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Anharmonic phonon contributions to Raman scattering in locally anhar-
monic crystal systems in the framework of the pseudospin-electron mod-
el with tunneling splitting of levels are investigated. The case of strong
pseudospin-electron coupling is considered. Pseudospin and electron con-
tributions to scattering are taken into account. Frequency dependences of
Raman scattering intensity for different values of model parameters and for
different polarization of scattering and incident light are investigated.
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1. Introduction

This article is dedicated to the memory of Prof. Z. Gurskii, famous scientist and
good friend, it was always pleasant and useful to communicate with him.

Raman scattering of light is a powerfull instrument in investigating the elemen-
tary excitations in different systems. In solids it is connected with energy transfer
from light to crystal with the participation of low energy excitation, phonons or low
energy transitions in electron subsystem. The problem of phonon and nonphonon
(electron, magnon, plasmon and other) contributions to Raman light scattering in
the systems with a strong short-range Hubbard-type interaction between electrons
has been a subject of interest lately. Many investigations (both theoretical and
experimental) were devoted to the study of Raman spectra in high-temperature su-
perconductors (HTSC) (see review [1]) in order to better understand the nature of
superconducting pairing mechanism and to explain the reason of complicated Raman
spectra in HTSC. Raman spectra are also investigated for normal (nonsuperconduct-
ing) state for the cases of metals and dielectrics [2–4]. Resonance, nonresonance and
mixed contributions to Raman spectra are studied [3–5].
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In this work we calculate Raman spectra for the system described by the pseudo-
spin-electron model (PEM) using the method which is based on the construction
of a polarizability operator P̂ in the framework of a microscopic approach; the
method was developed in [6–9] and is an alternative to standard ones [2–5]. PEM
describes the systems with locally anharmonic elements (anharmonic vibrations of
apical oxygen O4 in HTSC of YBaCuO-type, the systems with hydrogen bonds,
etc.). In [9] we considered contributions to Raman spectra for the zz polarization
case (z is a direction of local vibrations and it is perpendicular to the layer in the
case of layered crystals of YBaCuO-type). Here we investigate the case of xx + yy
polarization and compare these two cases. Like in [9], we consider the strong coupling
case, when the interaction constants in the PEM are large in comparison with the
width of electron band.

We use the expression for cross-section of Raman light scattering written in the
following form ([6–10]):

∂2σ

∂Ω∂ω2
=

1

(4πε0)2

√
ε1

ε2

ω3
2ω1

c4

∑
αβα′β′

e1αe2βe1α′e2β′Hβ′α′,β,α
�k2,�k1

(ω1, ω2), (1)

hereafter we put � = 1, �e1, �e2 are polarization vectors; ω1, ω2 are incident and scat-
tered light frequencies; �k1, �k2 are the corresponding wave vectors; ε1,2 ≡ ε(ω1, ω2);

Hβ′α′,β,α
�k2,�k1

(ω1, ω2) is the Raman scattering tensor:

Hβ′α′,β,α
�k2,−�k1;−�k2,�k1

(ω1, ω2) =
1

2π

+∞∫
−∞

dtei(ω1−ω2)t〈P̂ β′α′
�k2−�k1

(−ω1, t)P̂
βα

−�k2
�k1

(ω1, 0)〉, (2)

while P̂ is the polarizability operator

P̂ βα
�k′�k

(ω, t) = −
+∞∫

−∞

dseiω(t−s){{M̂β(�k′, t)|M̂α(�k, s)}}. (3)

Here M̂α(�k) is a dipole moment of a crystal unit cell in the �k-representation and

the symbol {{M̂β(�k′, t)|M̂α(�k, s)}} stands for ”unaveraged” Green function defined
in the following way ([6,9]):

{{A(t)|B(t′)}} = −iΘ(t − t′)[A(t), B(t′)]. (4)

The equations of motion for this function have a form

ω1{{A|B}}ω1,ω2 =
1

2π
[A, B]ω1−ω2 + {{[A, H ]|B}}ω1,ω2, (5)

ω2{{A|B}}ω1,ω2 =
1

2π
[A, B]ω1−ω2 − {{A|[B, H ]}}ω1,ω2. (6)

They are used to construct the polarizability operator; the solutions of these equa-
tions are built in the form of operator series in powers of some parameters of a
Hamiltonian. It should be emphasized that this method does not use phenomeno-
logical assumptions.
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2. PEM with strong interaction

PEM with tunneling splitting of levels is to some extent a generalization of
the known Falicov-Kimball model [11] when the proper dynamics of the locally
anharmonic elements of structure is present in the system. Pseudospin formalism is
used to describe vibrations for the case of double-well potential. Tne Hamiltonian
of the PEM is as follows:

H =
∑

i

(Uni,↑ni,↓ − µ(ni,↑ + ni,↓) + gSz
i (ni,↑ + ni,↓)

− hSz
i − ΩSx

i ) +
∑
i,j,σ

tija
†
i,σaj,σ . (7)

It includes electron transfer from site to site (tij-term), Coulomb interaction (U -
term), pseudospin-electron interaction (g-term), tunnelling splitting of the vibra-
tional mode (Ω-term), asymmetry of local potential (h-term) [12–14]. The investi-
gations of the PEM revealed a possibility of phase transition to chess-board phase
as well as incommensurate phase, the transition between uniform phases, the tran-
sition to a superconducting state, the existence of phase separation region and other
peculiarities [15–20].

Let us introduce a single-site basis of states: |i, Q〉 ≡ |ni↑, ni↓, Sz
i = 1/2〉, |i, Q̃ >≡

|ni↑, ni↓, Sz
i = −1/2 >,

|i, 1; 1̃〉 = |i, 0, 0,±1

2
〉, |i, 2; 2̃〉 = |i, 1, 1,±1

2
〉,

|i, 3; 3̃〉 = |i, 0, 1,±1

2
〉, |i, 4; 4̃〉 = |i, 1, 0,±1

2
〉.

Using the transformation

|i, Q >= cos φr|i, r > + sin φr|i, r̃ >

|i, Q̃ >= cos φr|i, r̃ > − sin φr|i, r >,

cos 2φr =
nrg − h√

(nrg − h)2 + Ω2
, n1 = 0; n2 = 2; n3 = n4 = 1, (8)

we diagonalize the single-site part of the Hamiltonian

H0 =
∑
i,r

λrX
rr
i +

∑
i,r̃

λr̃X
r̃r̃
i , (9)

λr,r̃ = nrµ + Uδr,2 ± 1

2

√
(nrg − h)2 + Ω2. (10)

Dipole moment of an unit cell is given by the expression

Mα
i = eRα

i (n↑,i + n↓,i) + dsS
z
i δαz , (11)

the local anharmonic double well is oriented along z direction, ds is a dipole moment
of pseudospins, Rα

i is a α component of the radius-vector �Ri, e is an electron charge.
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We take into account the pseudospin and electron contributions to a dipole moment
[9].

We construct the polarizability operator by means of the equation of motion
method, using the expansion in terms of the electron transfer parameter. As the
first step, we obtain (see for details [9]):

{{Mα
k |Mβ

l }} =
δk,lδα,zδβ,zd

2
s

8πω1

∑
r

sin(4φr)(X
rr̃
k − X r̃r

k )

+
∑

r

δk,lδα,zδβ,zd
2
s

8π(ω1 − λr + λr̃)
(sin(4φr)X

r̃r
k − sin2(2φr)(X

rr
k − X r̃r̃

k ))

−
∑

r

δk,lδα,zδβ,zd
2
s

8π(ω1 + λr − λr̃)
(sin(4φr)X

rr̃
k − sin2(2φr)(X

rr
k − X r̃r̃

k ))

+
eRα

k

ω1

∑
i,j,σ

ti,j(δi,k − δj,k)
{{

a†
i,σaj,σ|Mβ

l

}}

+
∑

r

dsδα,z

2ω1

∑
i,j,σ

ti,j cos(2φr)
{{

[Xrr
k − X r̃r̃

k , a†
i,σaj,σ]|Mβ

l

}}

+
∑

r

dsδα,z

2(ω1 − λr + λr̃)

∑
i,j,σ

ti,j sin(2φr)
{{

[X r̃r
k , a†

i,σaj,σ]|Mβ
l

}}

+
∑

r

dsδα,z

2(ω1 + λr − λr̃)

∑
i,j,σ

ti,j sin(2φr)
{{

[Xrr̃
k , a†

i,σaj,σ]|Mβ
l

}}
. (12)

Let us consider the pure electron contributions to a Raman spectrum. For a corre-
sponding term we can obtain the following expression∑

i,j,σ

Rα
k Rβ

l ti,j(δi,k − δj,k)
{{

a+
i,σaj,σ|(n↑l + n↓l

)
}}

=

=
1

ω2

Rα
k Rβ

l

∑
i,j,σ

s,p,σ′

ti,j(δi,k − δj,k)ts,p(δp,l − δs,l)
{{

a+
i,σaj,σ|a+

s,σ′ap,σ′
}}

− 1

2πω2
Rα

k Rβ
l

∑
i,j,σ

ti,j(δi,k − δj,k)(δi,l − δj,l)a
+
i,σaj,σ. (13)

In the long-wavelenght limit, �k2, �k1 ≈ 0, we perform summation over indexes k, l

−
∑
k,l

1

2πω2
Rα

k Rβ
l

∑
i,j,σ

ti,j(δi,k − δj,k)(δi,l − δj,l)a
+
i,σaj,σ =

=
1

2πω2

∑
q

∂2t(q)

∂qα∂qβ
α+

q αq,

αq =
1√
N

∑
i

aie
−iqRi, tq =

∑
R

t(R)e−iqR. (14)
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The Raman scattering tensor can be expressed in terms of two-time Green func-
tions [9]

Hαβ,α′β′
k2,k1=0(ω1, ω2) =

−(2π)2

(eβω − 1)
×∑

i,i1,j,j1

2Im〈〈{{Mα
i |Mβ

j }}ω2,ω1
|{{Mα′

i1
|Mβ′

j1
}}−ω2,−ω1

〉〉
ω+iε

, ω = ω2 − ω1. (15)

It should be noted that in contrast to other methods of Raman spectra investiga-
tions [5], in our approach many-time correlation functions do not appear; this fact
essentially simplifies the calculation.

3. Correlators in GRPA

We investigate Raman spectra in the frequency region ω2−ω1 near the frequency
ω′ = λ1̃−λ1. Correlators 〈Xpq(t)Xrs〉 are calculated using the method of temperature
Green functions. The Hamiltonian is presented in the form

H = H0 + Hint,

Hint =
∑
i,j,σ

ti,ja
†
i,σaj,σ. (16)

We consider two cases of polarization: i) light is polarized in zz direction ii) light
is polarized in xx + yy direction. As it can be seen from the expression (12), in the
lowest order in tij in the case of zz polarization to obtain an expression for tensor
H(ω1, ω2) we should calculate Bose-type Green function, constructed on the Xrr̃,
X r̃r,X r̃r̃, Xrr operators

〈TXpq
l (τ)Xrs

m 〉 = Kpqrs
lm (τ) = 〈TXpq

l (τ)Xrs
m σ(β)〉c0,

σ(β) = T exp


−

β∫
0

Hint(τ)dτ


 .

Operators are given in the interaction representation C(τ) = eτH0Ce−τH0 , the brack-
ets 〈...〉0 stand for the statistical averaging with the Hamiltonian H0, the symbol 〈...〉c
denotes the separation of connected diagrams. Expanding the exponent in powers
of Hint, we obtain the averages of Hubbard operators; such averages are calculat-
ed using Wick’s theorem [21]. After transformation to the momentum-frequency
representation

β∫
0

dτeiωnτ 1

N

∑
lm

Kpqrs
lm (τ)eiq(Rl−Rm) = Kpqrs(q, ωn). (17)

The transition to the two-time Green function is performed in a standard way:
〈〈Xpq|Xrs〉〉q(ω) = Kpqrs(q, iωn → ω).
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In the lowest order in tij in the case of xx + yy polarization we should calculate
(as it follows from (14))

〈T
∑

k

γkα
+
k (τ)αk(τ)

∑
k′

γk′α+
k′αk′〉,

γk =
∑

α

∂2tk
∂k2

α

= −a2tk (square lattice case), (18)

a is a lattice constant. Let us introduce unperturbed Green function

gpq
ij (τ) = δijg

pq(τ) = δij
〈TXpq(τ)Xrs〉
〈[Xrs, Xpq]±〉0 , (19)

gpq(ωn) =

β∫
0

dτe−iωnτgpq(τ) = ± 1

iωn − λpq

, (20)

where λpq = λp − λq; upper (lower) sign corresponds to Green function constructed
on Fermi (Bose) type operators.

We use the following diagrammatic notations [21]: triangle pq stands

for Green function gpq; circles pq and pp denote 〈Xpp ± Xqq〉0 and

〈Xpp〉0 respectively; the electron transfer . Green function in Hubbard-I
approximation is given by a diagrammatic series

G pq= pq pq pq pq ++= pq pq pq + ...

or in analytic form

Gpq =
1

iωn − εpq(k)
, εpq(k) = λpq + Apq〈Xpp + Xqq〉tk, (21)

here Apq are coefficients, which appear due to the transformation (8), in particular
A4̃1̃ = cos2 φ1, A4̃1 = sin2 φ1.

We consider a strong coupling case U, g >>
√

h2 + Ω2 > W (W =
∑

j tij) and

take into account states |1〉, |1̃〉, |3̃〉, |4̃〉 and two lowest electron subbands λ4̃1 = λ3̃1,
λ4̃1̃ = λ3̃1̃, which are separated between themselves [9].

At the summation of diagrams we use a generalized random phase approxima-
tion (GRPA). It can be shown that the main contribution is connected with Green

function 〈TX11̃(τ)X 1̃1〉 [9]. In diagrammatic representation we can write

〈TX11̃(τ)X 1̃1〉= +++ +

where boson Green function satisfies the Dyson equation

G= = ++

thin arrow stands for unperturbed Green function g11̃.
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Similarly, for the correlator 〈T ∑
k γkα

+
k (τ)αk(τ)

∑
q γqα

+
q αq〉 we write

1
N
〈T ∑

k γkα
+
k (τ)αk(τ)

∑
q γkα

+
q αq〉 =

γγ

γ γ γ         

+++

++

γ

γγ

γγ γ

γ

γ         

γ         

γ

γ

+

<TX( )X > 
γ γ

11          11
τ ++

Shaded ellipses denote multi-loop diagrams, which consist of segments of the single-
loop diagrams
a= ; b= ; c= ; d= ; γb= γ and similarly for loops

bγ , γc, dγ, γbγ . As it was shown in [9], the most important are diagrams

a=
 p1

 p1

, p = 4, 3 and similarly for b, c, d, bγ, γc, dγ, γbγ (with lower Green

function G 4̃1̃ or G 3̃1̃ and upper function G 4̃1 or G 3̃1). In analytic form

a =
−2 sin2 φ1 cos2 φ1

N

∑
k

tktk
n(ε4̃1̃(k)) − n(ε41̃(k))

iωn + ε4̃1̃(k) − ε4̃1(k)

b =
−2

N

∑
k

n(ε4̃1̃(k)) − n(ε4̃1(k))

iωn + ε4̃1̃(k) − ε41̃(k)
+ 2

n(λ4̃1̃) − n(λ4̃1)

iωn + λ4̃1̃ − λ4̃1

c =
−2 sin2 φ1

N

∑
k

tk
n(ε4̃1̃(k)) − n(ε4̃1(k))

iωn + ε4̃1̃(k) − ε4̃1(k)

d =
−2 cos2 φ1

N

∑
k

tk
n(ε4̃1̃(k)) − n(ε4̃1(k))

iωn + ε4̃1̃(k) − ε4̃1(k)
. (22)

Loops γb, bγ , γc, dγ, γbγ differ from a, b, c, d by the presence in the sum of the
multiplier 〈X11 + X 4̃4̃〉γk cos φ1 sin φ1 for the left γ and 〈X 1̃1̃ + X 4̃4̃〉γk cos φ1 sin φ1

for the right γ. For example

γb =
−2 sin φ1 cos φ1

N

∑
k

γk〈X11 + X 4̃4̃〉n(ε4̃1̃(k)) − n(ε41̃(k))

iωn + ε4̃1̃(k) − ε4̃1(k)
(23)

Introducing the notation

A= B= C= D= , γB= γ ,
and analogously for γBγ , Bγ, γC, Dγ, we obtain the equations

{
A = a + aC + dA;
C = c + cC + bA,
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{
B = b + cB + bD;
D = d + dD + aB,{

Bγ = bγ + cBγ + bDγ ;
Dγ = dγ + dDγ + aBγ ,

γBγ = γbγ + γcBγ + γbDγ

γC = γc + γcC + γbA,
γB = γb + γcB + γbD. (24)

Having solved them, we can write the expressions for the needed Green functions.
For the boson Green function we obtain

G =
〈X 1̃1̃ − X11〉

iωn + λ1 − λ1̃ + ∆ − A〈X 1̃1̃ − X11〉 , (25)

∆ =
2

N

∑
k

tk[n(ε4̃1) sin2 φ1 − n(ε4̃1̃) cos2 φ1].

The self-energy part of this function consists of two terms. The first one is connected
with loop insertions into the line of unperturbed boson Green function. It leads to
the renormalization of energy levels

λr → λ̃r = λr +
1

N

∑
k,p

Aprtkn(εp(k)). (26)

For a self-consistency, such a renormalization should be also done in the expressions
for Fermi-type Green functions Gpq [17]. In our numerical calculations we do not
take into account this renormalization. The second term in the self-energy part is an
effective retarded interaction between pseudospins which is formed due to the band
electrons.

We can write the correlator 〈TX11̃(τ)X 1̃1〉 in analytic form [9]

〈TX11̃(τ)X 1̃1〉q=0 = G + B + DG + GC + GDC. (27)

This expression can be rewritten in another way, which is similar to that for the
transverse magnetic susceptibility of the Hubbard model [22]

〈TX11̃(τ)X 1̃1〉q=0 =
G0 + b

(1 − c)(1 − d) − a(G0 + b)
,

where G0 =
〈X 1̃1̃ − X11〉

iωn + λ1 − λ1̃ + ∆
. (28)

For the correlator 〈T ∑
k γkα

+
k (τ)αk(τ)

∑
q γqα

+
q αq〉 we have

1

N
〈T

∑
k

γkα
+
k (τ)αk(τ)

∑
q

γqα
+
q αq〉 = γBγ + γCGDγ

+ ∆4̃1〈TX11̃(τ)X 1̃1〉q=0∆4̃1̃ + ∆4̃1
γCG + ∆4̃1̃D

γG + γB∆4̃1

+ Bγ∆4̃1̃ + CGDγ∆4̃1̃ + γCDG∆4̃1, (29)
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where

∆rq = −2
∑

k

tkn(εrq) cosφ1 sin φ1 . (30)

Thus, using the expression (15) we can calculate Raman scattering tensor for the
case of zz and xx + yy polarization:

Hzz,zz
k2,k1=0(ω1, ω2) =

2ω′2 sin2 4φ1(
ds

2
)4N

1 − eβω

Im〈〈X11̃|X 1̃1〉〉q=0

ω2
2(ω2 − ω′)2

,

Hxx+yy,xx+yy
k2,k1=0 (ω1, ω2) =

2(ea)4

1 − eβω

Im〈〈∑k γkα
+
k αk|

∑
q γqα

+
q αq〉〉

ω2
1ω

2
2

. (31)

At the numerical calculations we consider the case of square lattice and use the
following connection between the chemical potential and electron concentration [9]

µ = λ4̃ − λ1̃ − W cos2 φ1(1 − 3

2
n). (32)

We assume that the dipole moment of pseudospins ds is smaller than the dipole
momentum of electrons de = ea (a is a lattice constant). This situation is typical in
the case of HTSC of YBaCuO-type; in our calculations ds/de = 0.6.

0.00

0.08

0.00 0.03
ω

I
(ω

)

(zz)

0.000

0.009

0.00 0.03
ω

I
(ω

)

(xx+yy)

Figure 1. Raman scattering intensity for zz and xx + yy polarization at
T = 0,W = 0.1, n = 0.9, h = 0.16,Ω = 0.26. Vertical lines denote delta-
peak. Raman intensity is measured in arbitrary units. The frequency is shifted
ω = ω2 − ω1 − ω′.

From the expression (22) one can see that the imaginary part of all loops at zero
temperature is different from zero only in the frequency interval

−W
1 − 3

2
n

1 − n
2

< − ω

cos2 φ1 − n
2

< W. (33)

The imaginary part of Green function G can have a delta-peak outside this interval,
because the real part of the denominator in (25) can be equal to zero [9].
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I 
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0.00
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ω
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(ω

)

(xx+yy)

Figure 2. Raman scattering intensity for zz and xx + yy polarization at
T = 0.015,W = 0.1, n = 0.9, h = 0.16,Ω = 0.26.
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Figure 3. Raman scattering intensity for zz and xx + yy polarization at
T = 0,W = 0.1, n = 0.2, h = 0.25,Ω = 0.21.
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 0.0
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Figure 4. Raman scattering intensity for zz and xx + yy polarization at
T = 0.03,W = 0.1, n = 0.2, h = 0.25,Ω = 0.21.
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The intensity I(ω) ∼ H(ω) for zz and xx+yy polarization is shown in figures 1–4
for different values of parameters of the model; frequency is shifted: ω = ω2−ω1−ω′,
ω′ = −√

h2 + Ω2. At T = 0 the two components are present in the spectrum: i) the

broad band with the width δω = | cos2 φ1 − n/2|4(1−n)
2−n

W ; ii) the narrow peak (δ-
function at large electron concentrations; at small concentrations this delta peak is
overlapped by the band, see figures 1,3). The first of these components is connected
with interband transitions from occupied states of λ4̃1 subband to unoccupied ones
of λ4̃1̃ subband. The second one is coherent and is of a pseudospin origin. It is
connected with collective dynamics of pseudospins (as it was mentioned, imaginary
part of G has a delta-peak). The effective interaction between pseudospins is formed
by the electrons. Similar picture is observed for the Hubbard and t − J models
where the contributions from localized and itinerant magnetic moments to magnetic
transverse susceptibility are observed [22].

At T 	= 0 for large electron concentrations, an incoherent component occupies
the interval δω = | cos2 φ1 − n/2|2W and overlaps the δ-peak, see figures 2,4. func-
tion and multi-loops At the increase of temperature the Raman spectra become
more symmetrical with one main peak. At high temperatures Raman spectra, cal-
culated in GRPA are similar to those, which can be obtained when we consid-
er the one-loop approximation (in this approximation Im〈〈X11̃|X 1̃1〉〉 ∼ Imb and
Im〈〈∑k γka

+
k ak|

∑
q γqa

+
q aq〉〉 ∼ Ima, here b and a are one-loop contributions and

their expressions are given by (22)), although central peak (at ω − ω′ ∼ 0) in the
spectrum in the case of xx + yy polarization cannot be obtained in the one-loop
approximation (because Imb ∼ ρ(t∗)δn, Ima ∼ t∗2ρ(t∗)δn, ρ(t) is a density of states,
δn = n(ε4̃1(t

∗)) − n(ε4̃1̃(t
∗)), t∗ = ω−ω′

n/2−cos2 φ1
and Ima(ω ≈ ω′) ≈ 0).

From figures 1–4 one can see that the intensity of the Raman spectra for zz
polarization is larger than that for xx+yy polarization. The obtained spectra have a
complicated structure. The peak position depends on the value of h parameter, which
is responsible for the asymmetry of double well potential and depends, for example,
on the crystal composition (that is at different doping levels in YBaCuO crystal
case). Experimental investigations of Raman spectra in YBaCuO (phonon mode,
connected with vibrations of apical oxygen O4) [23,24] also revealed the complex
structure of spectrum, the dependence of the peak position on the doping level.

4. Conclusions

In this work the contributions to Raman scattering of light are investigated in
the case of pseudospin-electron model. To construct the polarizability operator, the
microscopic approach which is based on operator expansions is employed. Electron
and pseudospin contributions to a dipole moment are taken into account. The cases
of zz and xx + yy polarization are considered.

The presence of coherent (δ− peak-like) and incoherent contributions, that can
be distinguished at low temperatures, was established. The intensity for the case of
zz polarization is larger than that for the case of xx+yy polarization. The obtained
spectra have a complex structure; the asymmetry of lines and the dependence of their
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form on the electron concentration and temperature were established. In general, our
results are in agreement with the experimental investigations of Raman spectra of
YBaCuO (vibrations of apical oxygen) [23,24].

It should be noted, that the obtained Raman spectra can also be usefull while
considering the systems with hydrogen bonds, in which the presence of double well
potential is firmly confirmed. Usually such crystals appear to be dielectrics. Howev-
er, complicated hydrogen-bonded complexes, which contain metallic ions and have
electron conductivity have been recently revealed [25]. To our knowledge, there have
been only a few experimental Raman spectrum investigations concerning such sys-
tems.
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Комбінаційне розсіяння світла в
псевдоспін-електронній моделі для випадку
сильної псевдоспін-електронної взаємодії

Т.С.Мисакович, І.В.Стасюк

Інститут фізики конденсованих систем НАН України,
79011 Львів, вул. Свєнціцького, 1

Отримано 5 травня 2004 р.

Досліджено ангармонічні фононні внески до комбінаційного розсі-
яння світла у локально-ангармонічних кристалічних системах в рам-
ках псевдоспін-електронної моделі з тунельним розщепленням рів-
нів. Розглянено випадок сильної псевдоспін-електронної взаємодії.
Враховано псевдоспінові та електронні внески в розсіяння. Дослі-
джено частотну залежність інтенсивності комбінаційного розсіяння
світла при різних значеннях параметрів моделі та при різних співвід-
ношеннях між поляризацією падаючого та розсіяного світла.

Ключові слова: комбінаційне розсіяння, псевдоспін-електронна
модель

PACS: 71.10 Fd, 71.10.Fd, 72.10.Di, 74.25.Kc

360


