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Within the proposed earlier model we study effects of stress σ1 −σ2 on the
KD2PO4 type ferroelectrics. In the cluster approximation for the short-range
correlations, we calculate dielectric, piezoelectric, and elastic characteris-
tics of a strained by σ1−σ2 KD2PO4 type crystal. Numerical analysis of the
obtained results is performed. Stress dependences of the calculated char-
acteristics and the phase diagram are explored. Possibility of the induced
by σ1 − σ2 phase transition into a new paraelectric phase with monoclinic
symmetry is discussed.
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1. Introduction

Pressures that do not lower the symmetry of the KH2PO4 family ferroelectrics
(hydrostatic and uniaxial p = −σ3) only lower the transition temperature in these
crystals. In contrast, the shear stresses of different symmetries can produce qualita-
tive changes in the phase diagrams, inducing new phase transitions or removing the
existing ones. Thus the shear stress σxy = σ6, which in these crystals is an external
field conjugate to the order parameter, smears out the ferroelectric phase transition,
reducing the jump of polarization until it entirely vanishes at a certain critical stress
[1,2].

External pressure studies of the KH2PO4 family systems in our group were ini-
tiated by Stasyuk and Biletskii in [3,4] where they proposed a microscopic model
of strained KD2PO4. They established a form of the internal fields and splittings
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of the deuteron short-range configuration energies produced by piezoelectric and
strictional coupling with lattice strains of different symmetries, as well as by mere
changes in the interparticle distances. Within this approach we later studied hydro-
static and uniaxial σ3 pressures effects in the KH2PO4 family crystals, developing a
unified model for both ferroelectric and antiferroelectric systems of this type [5] and
revealing a universal dependence of the transition temperature in several crystals of
this family on the distance between the equilibrium hydrogen sites on bond.

In [3,4] Stasyuk and Biletskii also explored the effects of the σ1 − σ2 (σxx −
σyy) stress on the phase diagram of a KD2PO4 crystal. This symmetrized stress is
transformed via the B1 irreducible representation and is a purely shear stress in
the paraelectric phase. Its practical realization (simultaneous compression along the
axis a and stretching along the axis b) is a rather complicated task; however, it is
interesting from a theoretical standpoint in connection with the fact that highly
deuterated KD2PO4 and RbD2PO4 easier crystallize in a monoclinic modification
rather than in a usual tetragonal one. It has been shown [3,4] that high enough values
of the σ1 − σ2 stress induce a phase transition into a new phase, of presumably
monoclinic symmetry with the strain ε1 − ε2 significantly larger than at stresses
right below the critical one. This indicates that monoclinic lattice symmetry of
highly deuterated KD2PO4 and RbD2PO4 might result from local stresses σ1 − σ2
produced by inclusion of larger ions.

In the present paper we return to the studies of the σ1 − σ2 stress and explore
its influence on the phase diagram, dielectric, piezoelectric, and elastic properties of
the KD2PO4 type crystals.

2. Thermodynamics. The four-particle cluster approximati on

We consider a system of deuterons moving on the hydrogen bonds O–D. . .O in
a ferroelectric KD2PO4 type crystal. A primitive cell of the crystal consists of two
neighbouring tetrahedra PO4 along with four hydrogen bonds attached to one of
them (type “A” tetrahedra). The bonds attached to the other tetrahedron (of the
“B” type) belong to the four nearest structural elements surrounding it.

To a crystal we apply a stress σ1−σ2 ≡ σ12. If σ1 = σ2, in the paraelectric phase
only two components of the strain tensor are different from zero: ε1 and ε2, and
ε1 = −ε2. In the ferroelectric phase due to the difference in the elastic constants
cE11 6= cE22 the strains ε1 and −ε2 may differ as well, but slightly. Therefore, in the
microscopic Hamiltonian below we take into account only the contributions of a
symmetrized strain ε12 ≡ ε1 − ε2 and neglect all the effects related to ε1 + ε2;
however, we separate ε1 and ε2 when necessary.

Hamiltonian of a deuteron subsystem of the KD2PO4 crystal, to which the shear
stress σ1 − σ2 ≡ σ12 and electric fields Ei (i = 1, 2, 3) are applied, reads [3,4]:

Ĥi =
v̄N

2
(c0E11 ε

2
1 + 2c0E12 ε1ε2 + c0E22 ε

2
2)−

v̄N

2
χ0
33E

2
3
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+
∑

q1q2
q3q4

{

1

2

∑

ff ′

Vff ′

σqff

2

σqf ′f ′

2
+ Φ

σq11
2

σq22
2

σq33
2

σq44
2

}

× {δq1q2δq1q3δq1q4 + δq1+r2,q2δq1+r3,q3δq1+r4,q4}

+
1

2

∑

aa′

ff ′

Jff ′(qq′)
σqff

2

σqf ′f ′

2
−
∑

qf

[2µF i
f(12) + µfiEi]

σqf
2
. (2.1)

Two first terms in the Hamiltonian correspond to the elastic and electric energies
stored in a crystal and independent of the deuteron subsystem configuration; c0Eij
and χ0

33 are the “seed” elastic constants and dielectric susceptibility; v̄ = v/kB is
the primitive cell volume normalized per Boltzmann constant kB.

The third and the fourth terms in the Hamiltonian describe configurational short-
range interactions between deuterons surrounding tetrahedra of the “A” and “B”
types (first and second products of the δ-functions, respectively). The eigenvalues
of the operator σqf = ±1 correspond to two equilibrium deuteron sites on the fth
bond in the qth unit cell. Jff ′(qq′) are the constants of the long-range interactions
(dipole-dipole and lattice mediated) between deuterons.

Factors µF i
f(12) are internal fields created by strictional coupling with the strains

ε1 and ε2 [3,4]

µF i
f (12) =

∑

f ′

ψff ′〈σqf ′〉εi. (2.2)

Symmetry analysis of the above fields have been performed in [3,4].
In an unstrained crystal there is a single order parameter

η(1) = 〈σq1〉 = 〈σq2〉 = 〈σq3〉 = 〈σq4〉. (2.3)

An external stress σ12 breaks equivalence of hydrogen bonds. It shortens the bonds
going along the a-axis and elongates those going along the b-axis. The deuteron
ordering is then characterized by two order parameters

η
(1)
13 = 〈σq1〉 = 〈σq3〉, η

(1)
24 = 〈σq2〉 = 〈σq4〉. (2.4)

Static and dynamic properties of the KD2PO4 type crystals will be considered
in the four-particle cluster approximation with the Hamiltonian H iA

4 :

Ĥ iA
4 =

∑

q

Ĥ iA
4q =

=
∑

q

{

V
(σq1

2

σq2
2

+
σq2
2

σq3
2

+
σq3
2

σq4
2

+
σq4
2

σq1
2

)

+

+(U + 2δ12 ε12)
σq1
2

σq3
2

+ (U − 2δ12ε12)
σq2
2

σq4
2

+ Φ
σq1
2

σq2
2

σq3
2

σq4
2

− Ĥ i
4(q)

}

,

(2.5)

Ĥz
4 (q) =

zz13
β

(σq1
2

+
σq3
2

)

+
zz24
β

(σq2
2

+
σq4
2

)

,
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Ĥx
4 (q) =

zx1
β

σq1
2

+
zx3
β

σq3
2

+
zx24
β

(σq2
2

+
σq4
2

)

,

Ĥy
4 (q) =

zy3
β

(σq1
2

+
σq3
2

)

+
zy2
β

σq2
2

+
zy4
β

σq4
2
, (2.6)

where
V = −

w1

2
, U = −ε+

w1

2
, Φ = 4ε− 8w + 2w1,

and ε, ω, ω1 are the energies of short-range deuteron configurations. The induced
by the stress σ12 strain ε12 lowers the system symmetry and splits the energy levels
of the single-ionized (one- and three-particle) deuteron configurations to two levels
with the energies [3,4]

w± = w ± δ12ε12, (2.7)

with the splitting constant δ12. Energies of the other short-range energy levels remain
unchanged [3,4].

The effective fields zif have the following symmetry

zz13 = β [−∆13 + (ν + ν̄ + 2ψ2ε12) η
(1)z
13 + (ν − ν̄)η

(1)z
24 + µ3E3],

zz24 = β [−∆24 + (ν − ν̄)η
(1)z
13 + (ν + ν̄ − 2ψ2ε12)η

(1)z
24 + µ3E3];

zx1 = β [−∆1 + 2(ν1 + ψ1ε12) η
(1)x
1 + 2(ν3 + ψ3ε12)η

(1)x
3 + 4ν2η

(1)x
24 + µ1E1],

zx3 = β [−∆3 + 2(ν3 + ψ3ε12) η
(1)x
1 + 2(ν1 + ψ1ε12)η

(1)x
3 + 4ν2η

(1)x
24 − µ1E1],

zx24 = β[−∆24 + 2ν2(η
(1)x
1 + η

(1)x
3 ) + 2(ν1 + ν3 − ψ2ε12)η

(1)x
24 ];

zy13 = β[−∆13 + 2(ν1 + ν3 + ψ2ε12)η
(1)y
13 + 2ν2(η

(1)y
2 + η

(1)y
4 )],

zy2 = β[−∆2 + 4ν2η
(1)y
13 + 2(ν1 − ψ1ε12)η

(1)y
2 + 2(ν3 − ψ3ε12)η

(1)y
4 − µ2E2],

zy4 = β[−∆4 + 4ν2η
(1)y
13 + 2(ν3 − ψ3ε12)η

(1)y
2 + 2(ν1 − ψ1ε12)η

(1)y
4 + µ2E2], (2.8)

where

ν1 =
J11
4
, ν2 =

J12
4
, ν3 =

J13
4
,

ν = ν1 + 2ν2 + ν3, ν̄ = ν1 − 2ν2 + ν3, ψ2 = ψ1 + ψ3

µ3 = µ13 = µ23 = µ33 = µ43,

µ1 = µ11 = −µ31, µ21 = µ41 = 0,

µ2 = µ22 = −µ42, µ12 = µ32 = 0,

ψ1, ψ3 are the so-called deformation potentials.
The single-particle deuteron Hamiltonians under the stress σ12 and in the field

Ei read

Ĥ
(1)z
1,3 = −

z̄z13
β

σq1,3
2
, Ĥ

(1)z
2,4 = −

z̄z24
β

σq2,4
2

;

Ĥ
(1)x
1,3 = −

z̄x1,3
2

σq1,3
2
, Ĥ

(1)x
2,4 = −

z̄x24
β

σq2,4
2

;

Ĥ
(1)y
1,3 = −

z̄y13
2

σq1,3
2
, Ĥ

(1)y
2,4 = −

z̄y2,4
β

σq2,4
2
. (2.9)
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The expressions for z̄z13, ..., z̄
y
2,4 can be obtained from (2.8) by changing ∆13, ...,∆4

with 2∆13, ..., 2∆4.

The single-particle distribution functions calculated within the four-particle clus-
ter approximation are

η
(1)z
13 =

mz
13

Dz
12

; η
(1)z
24 =

mz
24

Dz
12

, (2.10)

η
(1)x
1
3

=
mx

1
3

Dx
12

, η
(1)x
24 =

mx
24

Dx
12

; η
(1)y
13 =

my
13

Dy
12

, η
(1)y
2
4

=
my

2
4

Dy
12

,

where the following notations are used

mz
13 = sinh(zz13 + zz24) + d sinh(zz13 − zz24) + 2bc12 sinh z

z
13,

mz
24 = sinh(zz13 + zz24)− d sinh(zz13 − zz24) + 2

b

c12
sinh zz24,

mx
1
3

= sinhAx
1 + d sinhAx

2 ± 2a sinhAx
3

±
b

c12
sinhAx

5 ±
b

c12
sinhAx

6 + 2bc12 sinhA
x
7),

mx
24 = sinhAx

1 − d sinhAx
2 +

b

c12
(sinhAx

5 −
b

c12
sinhAx

6 ,

my
13 = sinhBy

1 − d sinhBy
2 + bc12 sinhB

y
7 + bc12 sinhB

y
8 ,

my
2
4

= sinhBy
1 + d sinhBy

2 ± 2a sinhBy
4 + 2

b

c12
sinhBy

6

±bc12 sinhB
y
7 ∓ bc12 sinhB

y
8 . (2.11)

Dz
12 = cosh(zz13 + zz24) + d cosh(zz13 − zz24) + 2a+ 2bc12 cosh z

z
13 + 2

b

c12
cosh zz24,

Dx
12 = coshAx

1 + d coshAx
2 + 2a coshAx

3 + 2
b

c12
coshAx

5 + 2bc12 coshA
x
7 ,

Dy
12 = coshBy

1 + d coshBy
2 + 2a coshBy

4 + 2
b

c12
coshBy

6 + 2bc12 coshB
y
8 ,

and

Ax
1
2

= 2(zx1 + zx3 ± 2zx24), Ax
3 = 2(zx1 − zx3 ),

Ax
5
6

= 2(zx1 − zx3 ± 2zx24), Ax
7 = 2(zx1 + zx3 ),

By
1
2

= 2(zy13 ± zy2 ± zy4), By
4 = 2(zy2 − zy4 ),

By
6 = 2(zy2 + zy4), By

7
8

= 2(2zy13 ± zy2 ∓ zy4),

a = exp (−βε), b = exp (−βw),

d = exp (−βw1), c12 = exp (−βδε12). (2.12)
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After excluding ∆13, ...,∆4 from (2.8), the quantities zz13, ..., z
y
4 acquire the form

zz13 =
1

2
ln

1 + η
(1)
13

1− η
(1)
13

+
β

2

[

(ν + ν̄ + ψ2ε12)η
(1)z
13 + (ν − ν̄)η

(1)z
24 + µ3E3

]

,

zz24 =
1

2
ln

1 + η
(1)
24

1− η
(1)
24

+
β

2

[

(ν − ν̄)η
(1)z
13 + (ν + ν̄ − ψ2ε12)η

(1)z
24 + µ3E3

]

,

zx1
3

=
1

2
ln

1 + η
(1)x
1
3

1− η
(1)x
1
3

+ β(ν 1
3
+ ψ 1

3
ε12)η

(1)x
1 + β(ν 1

3
+ ψ 1

3
ε12)η

(1)x
3

+ 2βν2 η
(1)x
24 ±

β

2
µ1E1,

zx24 =
1

2
ln

1 + η
(1)
24 x

1− η
(1)x
24

+ βν2(η
(1)x
1 + η

(1)x
3 ) + β(ν1 + ν3 − ψ2ε12)η

(1)x
24 ,

zy13 =
1

2
ln

1 + η
(1)
13 y

1− η
(1)y
13

+ β(ν1 + ν3 + ψ2ε12)η
(1)y
13 + βν2(η

(1)x
2 + η

(1)x
4 ),

zy2
4

=
1

2
ln

1 + η
(1)y
2
4

1− η
(1)y
2
4

+ 2βν2η
(1)y
13 + β(ν 1

3
− ψ 1

3
ε12)η

(1)y
2

+ β(ν 1
3
− ψ 1

3
ε12)η

(1)y
4 ±

β

2
µ2E2.

Finally, we calculate the thermodynamic potential of a deuteron subsystem of
the KD2PO4 type crystal to which the stress σ12 is applied. In the used four-particle
cluster approximation we obtain

g1E(12) =
1

2
v̄(c0E11 ε

2
1 + 2c0E12 ε1ε2 + c0E22 ε

2
2)−

v̄

2
χ0
33E

2
3 + 2T ln 2

+
1

2
(ν + ν̄)

[

(

η
(1)z
13

)2

+
(

η
(1)z
24

)2
]

+ (ν − ν̄)η
(1)z
13 η

(1)z
24 +ψ12ε12

[

(

η
(1)z
13

)2

−
(

η
(1)z
24

)2
]

−T ln

[

1−
(

η
(1)z
13

)2
] [

1−
(

η
(1)z
24

)2
]

− 2T lnDz − v̄(σ1ε1 + σ2ε2). (2.13)

Thermodynamic equilibrium conditions are

1

v̄

(

∂g1E(12)

∂ε1

)

E3,σ12

= 0,
1

v̄

(

∂g1E(12)

∂ε2

)

E3,σ12

= 0,

1

v̄

(

∂g1E(12)

∂E3

)

ε12,σ12

= −P3. (2.14)

Using (2.13) and (2.14) we obtain

σ1 = (c0E11 ε1 + c0E12 ε2)−
ψ12

v̄

[

(η
(1)z
13 )2 − (η

(1)z
24 )2

]
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+
2δ12
v̄Dz

12

(

2bc12 cosh z
z
13 − 2

b

c12
cosh zz24

)

,

σ2 = (c0E12 ε1 + c0E22 ε2) +
ψ12

v̄

[

(η
(1)z
13 )2 − (η

(1)z
24 )2

]

−
2δ12
v̄Dz

12

(

2bc12 cosh z
z
13 − 2

b

c12
cosh zz24

)

, (2.15)

P3 = χ0
33E3 +

µ13

v̄

mz
13

Dz
12

+
µ24

v̄

mz
24

Dz
12

. (2.16)

From (2.16) the electric field

E3 =
1

χ0
33

P3 −
1

χ0
33

(

µ13

v

mz
13

Dz
12

+
µ24

v

mz
24

Dz
12

)

. (2.17)

Hence, the system of equations for η
(1)
13 , η

(1)
24 , and ε12 can be written as

η
(1)
13 =

m13

D12

, η
(1)
24 =

m24

D12

,

σ1 − σ2 = (c011 − c012)ε1 − (c022 − c012)ε2

−
2ψ12

v̄

[

(η
(1)
13 )

2 − (η
(1)
24 )

2
]

−
4δ12
v̄D12

(

2bc12 cosh z13 − 2
b

c12
cosh z24

)

. (2.18)

In the paraelectric phase the following relation between σ12 and ε12 holds

σ12 = (c011 − c012)ε12 −
16δ12b sinh βδ12ε12

v̄(1 + 2a+ 2d+ 4b cosh βδ12ε12
. (2.19)

The first order phase transition temperature between the ferroelectric and para-
electric phases Tc is obtained from the following system of equations

g1E[η
(1)
13 (Tc), η

(1)
24 (Tc), ε12, Tc] = g1E(0, 0, ε12, Tc),

η
(1)
13 (Tc) =

m13(Tc)

D12(Tc)
,

η
(1)
24 (Tc) =

m24(Tc)

D12(Tc)
. (2.20)

3. Piezoelectric, elastic, and dielectric characteristic s of
KD2PO4 type crystals under the σ12 stress

The coefficients of piezoelectric stress are

e31 =
(∂P3

∂ε1

)

E3

=
µ13

v

(

∂η
(1)
13

∂ε1

)

E3

+
µ24

v

(

∂η
(1)
24

∂ε1

)

E3

,

e32 =
(∂P3

∂ε2

)

E3

=
µ13

v

(

∂η
(1)
13

∂ε2

)

E3

+
µ24

v

(

∂η
(1)
24

∂ε2

)

E3

. (3.1)
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Here we neglect stress and temperature dependences of the effective dipole moments
µ13 and µ24. From the expressions for the single-particle distribution functions (2.10),
we obtain the following system of equations

N11

(

∂η
(1)
13

∂ε1

)

E3

+N12

(

∂η
(1)
24

∂ε1

)

E3

= N ε
1 ,

N21

(

∂η
(1)
13

∂ε1

)

E3

+N22

(

∂η
(1)
24

∂ε1

)

E3

= N ε
2 , (3.2)

where

N11 = D − (ϕη
13κ13 + ϕη

1−4s), N12 = −(ϕη
1−4κ13 + ϕη

24s),

N21 = −(ϕη
13s+ ϕη

1−4κ24), N22 = D − (ϕη
1−4s+ ϕη

24κ24),

N ε
1 = βθ13, N ε

2 = βθ24, (3.3)

and

θ13 = ψ12

(

η
(1)
13 κ13 − η

(1)
24 s
)

+ δ12t13,

θ24 = ψ12

(

η
(1)
13 s− η

(1)
24 κ24

)

+ δ12t24, (3.4)

κ13 = cosh(z13 + z24) + d cosh(z13 − z24) + 2bc12 cosh z13 − η
(1)
13 m13,

κ24 = cosh(z13 + z24) + d cosh(z13 − z24) + 2
b

c12
cosh z24 − η

(1)
24 m24,

s = cosh(z13 + z24)− d cosh(z13 − z24)− η
(1)
13 m24,

t13 = −2bc12 sinh z13 + η
(1)
13 (2bc12 cosh z13 − 2

b

c12
cosh z24),

t24 = −2
b

c12
sinh z24 + η

(1)
24 (2bc12 cosh z13 − 2

b

c12
cosh z24),

ϕη
13 =

1

1− η
(1)2
13

+
1

2T
(ν + ν̄) +

1

T
ψ12ε12,

ϕη
24 =

1

1− η
(1)2
24

+
1

2T
(ν + ν̄)−

1

T
ψ12ε12,

ϕη
1−4 =

1

2T
(ν − ν̄). (3.5)

From the system (3.2), we obtain

e31 =
µ13

v

β

∆
{Dθ13 + ϕη

24(−θ13κ24 + θ24s) + ϕη
1−4(−θ13s+ θ24κ13)}

+
µ24

v

β

∆
{Dθ24 + ϕη

13(θ13s− θ24κ13) + ϕη
1−4(−θ24s+ θ13κ24)}, (3.6)

e32 = −e31, (3.7)
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where

∆ = D2 −D(ϕη
13κ13 + ϕη

24κ24 + 2ϕη
1−4s) +

[

ϕη
13ϕ

η
24 − (ϕη

1−4)
2
]

(κ13κ24 − s2). (3.8)

Similarly, using the single-particle distribution functions (2.10) and the relations
(2.16), we find the static dielectric susceptibility of a clamped KD 2PO4 crystal along
the c-axis

χε
33(0, T, σ12) =

(∂P3

∂E3

)

ε12

= χ0
33 +

µ13

v̄

(

∂η
(1)z
13

∂E3

)

ε12

+
µ24

v̄

(

∂η
(1)z
24

∂E3

)

ε12

. (3.9)

The quantities

(

∂η
(1)z
13

∂E3

)

ε12

and

(

∂η
(1)z
24

∂E3

)

ε12

obey the following system of equations

N11

(

∂η
(1)z
13

∂E3

)

ε12

+N12

(

∂η
(1)z
24

∂E3

)

ε12

= NE
1 ,

N21

(

∂η
(1)z
13

∂E3

)

ε12

+N22

(

∂η
(1)z
24

∂E3

)

ε12

= NE
2 , (3.10)

where

NE
1 =

βµ13

2
κ13 +

βµ24

2
s; NE

2 =
βµ13

2
s+

βµ24

2
κ24. (3.11)

It yields

χε
33(0, T, σ12) = χ0ε

33 + v̄
µ2
13

v2
1

2T∆
[Dκ13 − ϕη

24(κ13κ24 − s2)]

+v̄
µ2
24

v2
1

2T∆
[Dκ24 − ϕη

13(κ13κ24 − s2)]v̄
µ13µ24

v2
1

T∆
[Ds− ϕη

1−4(κ13κ24 − s2)].

(3.12)

Constants of the piezoelectric stress

h31 = −

(

∂E1

∂ε1

)

P3

, h32 = −

(

∂E1

∂ε2

)

P3

, (3.13)

using the system of equations

N11

(

∂η
(1)z
13

∂ε1

)

P3

+N12

(

∂η
(1)z
24

∂ε1

)

P3

= N ε
1 +NE

1

(

∂E3

∂ε1

)

P3

,

N21

(

∂η
(1)z
13

∂ε1

)

P3

+N22

(

∂η
(1)z
24

∂ε1

)

P3

= N ε
2 +NE

2

(

∂E3

∂ε1

)

P3

, (3.14)

and the expression (2.17), are found in the following form

h31 =
e31
χε
33

, h32 =
e32
χε
33

. (3.15)
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Let us now calculate the elastic characteristics of a KD2PO4 crystal under the
stress σ12. From (2.16) and solutions of (3.2) we obtain the elastic constants at a
constant field

cE11 =
(∂σ1
∂ε1

)

E3

=

{

c0E11 −
2ψ12

v̄

(

η
(1)
13 e13 − η

(1)
24 e24

)

−
2δ12ψ12

v̄D12T

(

η
(1)
13 t13 − η

(1)
24 t24

)

−
2δ12
v̄D12

[(ϕη
13t13 + ϕη

1−4t24)e13 + (ϕη
1−4t13 + ϕη

24t24)e24]

+
2δ212
v̄D2

12T

(

2bc12 cosh z13 − 2
b

c12
cosh z24

)2

−
2δ212
v̄D12T

(

2bc12 cosh z13 + 2
b

c12
cosh z24

)

}

= c0E11 − cE(12),

cE12 =
(∂σ1
∂ε2

)

E3

=
(∂σ2
∂ε1

)

E3

= c0E12 + cE(12),

cE22 =
(∂σ2
∂ε2

)

E3

= c0E22 − cE(12). (3.16)

From (2.16) and solutions of the systems (3.2) and (3.6), we find the elastic constants
at constant polarization

cP11 = cE11 + e31h31, (3.17)

cP12 = cE12 + e32h31 = cE12 − (e32h32) · 10
−2,

cP22 = cE22 + e32h32. (3.18)

Elastic compliances
(

∂ε1
∂σ1

)

E3

= sE11,
(

∂ε2
∂σ1

)

E3

= sE21 obey the system of equations

cE11s
E
11 + cE12s

E
12 = 1, cE12s

E
22 + cE11s

E
12 = 0,

cE12s
E
11 + cE22s

E
12 = 0, cE22s

E
22 + cE12s

E
12 = 1. (3.19)

Hence

sE11 =
cE22

cE11c
E
22 − (cE12)

2
, sE12 =

cE12
cE11c

E
22 − (cE12)

2
, sE22 =

cE11
cE11c

E
22 − (cE12)

2
. (3.20)

From (3.20) we obtain expressions for the constants of piezoelectric strain and for
compliances at constant polarization

g31 = h31(s
P
11 − sP12), g32 = h31(s

P
12 − sP22), (3.21)

sP11 =
cP22

cP11c
P
22 − (cP12)

2
, sP12 =

cP12
cP11c

P
22 − (cP12)

2
, sP22 =

cP11
cP11c

P
22 − (cP12)

2
. (3.22)

The coefficient of piezoelectric strain

d31 =

(

∂P3

∂σ1

)

E3

=
µ13

v

(

∂η
(1)
13

∂σ1

)

E3

+
µ24

v

(

∂η
(1)
24

∂σ1

)

E3

. (3.23)
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can be found from the system of equations

N11

(

∂η
(1)
13

∂σ1

)

E3

+N12

(

∂η
(1)
24

∂σ1

)

E3

= N ε
1

(

∂ε1
∂σ1

)

E3

−N ε
2

(

∂ε2
∂σ1

)

E3

,

N21

(

∂η
(1)
13

∂σ1

)

E3

+N22

(

∂η
(1)
24

∂σ1

)

E3

= N ε
2

(

∂ε1
∂σ1

)

E3

−N ε
2

(

∂ε2
∂σ1

)

E3

in the following form

d31 = e31s
E
11 + e32s

E
21 = e31(s

E
11 − sE12). (3.24)

Similarly
d32 = e31s

E
12 + e32s

E
22 = e31(s

E
12 − sE22).

Since

d31 =

(

∂ε1
∂E3

)

σ

and d32 =

(

∂ε2
∂E3

)

σ

,

we can also find the longitudinal dielectric susceptibility of a free crystal (σ =
const)

χσ
33(0, T, σ12) = χε

33 + e31(d31 − d32). (3.25)

Since the stress σ12 lowers down the crystal symmetry, the static dielectric sus-
ceptibilities along the a and b axes are different. The transverse susceptibility along
the a-axis is

χ11(0, T, σ12) = χ0
11 + v̄

µ2
1

v2
1

T

2(a+ b/c12 cosh z24)

Da
12

, (3.26)

where

Da
12 = D12 − 2(a+ b/c12 cosh z24)[1/(1− η

(1)2
13 ) + β(ν1 − ν3) + (ψ1 − ψ3)ε12)],

whereas that along the b-axis is

χ22(0, T, σ12) = χ0
11 + v̄

µ2
2

v2
1

T

2(a+ bc12 cosh z13)

Db
12

, (3.27)

Db
12 = D12 − 2(a+bc12 cosh z13)[1/(1−η

(1)2
24 )+β(ν1−ν3)− (ψ1−ψ3)ε12)].

4. Discussion

For numerical estimate of mechanical stress σ12 and temperature dependences
of the characteristics calculated in the previous section, we use the values of the
theory parameters, obtained in [6,7]. These values provide a good description of
experimental data for thermodynamic and dynamic characteristics of KD2PO4: ε =
93 K, w = 840 K, w1 = ∞, ν =37.44 K, ν̄ =16 K at Tc = 219.7 K.

The strain ε12 splits the energies of one and three-particle deuteron configura-
tions w. The splitting is attributed mostly to the changes in the D-site distances:
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∆w/w ∼ 2∆δ/δ. Under hydrostatic pressure ∆δ/δ ∼ −1%/kbar [8], and the changes
of O-O and D-D distances are accompanied by rotation of PO4 tetrahedra. Since
the symmetrized stress σ12 presumably does not lead to the tetrahedra rotation, the
changes in the D-site distances here are assumed to be approximately twice as large
as those in the hydrostatic pressure case at the same value of external stress. There-
fore, at σ12 stress ∆δ/δ ∼ ±2%/kbar, and δw = ∆w/w = δ12ε12/w ∼ 4 %/kbar.

In this paper we obtained a microscopic expression for a deuteron subsystem
contribution c(12) to the elastic constants. The contributions of other mechanisms
to c11 and c12 are taken into account implicitly by a proper choice of the “seed”
temperature independent elastic constants c

(0)
11 and c

(0)
12 . Calculations have shown

that the parameter ψ12 hardly affects the physical characteristics of a crystal; we set
ψ12 = 600 K. Hence, the values of the elastic constants c11 and c12 in the paraelectric
phase at zero stress σ12 = 0 are determined by the deformation potential δ12 and
the “seed” elastic constants c

(0)
11 and c

(0)
12 .

Figure 1 illustrates how the presented theory describes the experimental temper-
ature dependence of the elastic constants c11 and c12 at σ12 = 0 and different values
of δ12.

Figure 1. Dependences of the elastic constants c11 and c12 on temperature at
different values of δ12 : 1 – 18440; 2 – 23500; 3 – 25580. Experimental points are
taken from [9,10].

As will be shown below, the contribution of a deuteron subsystem c(12) to the
elastic constants is negative and increases with temperature and with δ12 (see fig-
ure 1). The deformation potential δ12 also increases the slope |∂c11/∂T |. According
to [9], the elastic constant c12 of KH2PO4 hardly depends on temperature. Within

our approach, c11 = c
(0)
11 −c(12), and c12 = c

(0)
12 +c(12). Therefore, if c11 is a decreasing

function of temperature, then c12 is an increasing one.

It is experimentally found [9] that the relative change in the elastic constant c11
δc = c11(Tc + 80 K)/c11(Tc)− 1 for KH2PO4 crystals is about ∼ 9%. For deuterated
crystals K(H0.11D0.89)2PO4 at T = Tc + 72 K c11 = 6.93 · 1011 dyn/cm2 and c12 =
−0.71 · 1011 dyn/cm2 [10]. For completely deuterated KD2PO4 at T = Tc +72 K we
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take c11 ≈ 6.4 · 1011 dyn/cm2, extrapolating the values of the elastic constants of
KH2PO4 and K(H0.11D0.89)2PO4 at this temperature.

However, the calculations show that at no set of the parameters δ12 and c
(0)
11 −

c
(0)
12 it is possible to simultaneously obtain the correct values of δw = 4%/kbar,
as well as correct value and temperature variation of the elastic constant c11 =
6.4 · 1011 dyn/cm2 and δc ∼ 9 %. The value of δw increases with δ12, but it is still
smaller than 4%/kbar even at δ12 = 25935 K, where the ferroelectric phase vanishes,
and δc ∼ 20%. At δ12 = 18440 K and c011 = 7.76 · 1011 dyn/cm2 we have δc = 9%,
but then δw = 2%/kbar, and the phase transition in stress disappears.

Hence we use such values of the deformation potential δ12 and “seed” elastic
constants that provide a good fit both to the ratio δw and to the temperature curve
of the elastic constant c11: δ12 = 23500 K, c

(0)
11 = 8.65 · 1011 K, c

(0)
11 = −2.25 · 1011 K.

At these values we obtain δw = 3.4 %/kbar, and δc = 12.8%.

The strain ε12 also affects the effective dipole moments µi of hydrogen bonds.
It is usually assumed that these dipole moments are proportional to the distance
δ between the equilibrium deuteron sites on a bond. Since the value of δ at bonds
going along the axis a is increased, whereas that at bonds going along the axis b is
decreased, then

µ13 = µ23 = µ33 = µ3[1−
δ1
δ0

1

2
(c

(0)
11 − c

(0)
12 )ε12],

µ24 = µ23 = µ43 = µ3[1 +
δ1
δ0

1

2
(c

(0)
11 − c

(0)
12 )ε12],

µ1 cos γ = µ11 = −µ31 = µ⊥ cos γ[1−
δ1
δ0

1

2
(c

(0)
11 − c

(0)
12 )ε12],

µ1 sin γ = −µ21 = µ41 = µ⊥ sin γ[1 +
δ1
δ0

1

2
(c

(0)
11 − c

(0)
12 )ε12],

µ2 cos γ = −µ22 = µ42 = µ⊥ cos γ[1 +
δ1
δ0

1

2
(c

(0)
11 − c

(0)
12 )ε12],

µ2 sin γ = µ12 = −µ32 = µ⊥ sin γ[1−
δ1
δ0

1

2
(c

(0)
11 − c

(0)
12 )ε12],

where δ1/δ0 = −0.02 · 10−3 at σ12 > σ12(0K) δ1/δ0 = −0.02 · 10−4 bar−1, µ3(T <
Tc) = 1.8 · 10−18 esu cm, µ3(T > Tc) = 2.66 · 10−18 esu cm, µ⊥ = 2.8 · 10−18 esu cm.

In figure 2 we show the phase diagrams calculated at different values of the
parameter δ12. As has already been shown [3,4], the σ12 stress can induce a a new
phase, of presumably monoclinic symmetry with the strain ε12 significantly larger
than at stresses right below the critical one.

The phase diagrams obtained in our calculations consist of the three phases: I
– the regular paraelectric phase with εI12 and η

(1)
13 = η

(1)
24 = 0, II – the ferroelectric

phase where η
(1)
13 6= 0, η

(1)
24 6= 0; III – a new paraelectric phase where (η

(1)
13 = η

(1)
24 = 0,

but εIII12 ≫ εI12 (dependences of strain on stress are discussed below). The curve AO,
separating regions I and II, corresponds to the ferroelectric first order phase transi-
tion in η

(1)
13 and η

(1)
24 parameters, Tc(A) = 219.7 K; temperature of the ferroelectric
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Figure 2. The phase diagram of a KD2PO4 crystal at different values of δ12 (K)
(a) – 23500; (b): 1 – 25935; 2 – 25580; 3 – 23500; 4 – 21000; 5 – 18440.

transition decreases with stress. The lines OK and OB denote the first order phase
transitions to the monoclinic phase III. At stresses above σ12(B) (σ12(B) = 7.36 kbar
at δ12=23500 K) the ferroelectric phase disappears. Coordinates of the tricritical
point O are Tc(O) = 215.9 K, σ12(O) = 7.11 kbar (at δ12=23500 K).

On increasing stress along the line OK of the first order transitions from tetrag-
onal to monoclinic phase, jumps of strain at the transition decrease (see below).
This line terminates at the critical point K (Tc(K) = 370 K, σ12(K) = 10.1 kbar at
δ12=23500 K), where the jump of strain turns to zero.

Major effects of the increase in δ12 are the shift of the phase III to the smaller
stresses, increase in the value of Tc(K) and decrease in σ12(K). At δ12 = 25935 K
the ferroelectric phase disappears from the phase diagram. Dependence of the fer-
roelectric phase transition temperature also slightly changes with the value of δ 12.

The above results partially accord with those obtained by Stasyuk and Bilet-
skii [4]. However, in our calculations the monoclinic phase is purely paraelectric

(η
(1)
13 = η

(1)
24 = 0), whereas in [4] the order parameters in this phase are different from

zero. Stasyuk and Biletskii also predict high-stress second order phase transitions
in η

(1)
13 and η

(1)
24 between monoclinic and tetragonal phases. In our calculations those

transitions, naturally, do not emerge (η
(1)
13 = η

(1)
24 = 0 in both phases).

Let us now consider the stress σ12 effects on the above calculated physical charac-
teristics of the crystals. As follows from the phase diagram, temperature and stress
behaviour of the characteristics depend on the number of the phase transitions being
undergone by the system. We can separate several types of behaviour; some of them
will be illustrated in figures below.

Thus, there are four kinds of temperature behaviour:

• σ12 < σ12(O) (curves 1′ – 4′ in figures 6–16). On changing temperature the
system undergoes a single first order phase transition between the paraelectric
and ferroelectric phases I and II, with the transition temperature being lowered
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by the stress along the line AO of the phase diagram. Temperature curves of
the physical characteristics are similar to those at atmospheric pressure but
shifted to lower temperatures.

• σ12(O) < σ12 < σ12(B) (curves 5′ in figures 6–16). On changing temperature
the system undergoes two first order phase transitions – between paraelectric
tetragonal and monoclinic phases I and III and between the monoclinic and
ferroelectric phases III and II. Temperature curves of the physical character-
istics have two peculiarities at both transitions. In figures, however, only the
upper transition between the phases III and II is seen.

• σ12(B) < σ12 < σ12(K) (curves 6′ - 7′ in figures 6–16). On changing tempera-
ture the system undergoes the first order phase transition between paraelectric
tetragonal and monoclinic phases I and III. Temperature curves of the physi-
cal characteristics have a single peculiarity at the transition point and shift to
higher temperatures with increasing σ12.

• σ12 > σ12(K) (curves 8′ in figures 6–16). There are no phase transitions. Tem-
perature behaviour of the physical characteristics is smooth and specific to the
monoclinic phase.

We can also name four types of stress behaviour:

• T < Tc(O) (curves 1 in figures 6–16). On changing stress the system undergoes
a single first order phase transition between the ferroelectric and monoclinic
phases II and III, with the transition stress decreasing with temperature (along
the line OB of the phase diagram). Stress curves of the physical characteristics
have a peculiarity at the phase transition.

• Tc(O) < T < Tc(A) (curves 2 in figures 6–16). On changing stress the sys-
tem undergoes two first order phase transitions – between ferroelectric and
paraelectric tetragonal phase II and I and between the tetragonal and mono-
clinic phases I and III. Stress curves of the physical characteristics have two
peculiarities at both transitions.

• Tc(A) < T < Tc(K) (curves 3 – 5 in figures 6–16). On changing stress the sys-
tem undergoes the first order phase transition between paraelectric tetragonal
and monoclinic phases I and III. Stress curves of the physical characteristics
have a single peculiarity at the transition point and shift to higher stress-
es with increasing temperature. Magnitude of the peculiarity decreases with
temperature and vanishes at the critical point K.

• T > T (K) (curves 6 in figures 6–16). There are no phase transitions. Stress be-
haviour of the physical characteristics is smooth and specific to the monoclinic
phase.
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Figure 3. Dependences of strain ε12 on temperature at different values of stress
σ12 (kbar) (a): 1’ – 0; 2’ – 3; 3’ – 5; 4’ – 7; 5’ – 7.36; 6’ – 8; 7’ – 9; 8’ – 10.09; 9’ –
10.5; 10’ – 12; 11’ – 15 and on stress σ12 at different values of temperature T (K)
(b): 1 – 210; 2 – 218; 3 – 240; 4 – 300; 5 –370 ; 6 – 380; 7 – 450.

The above presented types of temperature and stress dependences of the physical
characteristics are well illustrated by the plotted in figure 3 curves of strain ε12.

Curves 1′ – 4′ here exhibit the first type of temperature behaviour with a single
jump of strain at the ferroelectric phase transition; the strain ε12 increases with
temperature in both tetragonal and ferroelectric phases. Curves 5′ – 8′ are charac-
teristic to the third type of temperature behaviour – a huge downward jump of ε12
at the transition from monoclinic to the tetragonal phase. Magnitude of the jumps
decreases with the stress and vanishes at the critical point K. Above the jumps the
strain ε12 has a typical paraelectric increasing behaviour. Curves 9 ′ – 11′ have no
peculiarities and reveal a decreasing temperature behaviour of ε12 in the monoclinic
phase.

Very specific to the stress curves of strain σ12(ε12) is the possibility to have two
extrema and the bending point. Coordinates of the bending point can be found from
the condition g1E(12, ε

I,II
12 ) = g1E(12, ε

III
12 ). At this point there occurs a first order

phase transition to a new phase with a strain ε12 being much higher than right below
the transition. The transition stress depends of the values of the parameters w, δ12,
c011, c

0
12 and on temperature. Both a decrease in w, c011, and c

0
12 and an increase in

δ12 lower it down. Two extrema and the bending point (the transition to the new
phase III) are possible only if

δ212
c011 − c012

>
2v̄T [(1 + 2a+ d)2 − 4b2]

(1 + 2a+ d)2
.

As one can see in figure 3b, the stress σ12 increases the strain ε12 in all phases.
Curve 1 is specific to the first type of stress behaviour with a single jump at the
transition to the monoclinic phase. Rate of the changes in ε12 with the stress σ12
are nearly the same in both ferroelectric and monoclinic phases. Instead, curve 2
has two jumps (second type of stress behaviour) – at the ferroelectric-paraelectric
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Figure 4. Dependences of polarization P3 on temperature at different values of
stress σ12 (kbar) (a): 1’ – 0; 2’ – 3; 3’ – 5; 4’ – 7 and on stress σ12 at different
temperatures T (K) (b): 1 – 150; 2 – 200; 3 – 210; 4 – 215; 5 – 218; 6 – 219.
Experimental points are taken from [11].

and paraelectric tetragonal-monoclinic phase transitions, jump at the ferroelectric
transition being much smaller. Curves 3 – 5 exhibit a single jump of the strain at the
transition to the monoclinic phase; the jump magnitude decreases with temperature
and vanishes at the critical point. At higher temperature (curves 6 and 7) the strain
has a smooth stress behaviour.

In figure 4 we depict the stress and temperature dependences of polarization P3.
Since polarization exists only in the ferroelectric phase, only the first type of stress
or temperature behaviour is possible. Therefore, temperature curves of polarization
are not changed by stress but shifted to lower temperatures due to lowering the
ferroelectric phase transition temperature. When temperatures are low (polarization
is saturated), P3 is hardly affected by the stress σ12 except for a jump to zero at
the transition to the monoclinic paraelectric phase. At temperatures close to T c(A)
(transition temperature at ambient pressure), the stress reduces the magnitude of
polarization and its jump at the transition point.

Let us now consider the temperature and stress curves of the elastic character-
istics. Temperature dependence of the contribution of the deuteron subsystem to
the elastic constants c(12) at low stresses in the vicinity of the ferroelectric phase
transition is shown in figure 5. As one can see, an increase in stress raises up the
value of c(12) in the paraelectric phase and enhances its variation with temperature.

Temperature and stress curves of all calculated elastic constants are shown in
figures 6–9.

The constants cP and cE coincide in the paraelectric phase. Their behaviour
with temperature and stress is well described by the above formulated rules. At low
stresses, cP11 and cE11 have downward jumps at the transition from the ferroelectric
to the paraelectric tetragonal phase, whereas cP12 and cE12 have upward jumps. With
increasing stress, the jumps transform to peaks with increasing magnitudes. At the
transition to the monoclinic phase, only small jumps in the elastic constants are
observed.
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Figure 5. Temperature dependence of the deuteron subsystem contribution to
the elastic constants c11 and c12 at different stresses σ12 (kbar) : 1 – 0; 2 – 3; 3 –
5.

Character of temperature and stress behaviour of the elastic compliances is oppo-
site to that of the elastic constants: where c11 and c12 decrease and have a minimum,
the compliances s11 and s12 increase and have a maximum.

In figures 10 and 11 we plot the stress and temperature dependences of the
coefficients of piezoelectric stress e31 and piezoelectric strain d31. The coefficients
are negative and differ from zero only in the ferroelectric phase II. At temperatures
lower than 175 K e31 and d31 are also practically equal to zero. On approaching
the transition point, e31 and d31 decrease with temperature (or stress), having a
sharp negative peak at the paraelectric-ferroelectric phase transition and jumping
upward to zero just above the transition point. The magnitude of the peaks in the
temperature dependences of e31 and d31 increases with the stress.

Shown in figures 12 and 13 temperature and stress dependences of the constants
of piezoelectric stress h31 and of piezoelectric strain g31 are qualitatively similar to
those of e31 and d31. The difference is, h31 and g31 are increasing functions of tem-
perature in the ferroelectric phase and have jumps instead of peaks at the transition
to a paraelectric phase.

The stress and temperature dependences of the clamped static dielectric permit-
tivity εε3(0, T, σ12) are depicted in figure 14.

Below the critical stress σ12(O) (curves 1’ – 4’ in figure 14a) the permittivity
exhibits a regular Curie-Weiss behaviour in the paraelectric phase and has a peak at
the transition point, with the peak magnitude increasing with σ12. At higher stresses
σ12(O) < σ12 < σK

12 (curves 5’ and 6’) the permittivity has a downward jump at the
transition to the monoclinic phase III and remains temperature independent in the
phase III. At σ12 > σK

12 where there exists only a monoclinic phase, the permittivity
hardly depends on temperature.

Stress behaviour of the longitudinal permittivity is very well described by the
formulated rules. Two peculiarities of εε3(0, T, σ12) are seen in curve 2 (two phase
transitions between the phases II and I and between I and III).

Let us consider now the stress and temperature dependences of transverse static
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Figure 6. Dependences of the elastic constants cP11 on temperature at different
values of stress σ12 (kbar) (a): 1’ – 0; 2’ – 3; 3’ – 5; 4’ – 7; 5’ – 7.3; 6’ – 7.5; 7’ –
10; 8’ – 15; and on σ12 at different values of temperature T (K) (b): 1 – 210; 2 –
218; 3 – 240; 4 – 300; 5 – 370; 6 – 450.

Figure 7. Dependences of the elastic constants cE11 on temperature at different
stresses σ12 (a) and on σ12 (b) at different temperatures. Values of stress and
temperature are the same as in figure 6.
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Figure 8. Dependences of the elastic constants cP12 on temperature at different
stresses σ12 (a) and on σ12 (b) at different temperatures. Values of stress and
temperature are the same as in figure 6.

Figure 9. Dependences of the elastic constants cE12 on temperature at different
stresses σ12 (a) and on σ12 (b) at different temperatures. Values of stress and
temperature are the same as in figure 6.
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Figure 10. Dependences of the coefficient of piezoelectric stress e31 on tempera-
ture at different stresses σ12 (a) and on σ12 (b) at different temperatures. Values
of stress and temperature are the same as in figure 6.

Figure 11. Dependences of the coefficient of piezoelectric strain d31 on tempera-
ture at different stresses σ12 (a) and on σ12 (b) at different temperatures. Values
of stress and temperature are the same as in figure 6.
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Figure 12. Dependences of the constant of piezoelectric stress h31 on temperature
at different stresses σ12 (a) and on σ12 (b) at different temperatures. Values of
stress and temperature are the same as in figure 6.

Figure 13. Dependences of the constant of piezoelectric strain g31 on temperature
at different stresses σ12 (a) and on σ12 (b) at different temperatures. Values of
stress and temperature are the same as in figure 6.
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Figure 14. Dependences of clamped static dielectric permittivity εε33 on temper-
ature at different stresses σ12 (a) and on σ12 (b) at different temperatures. Values
of stress and temperature are the same as in figure 6. Experimental points are
taken from [11].

dielectric permittivities ε11(T, σ12) and ε22(T, σ12). The value of νa = ν1−ν3 = 21 K
parameter, which describes the long-range interactions, is taken from [8] where the
transverse properties of unstrained KD2PO4 crystals are studied. The value of ψa =
ψ1 − ψ2 can be estimated from the relation

ψ1 − ψ2 <
1

ε12

(

T

2

1 + bc12

a + b
c12

− νa

)

.

In what follows ψa = −12000 K.
In figure 15 we show the stress and temperature dependences of ε11(T, σ12). Below

the critical stress σ12(O) (curves 1
′ – 4′) the temperature curves of the permittivity

are qualitatively the same as at zero stress – with a jump at the ferroelectric phase
transition. At the intermediate stresses σ12(O) < σ12 < σK

12 (curves 5′ and 6′) the
transverse permittivity has a downward jump at the transition from monoclinic to
the paraelectric phase. At stresses above the critical one (curves 7′ and 8′) σ12 > σK

12

the permittivity ε11(T, σ12) is almost temperature independent. It is interesting that
the magnitude of ε11(T, σ12) in the monoclinic phase is much greater than in the
paraelectric or ferroelectric ones.

The other transverse permittivity ε22(T, σ12) has a similar temperature behaviour
(see figure 16), except that it undergoes an upward jump at the transition from
monoclinic to the paraelectric phase, and its magnitude in the monoclinic phase
coincides with the low-temperature limit of ε22(T, σ12) in the ferroelectric phase – it
is lower than in the paraelectric or ferroelectric phases.

As for the stress curves of both transverse permittivities, we can only say that
this is perfectly well described by the above formulated rules; ε11(T, σ12) has upward
jumps at the transitions between ferroelectric and paraelectric tetragonal phase II
and I and between the tetragonal and monoclinic phases I and III. On the contrary,
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Figure 15. Dependences of the transverse dielectric permittivity ε11(T, σ12) on
temperature at different stresses σ12 (a) and on σ12 (b) at different temperatures.
Values of stress and temperature are the same as in figure 6. Experimental points
are taken from [12].

Figure 16. Dependences of the transverse dielectric permittivity ε22(T, σ12) on
temperature at different stresses σ12 (a) and on σ12 (b) at different temperatures.
Values of stress and temperature are the same as in figure 6. Experimental points
are taken from [12].
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ε11(T, σ12) has an upward jump at the transition between phases II and I and a
downward jump at transition between the phases I and III.
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Вплив напруги σ1 − σ2 на фазовий перехід і фізичні

властивості сегнетоелектриків типу KD2PO4
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Отримано 20 червня 2001 р.

На основі запропонованої раніше моделі вивчається вплив напруги

σ1 − σ2 на сегнетоелектрики типу KD2PO4. В кластерному наближен-

ні з врахуванням короткосяжних і далекосяжних взаємодій розрахо-

вано і досліджено пружні, діелектричні і п’єзоелектричні характерис-

тики KD2PO4, проведено детальний числовий аналіз отриманих ре-

зультатів. Досліджено температурні і баричні залежності розрахова-

них характеристик. Вивчаються індуковані напругою σ1 − σ2 фазові

переходи.

PACS: 77.80.-e, 77.80.Bh, 77.84.Fa

Ключові слова: зсувна напруга, монокліна фаза, фазова діаграма,

п’єзоефект, деформація, KDP

578


