'—Z/dT#a t)7q (1)

L

‘ZZ/dRMaRt iy (R Z/dre
R [ rarag R R 0GR, R’))},

is the Massieu-Planck functional. It is defined from the normalization condition of
pq(t). The parameters b(l,I';t), pa(r;t), py(R;t), e(r;t), M2 (R, R';t) are defined
from the self-consistency conditions

(Nuw)' = Ny, (a(r))" = (1)),

(5 (R))" = (R7(R))g,  (da(r))’ = (da(r)),,

(GY(R,R)) = (GZ'(R,R))., (2.12)
and denote that ,(r;t) is the local chemical potential of a gas atom; u%(R;t) is the
local chemical potential of an adsorbed atom in a state v on a metal surface; e(r;t)

is the local electric field, which is made up of the electron and ion subsystem on
metal surface, and is defined by the Maxwellian equation:

VB(R; f}) =4m ((ﬁe(R»t + <Z Zf€'flf(R)> ) s (213)
f
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where

= Z IEJF <R7 S)J}(Rv S)

is the density operator of the electron subsystem on a metal surface, p.(R)=en.(R)
is the density operator charge of electrons, e is the charge of electron, and

- Z QZ}}_(Ra S/)Qz}f(Rv S,)

is the density operator of the ion subsystem on the metal surface, s’ is a spin co-
ordinate and Zj is the valence of ion on metal surface. M_*(R,R/;t) is the local
chemical potential of adsorbed complex atoms @, b in the states v and p on a metal
surface; 5 = 1/kgT, kg is the Boltzmann constant, 7" is the equilibrium value of
temperature. Here Ny = Af Ay, 1,1 indicate the set of indices {a, jro}; ((.. Ny
= Sp(...)p,(t). Using the standard NSO procedure with taking account the projec-
tion [12,18] and structure of p,(t) (2.11) one obtains from (2.10) the expression for

the nonequilibrium statistical operator:

pt) = py(t)+ ) / W=7t ) / drpr () In (1,15 ) pl ™7 () Bb(L, U5 ¢')dt!

i

+3 far / DT (L, ¢) / e ()L (5 )k () Bpaa: )Y
a —00 0
t 1
DI L / T, t) [ dr () (R )0) 7 (B Rt )
a v 0

1

+Z / dr / t' / drpg (E) 1 (x; t)pg " (¢') Be(r; ¢)dt

+§;;/dR/dR’/ DT (¢, ¢
X / drp] (1) 1Y (RR/;t)pl ™" () BMZH(RR/; ¢)dt, (2.14)

where
t

T, 1) = exp 4 — / (1= P, (t")iLydt”
t/

is an evolution operator taking into account projection. P,(t) is the Kawasaki-
Gunton projection operator. It acts on the statistical operator and has got the
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properties like this:

Pa(t)p(t') = p(t),  Py(t)pg(t) = pg(t),  Pe(t)Py(t') = Py(t).
It is connected with the Mori projection operator P(t) by the relation:

1

Py Apy(t) = / dr(p,)P(t) Agh (),

PWA = (A A g
JA = (A), + - 5<sz/)( w — (Nw)")

54} G"'(R, R GY'R, R/
Xa(é;;j‘(R,R'))lf( “(R,R) = (GZ( )Y)-

P(t) acts on the operators and has got the properties of a projection operator:
P(t)ia(r) = fa(r), P(t)Ny = N,
P(t)ia(R) = ia(R), P(t)du(r) = du(r),
PG ”“(R R') = GZ(R,R/),
POP)=PE), PO -P() =0;
In(LT; 1) = (1= (t))VNu/ L(r;t') = (1= P(t'))g(x),
IR ) = (1 = P(t)ng(R),
I§(r;t) = (1= P(t))d ()
g (RR; ) = (1= P(t )G (R,R) (2.15)
are generalized flows;

1
s
Ma(r) = iL§e(r) = —V - py(r),

Mg

palr) = D pydlr 1)

Ny = —[Nw, H], na(R) = —
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is the microscopic momentum density of gas atoms;

1
ih
In such a way, we obtained a general expression for the nonequilibrium statistical
operator p(t) of electrons and gas atoms in a system “metal-adsorbate-gas” for the
specific set of parameters of shortened description (2.5)—(2.8). It depends on gen-
eralized flows (2.14) which describe dissipative transport processes in a system. As
far as due to a shortened description p(t) is known to be a functional of parameters
(Nwr)t, (Ra(x))t, (AZ(R))!, (da(r))t, into (GZ¥(R,R/))!, we can start from the ex-
plicit expression for p,(t) taking into account the self-consistency conditions (2.12).
To obtain them let us use the identity:

0
ot

where B,=(Ny, fa(r), 1%(R), du(r), G4 (R, R')) and
[B<t> = <[N<l7 l/v t>7 [a(r; t)v [g<R7 t)v [le(rv t/)v [lCIJZE (RRlu t/>

du(r) =iL%d,(r), Gy (R,R)) = —[G“(R,R)), H].

—(B,)" = (iILyB,)' = (iLyBy), + (I(t))",

Averaging the right hand parts of these equalities using NSO (2.14) one obtains
generalized transport equations for one-electron density matrix and mean values of
densities of adsorbed and non-adsorbed gas atoms:

0 -
§<le/> <Nll’ +Z/ Conn (W, ji'5 ) 80(4, 55 ')At
J.g’
t
+Z/dr’/ee(t,t)wNna(ll’,r;t,t’)ﬁ,ua(r’;t’)dt’
) t
+Y > / dR/ / e WOk (I, Ry t, ) B (R )Y
+Z/dr / W=D g, (W X' 1, ) Be(r'; t)dl!
+ZZ/dR’/dR”
ab vy
x / NN (I, R'RY 8, ) BME (R'R;t)dt, (2.16)
a ~ t t t /
o7 (fa(r))" = +Z Y on, (x5 4,551, ) Bb(j, §'; ')t

3 s

418



Diffusion-reaction processes “metal-adsorbate-gas”

t
. / ar’ / e 0y (0,1 1) B (05 1)
b — 00
t
+ZZ / dR/ / gl (xR ) By (R t)dY

+Z/dr/ WD, (T, Y51, ) Be(r ) dt!
+ZZ/dR’/dR”

a'b VM
X / W=t w;agﬂ(r, R'R";t,t") M ¥ (R'R”;t')dt, (2.17)
6 AU e(t’'—t) -/ / YA /
E%(R)) i~ Z Y Onan (R 4, 75, 8) B, 55 ') dt
Ji s
t
+Z/dr’/e€(t/t)cpzanb(R, vt 1)) By (x's ) dt
b
+ZZ / dR’ / D (R,R 1) B (R t)dt!
+Z/dr / WD a (x5 1 ) Be(r'; ) dt
+ZZ/dR’/dR”
a'b VM
X / O (r, R'R";t,¢) BM 2 (R'R"; ¢')dt (2.18)
9 - e(t' —t)
57 (da(r))’ = +Z Y4, (r; 4,5 ) B0, 53 )t

3 s

t
+Z/dr’/e€(t/t)wdanb(r,r';t,t’)ﬁ,ub(r';t')dt'
b —00
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+Z§:/““/“t%%nrwmwmﬁm%Mﬂ

+Z/dr/ i t>¢dadb (r,r’; ¢, ¢")Be(r’;t')dt
+ZZ/dR’/ dR”

a'b v
X/““M%AHHVHWMﬁmFWWG (2.19)

— 00

9
ot

v
b

(GU(RR))! = (G (R, R

"—Z/ v t)(pG ap- (RRILJ .7 tt)ﬁb(j j t)dt

i

t
+Z/dr’/ee(t,_t)<pé’;bnb/ (RR/,r'; ¢, ") By (x'; ') dt’
b .

A7

t
+Y > / dR/ / Wt (RR Rt 1)t (R t)dt!
+Z/dr / Do g, (RR, Y5 t,1)Be(r'; t')dt

+ZXVHw/Rw

a't vy

X / e %Ga ,(RR,R'R"; 1 A)BMIY (R'R ), (2.20)

—0o0
/ !
v
where O N, ©nony s @nana, ONngs P Nna, @nana, Cdudy s <pG LG,y are generalized transport
cores which describe dissipative processes in the system Transport cores are built

in the generalized flows (2.15) and have the following structure:

1

opp (t,t) =Sp | Ig(t)T(t,t') / drpl(t') e ()" (') | | (2.21)

0

In particular, the transport core pyn(Il',jj';t,t") describes dynamical dissipative
interelectron flow correlations, ¢, ,, (r,r";t,%') describes dynamical correlations of
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diffusion flows of gas atoms and, as it will be shown below, is connected with the
nonuniform diffusion coefficient D, (r, r’;t) of gas atoms or molecules. Similarly, the
transport core ;" ,né (R, R/;t,t") describes dynamical dissipative correlations of diffu-
sion flows of gas atoms in states v and v/ on a metal surface and defines nonuniform
diffusion coefficients Da”l—‘)’/(R, R’;t) of adsorbed atoms on a metal surface. Another
transport core describes dynamical dissipative correlations between generalized elec-
tron flow In(l,1';t), the flow of gas atoms I, (r; ) and of adsorbed atoms I (R;t).
In particular, transport cores ¢, (R;r';t,t'), e ne (T3 R, 17) describe d1$Slpative
correlations between the flows of gas atoms and adsorbed atoms and define nonuni-
form coefficients of mutual diffusion Da”é(r, R';t) “gas atom — adsorbed atom”. The
study of these diffusion coefficients in adsorption processes is very important.

The @q,q,(r,1’;t,t’) are responsible for the polarization effects in molecules which
are induced by a dynamic electric field of the metal surface. The transport cores
@é‘: 5p<RRI :t,t) {p = N,n,n,d} describe dissipative correlations between the ad-
sorbed atoms densities and flow densities of electrons on the metal surface, atoms
and molecules of the gas, adsorbed atoms as well as the molecules polarization.
Ty :(’; ,b(RR’, R"R""; t,t') describe diffusion-reaction processes between the adsorbed
atoms on the metal surface. They are higher memory functions with respect to
dynamical variables Ggg . The calculation of these transport cores appears to be a
well-known problem of nonequilibrium statistical mechanics. Thus, we obtained gen-
eralized transport equations (2.16)—(2.20) for a one-electron density matrix, average
nonequilibrium densities of adsorbed and non-adsorbed gas atoms for the consis-
tent study of kinetic electron and atomic diffusion-reaction processes in a system
“metal-adsorbate-gas”. It can be seen that these equations have a nonlinear and a
nonuniform structure, they can describe both strongly and weakly nonequilibrium
processes. In further considerations, our primary interest is devoted to the weakly
nonequilibrium case.

3. Weakly nonequilibrium processes

In such a case, one should suppose that the one-electron density matrix <Nll/)t,
average nonequilibrium densities of adsorbed and non-adsorbed gas atoms (n%(R)),
(f(r)) and (d,(r))?, <ng’;u (R,R/))* correspondingly, reciprocal thermodynamic pa-
rameters b(l,I';t), pz(R;t), pq(r;t), e(r;t), M7 (R, R';t) deviate slightly from their
equilibrium values. Then one can expand the relevant statistical operator (2.11) on
the deviations of parameters b(l,1';t), 4 (R;t), p.(r;t), e(r;t), M7F(R,R';t) from
their equilibrium values bo(l,1'), 1z (R), pa(r), M} (R, R’) and restrict the expan-
sion to the line of approximation. Then from (2.16)—(2.20) one obtains a transport
equation in the linear approximation, using the Laplace transformation for time

t >0,

/ e A(t 2 =w + g, (3.1)
0
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2(0Pn) > — ZQpij 2)(ON; ). Z/erpnbr 2)(0np(r')) .
73’
—ZZ/ dR'QY 2)(0rY (R))) Z/erp 4, (1) 2)(6d, (1)),
_ZZ/dR///dR///Q;,uG R// R/// )<5Gg;—)“/<RH,Rm)>z _ <5ﬁn>t=07 (32)

ab vy
where 6p, = (6Nyy, 67, (r), 0nL(R), dd,(r), 0G4 (R, R’)). Here

ony(R) = nz(R) — (n2(R))o,

a a

SNw = Ny — (Nw)o,  67a(r) = fia(r) — (Ra(r))o,
G (R,R) — (G2 (R,R))o

0dq(r) = da(r) — (da(r))o, IG(R,R') =

where average values are calculated with the use of equilibrium statistical operator

pozZ_lexp{ Zbo (1,1 Nll/—Z/dr,ua

w

- ZZ / dRyZ(R)7% (R ZZ / dRAR' M (R, R))G(R, R’))}, (3.3)
Z:Spexp{ H = bo(L,1 N”/—Z/dma 1) (r

i

- > / dRu%(R)7% (R ZZ / dRIR'M"(R,R")G%(R, R’)} (3.4)

is the grand partition sum of the system “metal-adsorbate-gas”. p,(r), pZ(R) are
local equilibrium values of the chemical potentials of non-adsorbed and adsorbed gas
atoms, (...)g = Sp(...po). Exclusion of parameters 3b(l,l’;t), B pq(r;t), fous(R; 1)
and M2*(R,R’) in p,(t)" using of self-consistency conditions (2.12) results in the
appearing of corresponding orthogonal variables

a(r) = fa(r) = D (a(®) Nuho @ (1,1, 7' N,

U
o

“(R) = n4(R) — ng(R)Nmocbwz, U4, 5 )Ny

dr (R) 74 (1))o[ @y r (11" apty (1)
) / / 7
= d,(r) Z

(da(r) Nur)o @y (1, 13,5 ) Ny

Ly

-y / ar’ / A (A, (1) (1) Yo [0 ('Y i (")
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-3y / dR’ / dR"(d,(r)7iL R'))o[@, L (R'R")]F 7 (R”),

—
G(R,R) = G(R,R)) = Y (G (R, R)Nip)o®yy (1,134, 7' ) Ny

ll’

—Z / dr’ / dr”(G ”“RR’) (X)) o[ L (")) i (x7)

_ZZ/an/dRm Guu R R/) /R//»O[(I);L;(R//R///)] g (R///>

a't! vy

— Z/dr /dr" (GY(R,R)dy (1)o@ (r'r")]andy(r”).

Conditions of orthogonality for these variables are valid:

(Ma(r)s(R))o =0, (Ma(r)da(r))o =0, (7. (r)G(R,R))o = 0.

The functions @\ (1,14, 5), [®pt(r,1')]a and [@,} (R, R')].% are inverse to corre-
sponding equilibrium correlation functions:

@(ll/,jj,) - <]§/T”/]ij/>07 (35)
for the electron and gas subsystems

Dup(r,x) = (1) (), (3.6)
PUR,R) = (AR (R)g (37)

and are defined from corresponding integral relations [19].
QAB(Z) :iQAB —QOAB(Z), (38)

i) 4p are normalized static correlation functions, they read:
IQAB = <AB>0(I)BB7 (39)

where B, A = {Nll/,ﬁa(r),ﬁa(R)}, dy(r), G(R,R), A = iLyA. pap(t,t') are
normalized transport cores with the following structure:
Pap(t,t') = (LaTo(t,U)1p)oPnp,
LTy = {In(0), L(x), (R (x), I (RR) } (3.10)

where

To(t,t") = exp{—(t' —t)(1 — Py)iLy}
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is the evolution operator in the linear approximation;

In(1) = (1—7>O)N”/
Lx) = (1=Py)iar),
IZ(R) = (1-7P)i(R)
I(r) = (1- Po)da(r'),
Y (RR)) = (1— Pyl (R,R)

are generalized flows in the linear approximation, where the Mori projection operator
Py has the following structure

Po(.) = (ot D (o Nudo® M1, )N

U

+Z / dr / Ar' (. (1)) (= (r, 1'Y] s Tin (')
FXY [ar [ar . mm o R R

ab vV

+Z/dr’/dr”<...c_la/(r’)}o[q)ddl(r’r”)]a/bc_lb(r”)
+ZZZZ/dR/dR’/ R”/ dR"(... G (R.R))o

ab a'ty vV

X [q)GG’(R, R/’ R//’ R/l/)]uy ! GMN

aba,b, e (RII R///)

Its operator properties are as usual:

730730 = P07 P(](l - PO) = 07
PoNw = Ny, Poia(r) = g (r),
Pons(R) = 14(R), Poda(r) = da(r), PG (R,R)) =G4 (R, R)).

The set of transport equations for weakly nonequilibrium case is linear, closed
and describes kinetic electron and atomic diffusion-reaction processes consistently.
The functions iQ24p (2.22) are static correlation functions and can be expressed via
the corresponding interparticle potentials of interactions and structural equilibrium
distribution functions of electrons and atoms of our system. ¢ 45(t,t") are time cor-
relation functions which are built on generalized flows and describe dissipative pro-
cesses in a system. In particular, onn(l, ;7,7 t, 1) describe interelectron dissipative
processes, @qq(r, s t,t'), 2 (R, R/;t,t') describe nonuniform diffusion processes of
adsorbed and non-adsorbed gas atoms. All other memory functions describe cross
dissipative correlations of flows of electrons and atoms in the spatially inhomoge-
neous system “metal-adsorbate-gas”. The set of transport equations (2.22) permits
limiting cases. In particular, if formally one neglects the diffusion-reaction processes
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of adsorbed and non-adsorbed gas atoms, then electron kinetics in a system of met-
al surface is described by an equation for the nonequilibrium one-electron density
matrix. Using the properties ép, = 5Nl71/ in the equation (2.22), such an equation
can be represented in a form

2(5Nyy)., ZQNN L5, Z)<5NJJ> (ONw)'=2, (3.11)

73’

where
Qun (1,154,575 2) = 1w (15 5,57) — e (L 154,55 2)

is the mass operator of an electron subsystem. This set of equations permits to de-
fine elements of one-electron density matrix <d}ryoﬁ150/)t. Electron tunnelling current
between positions f and [ on a metal surface is then expressed via these elements.
Another limiting case can be obtained if one formally does not take into consider-
ation the electron kinetic processes, whereas the interaction of the adsorbed atoms
and the substrate is considered to be classical only. Then the set (2.22) transfers to
a set of nonuniform diffusion-reaction equations of adsorbed and non-adsorbed gas
atoms:

5, v 5,
57 (O (r Z/dr/ (¢ t> Dy (0,151, )5 (0 (x ')\ dt’

+ZZ / dR/ / «(t'- ng r,R';t,t) ag/(dng/(R’))t'dt’
+ZZ/ R/// R///

ab vy

« /ee(t/t)%KnaG ( R// R/// )(56;;%#/(];{//’R///)>t/dt/’ (3.12)

—00

2 one(w -->xf AR Dy (B R, #) oy (R)
0 t' 14/
—Z/dr—D (R,1'; tt)a (6p(r)) dt’ +
Sy e foe

ab vy

¢ / 8 v —Ij/ / /
% / ec(t'— )8RKnaGH/b<R; R",R";t,t) <5Ga,5 (R//’R///»t dt, (3.13)

—00

0 v / e(t’'—t) v 1o, ! 0 ~ NN\ 34/
2 (66 R R) Z/dr / R (RORE 1) (507
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t
€ vu,v a 7V/ ’
+ ZZ/dRN / # t)K Mbnb/(R Rl R// t ¢ )8R <5n6’ (R”))t dt,

—zz/w/w

a't! vy

" / ORI (RRER R4 1) (0G0 (RV.R)dr, (3.14)

—00

7R = R) - 3 [ e R )0l sl ),
CLi(RR) = GH(RR) -~ 3 [ [ G R Rl 5 i)

_ ZZ/dR///dR/// Guu R R/) (R”»O[q);;(R”Rm)]Zg g(R///)

a't! v

and D, (r,v';t, "), D (r,R’;t, '), DY (R,r';t, "), D?(R,R/;t,t') are generalized
nonuniform diffusion coefficients of non-adsorbed and adsorbed gas atoms on a metal
surface. In particular, the coefficient D, (r,r';¢,t') reads:

Dap(r, x5t t) => " / dr” (1 — Po)La(x)To(t, ') (1 — Po) Ly (r"))o[ @51 (2", ) s,

(3.15)
I,(r) = miaf)a(r) is the density of a flow of gas atoms. The functions [®,!(r”,1')].s
are defined from the integral equation

Z / dr”® g (v, ") [@, 1 (" 1)y = 0(r — 1),
b/

where

Do (1, 1) = (71 (r)(x"))o
is the equilibrium pair distribution of gas atoms. Then, from the integral equation
like the above, one obtains the relation:

ab(

B2 (0 )y = L) 5 (e ),

or —r')
()
(Ng(r"))o is the unary distribution function, whereas c“b(r r’) is the direct correla-
tion function of gas atoms. The diffusion coefficients D”.(r, R';¢,t'), D? (R, 1';t, 1),
DY (R, R/;t,t') have a structure similar to D,, and are a generalization of Green-
Kubo formulae for diffusion in spatially inhomogeneous systems. Their calculations
depend on the processes under consideration: long-time or short-time.
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The transport cores

/.
K, (RR r'st, 1),
KZaVGle_) (]-:{7 R”, R”/; t, t )’
v, 1! IS Y/ ", /
KG’ -G’a/y(RvR‘vR 7R 7t>t)

are higher memory functions and describe diffusion-reaction processes in the system.
They have the following structure:

Ki  (R,Rr5t,t) =

bnb(
= Z/dr”Ué;‘b(R, R)To(t, ') Iy (x"))o[ @y (2 )i, (3.16)
K4, (R RRY1,1) =

=> / dR"(I¢ (R, R)To(t, )T (R”))o[@, (R” R)|E, (3.17)
o

gt (RiR R/ Rt 1) =
- ZZ/dR4/dR5(I”“ (R, R)Ty(t, )15 (Ra, Rs))o

1., ’

x [B55(Ry, ReRY, R")[ 170 (3.18)

cc/al b/ Y

where [, (R4, RsR”, R )];’;;/,;;,” " are the elements of inverse matrix (can be found
using the integral relations of type [19] to the matrices, the elements of which are

the equilibrium quantum correlation functions

!0 !

(I)’Y’Y VL (1%47 R5R”, R///) _ (Gg;/(R4, R5)GU w

ce'a't! oy

(R”,R"))q (3.19)

for the adsorbed atoms in corresponding states on the metal surface.

Correlation functions (3.5)—(3.7) are expressed via the four-, three-, two- and one-
particle quantum distribution functions. Problems of their calculation are the ones of
the most important in equilibrium statistical mechanics. For our case, an additional
complication arises due to the complexity of “metal-adsorbate-gas” system. The
above mentioned correlation functions can be calculated as the functional derivatives
of equilibrium Massieu-Planck functional value, i.e. grand statistical sum: ® = In Z.
In particular, the equilibrium correlation functions (3.5)—(3.7), (3.19) are expressed
via the equilibrium functions:

(7a ()5 (r"))0, <NlliNj/j/>o7
(R(R)AL(R))o, (GL (Ra, Rs)GLE (R”, R"))o
(a(0)E(R))o, (G (Ry, Rs)it (R'))o,

>
IS}

which are calculated for the equilibrium statistical operator pg (3.3). As it follows
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from its structure, the averages, given above, can be expressed via the Massieu-
Planck functional:

5?2 1) 1)
Ny () (r'))g = ——————1In 7 — InZ InZ,
< () b( )>0 5ua(r)5ub(1"’) 5/~La<r) 5/%(1./)
(nZ(R)AX(R))o = i InZ — 0 InZ 0 InZ
¢ b Sy (R)opus (RY) duy(R) opg(RY)
2
(G2 (Ra, Rs) G2 (R R"))y = ——, Q— InZ
a SMYY (Ry, Rs)S M"Y (R”, R™)
_ . InZ — 0 InZ,
6OMJy (Ry, Rs) oM7E (R, R™)
AN &2 )
NNy = InZ — Inz InZ.
(Nur N 3o (10be (7)) Sl Sbo (i)

Other cross equilibrium functions can be obtained from In Z in the same way. So, the
InZ, or grand statistical sum (3.4) should be calculated for the “metal-adsorbate-
gas” system. This calculation depends much on the choice of the statistical model
and can be performed using the collective variables method [25], which takes into
account the screening effects.

Thus, using the NSO method by D.N.Zubarev, we have obtained generalized
transport equations of consistent description of kinetic electron and diffusion- reac-
tion atomic processes in a system “metal-adsorbate-gas”. These equations are valid
for both strongly and weakly nonequilibrium processes. They can be used for the
calculation of one-electron density matrix and, in such a way, for electron currents
and nonuniform diffusion and chemical reaction coefficients of adsorbed and non-
adsorbed gas atoms on a metal surface. This is very important for the investigation
of surface phenomena, in particular, in electron tunnelling scanning and in catalysis
processes. It is important to take into consideration phonon oscillations of substrate
atoms and study their effect on electron tunnelling processes and diffusion-reaction
processes of the adsorbed atoms.

It is an important role of local magnetic field, or, more generally, of electro-
magnetic field of electron-ion metal surface subsystem. Such magnetic fields effect
the ion, the electron spin subsystems, and thus can induce a local magnetization
phenomenon, which together with a polarization phenomenon cause the reconstruc-
tion of a surface, increasing its catalytic activity. Certainly, these electromagnetic
processes should be taken into account in catalytic synthesis on a nanostructure.

A consideration of these problems in our approach will be the subject of our
future work.
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CratuctuyHa teopis audysinHO-peakuiiHMX npouecis
y cuctemi “meTtan-apacopobar-ras”

M.M.Koctpobin ', 6.M.Mapkosuu ', 10.K.Pynascbkuin ',
M.B.Tokapuyk 2

HaujoHanbHuii yHiBepcuTeT “JIbBiBCbKa MONITEXHIKA”,
79646 JlbBiB, Byn. C.Bangepn, 12

IHCTUTYT ®i3ukn koHaeHcoBaHnx cuctem HAH YkpaiHu,
79011 JibBiB, ByN. CBEHLjUBKOrO, 1

OtpumaHo 1 6epesHsa 2001 p.

Mwn npeacTaBngaeEMO CTaTUCTUYHY Teopilo AMdY3iNHO-peakUiH1X Npo-
LeciB ona rasoBux CyMmillen B cucTtemi “metan-ancopbart-rad”. Teo-
pis 6a3yeTbCca Ha PiBHONPaBHOMY BpaxyBaHHiI €NeKTPOH-eNnekTPOHHMX,
€NeKTPOH-aTOMHUX Ta aTOM-aTOMHUX B3aEMOSI Mix aacopboBaHMMK
Ta HeagcopboBaHUMKM aToOMamMm i aToMaMm NMNOBEpPXHi meTany. Ha nosep-
XHi MeTany Mix aacopboBaHNMM aTOMaMn MOXYTb NPOXOAUTU BiMone-
KynspHi peakuii A + B +» AB. 3acTtocyBaBLIN METO[, HEPIBHOBAXHO-
ro cTaTUCTUYHOro onepatopa 3ybapesa, M1 OTPMMaU CUCTEMY PIBHSHb
nepeHocy ANg y3rogXXeHoro onucy KiHeTUku enekTpoHiB Ta AndyasinHo-
peakuinH1MX aTOMHUX NPOLECIB.

KniouoBi cnoBa: azcopbar, Andy3iiHo-peakuiiHi aToMHi rnpoLecu,
PIBHSIHHSI NepeHocy

PACS: 05.30.Ch, 05.20.Dd, 73.40.Gk, 68.45.Kg
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