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Classical fluctuation electrodynamics
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A system consisting of an equilibrium medium formed by charged parti-
cles and electromagnetic field is considered in the classical case at weak
interaction between subsystems. The field is described with all the statis-
tical moments of electric and magnetic fields. The moments are reduced
description parameters of the herein developed theory based on the Bo-
golyubov reduced description method of nonequilibrium states. The gen-
eralized Bogolyubov condition of the complete correlation weakening be-
tween the subsystems is used as a boundary condition to the Liouville
equation. Distribution function of the system is calculated up to the third or-
der in electromagnetic interaction. Time equations for the reduced descrip-
tion parameters are written in a compact form using a generating function-
al for the field moments and a generating functional for field correlations
(centered moments, fluctuations). The obtained equations generalize the
nonlinear electrodynamics in equilibrium media for the case of fluctuations
of electromagnetic field being taken into account.

Key words: Bogolyubov reduced description method, complete
correlation weakening, equilibrium medium, fluctuation electrodynamics,
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1. Introduction

Almost all the observed phenomena are connected with electromagnetic interac-
tions. Therefore, deep understanding of electromagnetic phenomena and their ade-
quate description will always attract the theoretical thought. The rapid development
of quantum optics with special attention to new states of electromagnetic field and
the advances of plasma physics have urged the researchers to take into account hi-
gher correlation functions of the field (see, for example, [1]). The idea to consolidate
the modern directions of nonlinear, stochastic, and fluctuation electrodynamics in
the media in a more general theory taking into account all correlations and having a
microscopic basis seems to be an important goal. Substantial steps have been made
in this way by Klimontovich [2]. However, he studied only binary correlations of the
field. Balescu and other representatives of the Brussels school have applied a power-
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ful diagram technique to generalize the equations of nonlinear electrodynamics, but
they did not study the own degrees of freedom of the field in detail [3]. Phenomeno-
logical nonlinear electrodynamics is based on the idea of expanding the average
electric current in powers of small electric and magnetic fields. The coefficients of
this expansion (generalized conductivities) remain indefinite in this approach. It is
obvious that such material equations do not take field correlations into account.

In the present paper an electromagnetic field in equilibrium medium is described
with all the moments of electric and magnetic fields based on the Bogolyubov method
of reduced description of nonequilibrium processes [4,5]. The analogous problem for
hydrodynamics was considered in [6]. This way the correlation contributions to mate-
rial equations are studied and microscopic expressions for generalized conductivities
are obtained (about these problems see [7]).

2. Construction of the system distribution function

We consider an electromagnetic field (f-subsystem) interacting with charged and
neutral particles (m-subsystem, medium). The Hamilton function of the system
f + m in a quasi-relativistic approximation takes the form

Ĥ =
∑

i

(pi −
ei

c
Â(xi))

2

2mi

+ Ĥf + Ĥint , Ĥf =
1

8π

∫

d3x(Ê2 + B̂2);

B̂(x) ≡ rotÂ(x), Ê(x) = −4πcP̂ (x). (1)

Here Ĥf is free electromagnetic field contribution, Ĥint corresponds to a direct inter-
action between particles which is additional to the interaction via the field. There-
fore, we have

Ĥ = Ĥf + Ĥm + Ĥmf , Ĥm ≡
∑

i

p2
i

2mi

+ Ĥint,

Ĥmf = Ĥ1 + Ĥ2, Ĥ1 ≡ −
1

c

∫

dxÂn(x)ĵn(x), Ĥ2 ≡
1

2c2

∫

dxχ̂(x)Â(x)2,

ĵn(x) ≡
∑

i

pin

mi

eiδ(x − xi), χ̂(x) ≡
∑

i

e2
i

mi

δ(x − xi). (2)

Here Ĥmf is the interaction between electromagnetic field and particles, Ĥm is the
Hamilton function of particles. We use the Hamilton gauge of electromagnetic field
with ϕ = 0 and consider vector potential Ân(x) as a generalized coordinate of the
field. P̂n(x) is a corresponding generalized momentum. Hereinafter we mark the
functions of the system phase variables with a cap (except the coordinates and
momenta of particles). We also assume that some values are vectors but we reflect
this in notation only someplace. In this paper the Hamilton technique with the

686



Classical fluctuation electrodynamics

following definition of the Poisson brackets is used

{f̂ , ĝ} =
∑

i

(

∂f̂

∂xin

∂ĝ

∂pin

−
∂f̂

∂pin

∂ĝ

∂xin

)

+

∫

d3x

(

δf̂

δÂn(x)

δĝ

δP̂n(x)
−

δf̂

δP̂n(x)

δĝ

δÂn(x)

)

, (3)

(f̂ , ĝ denote arbitrary functions of phase variables). Therefore, the following formulae
for the Poisson brackets of the vector potential and electric field

{Ân(x), Âl(x
′)}=0, {Ên(x), Âl(x

′)} = 4πc δnlδ(x − x′), {Ên(x), Êl(x
′)}=0

(4)
are true. The relation of electrodynamics

Ên(x) = −
1

c
ˆ̇An(x), (5)

( ˆ̇f ≡ {f̂ , Ĥ}) is obviously true, too. Distribution function ρ(t) of the phase variables
of the system satisfies the Liouville equation

∂tρ (t) = Lρ(t); Lρ(t) ≡ {Ĥ, ρ(t)},

L = L0 + Lmf , L0 ≡ Lm + Lf , Lmf = L1 + L2 , (6)

where contributions to the Liouville operator correspond to contributions to the
Hamilton function.

We will study the states of the system for which relations

Ĥf ∼ Ĥm, Ĥf � Ĥ1, Ĥ2; B(x) ∼ E(x) (7)

are valid. Formulae (1), (2) give the following estimates

Ĥm ∼ nV T, Ĥf ∼ V E2; E ∼ kA, ω ∼ kc;

ĵ ∼ enυT , χ̂ ∼
e2n

m
; Ĥ1 ∼ nV T

Ω

ω
, Ĥ2 ∼ nV T

Ω2

ω2
. (8)

Here n, T are density and temperature of the medium, ω, k are frequency and wave
number of the field, V is volume of the system f + m. Characteristic velocity υT

and plasma frequency Ω are given by the expression

υT =

√

3T

m
, Ω =

√

4πe2n

m
, (9)

(m is the electron mass and e is the module of its charge). Therefore, such relations

Lm ∼ ω, ∼ Lf ∼ ω, L1 ∼ Ω, L2 ∼
Ω2

ω
(10)
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are valid (ωm is a characteristic frequency of medium processes). This allows us to
study the system in a perturbation theory in g with estimates

Lm ∼ g0, Lf ∼
ω

ωm

g0, L1 ∼ g1, L2 ∼
ωm

ω
g2; g ≡ Ω/ωm. (11)

Let us describe the electromagnetic field in the equilibrium medium by all the
moments of electric Ên(x) and magnetic B̂n (x) fields. In order to simplify the con-
sideration, we will use cumulative indices a (b, c), µ and cumulative notation for
electromagnetic field

a ≡ (µ1, . . . , µs), µ ≡ (i, n, x);

ξ̂µ ≡ ξ̂in(x) : ξ̂1n(x) = B̂n(x), ξ̂2n(x) = Ên(x);

η̂a ≡ η̂µ1...µs
= ξ̂µ1

· · · · · ξ̂µs
(1 6 s 6 ∞);

∑

a

≡
∑

µ1...µs

,
∑

µ

≡
∑

i,n

∫

dx;
∂

∂ξµ

≡
δ

δξin(x)
. (12)

In a general case the mentioned description of the field is possible at long times
t � τ0 where a characteristic time τ0 depends on the initial state ρ0 of the system.
Our consideration is based on the Bogolyubov idea of the functional hypothesis [4,5]

ρ(t)−−−→
t�τ0

ρ(η(t, ρ0)), (13)

where the reduced description parameters (RDP) ηa(t, ρ0) are defined by the formula

Spρ(t)η̂a −−−→
t�τ0

ηa(t, ρ0), ρ0 ≡ ρ(t = 0), (14)

(Sp denotes the integration over phase variables). The distribution function of the
system ρ(η) in (13) does not depend on its initial state ρ0 and time t. For the system
under consideration the following relations

L0ξ̂µ = −i
∑

µ′

cµµ′ ξ̂µ′ , L0η̂a = −i
∑

b

cabη̂b (15)

are true because they are a matrix form of the microscopic Maxwell equations for a
free electromagnetic field

L0Ê(x) = −c rotB̂(x), L0B̂(x) = c rotÊ(x). (16)

Non-zero elements of matrix cµµ′ are

cµµ′ ≡ cin,i′n′(x, x′); c1n,2l(x, x′) = ic εnml

∂δ(x − x′)

xm

,

c1n,2l(x, x′) = −ic εnml

∂δ(x − x′)

xm

. (17)
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Matrix cab has only diagonal elements and, for example,

cµ1µ2,µ′

1
µ′

2
= cµ1µ′

1
δµ2µ′

2
+ δµ1µ′

1
cµ2µ′

2
. (18)

We call a nonequilibrium theory with the property (15) of η̂a the Peletminskii-
Yatsenko model [5].

The RDP’s ηa(t, ρ0) satisfy the following time equation

∂tηa(t, ρ0) = La(η(t, ρ0)),

La(η) = i
∑

b

cabηb + L̃a(η), L̃a(η) ≡ Spη̂aLmfρ(η). (19)

For the system distribution function ρ(η) we have the following equations

Lρ(η) =
∑

a

∂ρ(η)

∂ηa

La(η), Spρ(η)η̂a = ηa. (20)

According to Bogolyubov [4], to find their unique solution one has to add to equati-
ons (20) a boundary condition. We shall use the boundary condition of the complete
correlation weakening

eτ L0ρ(η)−−−→
t�τ0

eτ L0wρq(η),
(

w ≡ e
F−Ĥm

T

)

, (21)

where w is the Gibbs distribution for the equilibrium medium with temperature T ,
ρq(η) is a quasi-equilibrium distribution function of the field

ρq(η) = exp{Ω(η) −
∑

a

Za(η)η̂a} , Spfρq(η)η̂a = ηa, Spfρ(η) = 1, (22)

(Spf denotes the integration over phase space of the f-subsystem). The second and
the third formulae here yield the function Za(η) and Ω(η). The distribution function
ρq(η) satisfies the Liouville equation for free subsystem f

Lfρq(η) =
∑

a,b

∂ρq(η)

∂ηa

icabηb , (23)

(see [5]) and has the following property

eτL0ρq(η) = ρq(e
icτη). (24)

The boundary condition means that the free evolution of the system breaks all the
spatial correlations between particles and field because the distance between these
subsystems increases. The idea of spatial correlation weakening by means of the free
evolution operator eτL0 belongs to Bogolyubov [4]. Using the free evolution operator
in the boundary condition does not mean that it is correct only approximately. In
fact here we do not need a concrete expression for distribution function ρq(η) due
to the of relation η̂aη̂b = η̂a∪b and the second formula in (22).
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It is convenient to rewrite the boundary condition (14) as follows:

lim
τ→+∞

eτ L0ρ(e−i cτη) = wρq(η) (25)

proceeding from the formula (24). Using the standard procedure [5] we get the
following integral equation for the system distribution function ρ(η)

ρ(η) = ρq(η)w +

+∞
∫

0

dτeτ L0

(

Lmfρ(η) −
∑

a

∂ρ(η)

∂ηa

L̃a(η)

)

η→e−i cτ η

. (26)

For the case of a closed system this equation was first obtained by Peletminskii and
Yatsenko [5]. The obtained equation is solvable in a perturbation theory in small
parameter g but it is not very convenient to study high order approximations with
it. Therefore, let us introduce an auxiliary distribution function

ρ(η, τ) = e−τ L0ρ(ei cτη). (27)

Simple considerations show that it satisfies the following integral equation

ρ(η, τ) = ρq(η)w +

τ
∫

−∞

dτ ′

(

Lmf(τ
′)ρ(η, τ ′) −

∑

a

∂ρ(η, τ ′)

∂ηa

L̃a(η, τ ′)

)

, (28)

where

L̃a(η, τ) = Spη̂aLmf(τ)ρ(η, τ); Lmf(τ)f̂ = {Ĥmf(τ), f̂}, f̂(τ) = e−τ L0 f̂ . (29)

f̂ denotes an arbitrary function of the phase variables; therefore, f̂(τ) gives the
corresponding value at the time moment τ after free evolution. This equation is also
solvable in the perturbation theory at a small parameter g introduced in (11)

ρ(η, τ) =
∞
∑

s=0

ρ(s)(η, τ), ρ(s)(η, τ) ≡ wRs(η, τ),

Rs(η, τ) ∼ gs, R0(η, τ) = %q(η)w. (30)

Moreover, in this paper we restrict ourselves to the consideration of the nonrelati-
vistic approximation taking into account that the value υT /c is an additional small
parameter. We shall also assume that the average equilibrium current is equal to
zero

Spmwĵn(x) = 0, (31)

(Spm denotes the integration over phase space of m-subsystem; SpÂ = SpmSpfÂ).
Let us note that contributions Ĥ1 and Ĥ2 to Ĥmf are of the order 1/c, 1/c2

respectively. There are two origins of c powers in numerators of the considered
expressions for ρ(η, τ). The Hamilton functions Ĥ1 , Ĥ2 contribute to ρ(η, τ) through
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the Poisson brackets. One Poisson bracket can give only c1 in a numerator because
formulae

{Ân(x), Êl(x
′)} = −4πcδnlδ(x − x′), ∂tÂn(x, t) = −cÊn(x, t). (32)

Therefore, we have to omit a Ĥ2 contribution to the Hamilton function Ĥmf in
the considered approximation. Taking into account (32), we can rewrite our typical
expression in the perturbation theory as

τ
∫

−∞

dτ{Ĥ1(τ
′), ρ(s)(η, τ ′)}f(τ ′)

=
1

c

τ
∫∫

−∞

dx{wRs(η, τ ′), ĵn(x, τ ′)Ân(x, τ ′)}f(τ ′)

=
1

c

τ
∫

−∞

dτ ′

∫

dxw

(

−
1

T
{Ĥm, ĵn}RsÂn + {Rs, jn}Ân + {Rs, Ân}ĵn

)

f(τ ′)

=

τ
∫

−∞

dτ ′

∫

dxw M(x, τ ′)Rs(η, τ ′)f(τ ′) + O (υT /c). (33)

Here f(τ) is an arbitrary function. A useful operator in the phase space

M(x, t)f̂ ≡ ĵn(x, t)

(

1

c
{f̂ , Ân(x, t)} +

1

T
Ên(x, t)f̂

)

(34)

was introduced (we denote operators in the phase space with bold letters).
Applying the mentioned ideas, we obtain the following expressions for functions

Rs(η, τ) defined by (30)

R1(η, τ) =

τ
∫

−∞

dτ ′

∫

dxM(x, τ ′)ρq(η),

R2(η, τ) =

τ
∫

−∞

dτ ′

∫

dx

(

M(x, τ ′)R1(η, τ ′) −
∑

a

∂ρq

∂ηa

Spη̂awM(x, τ ′)R1(η, τ ′)

)

,

R3(η, τ) =

τ
∫

−∞

dτ ′

∫

dx

(

M(x, τ ′)R2(η, τ ′) −
∑

a

∂ρq

∂ηa

Spη̂awM(x, τ ′)R2(η, τ ′)

−
∑

a

∂R1(η, τ ′)

∂ηa

Spη̂awM(x, τ ′)R1(η, τ ′)

)

, (35)

(for simplicity we omit here and further the estimations O(υT /c)).
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3. Equations for the generating functional

In order to make the obtained result more visible, let us introduce the generating
functional (GF) F (η, u) for all the moments of electromagnetic field [6]

F (η, u) = 1 +
∞
∑

s=1

1

s!

∑

µ1...µs

uµ1
. . . uµs

ηµ1...µs
, (36)

where uµ ≡ uin(x) are auxiliary functions. Formulae (12), (20), (22) show that the
following relations

F̂ (u) ≡ F (η̂, u) =
∑

a

∂F (η, u)

∂ηa

η̂a = exp
∑

µ

uµξ̂µ ;

F (η, u) = Spρ(η)F̂ (u) = Spρq(η)F̂ (u) (37)

are true.
It is easy to derive a closed time equation for F (η(t), u) (we omit ρ0 from ηa(t, ρ0)

for simplicity). Statistical operator ρ(η(t)) satisfies the Liouville equation (6) and
therefore we have

∂tF (η (t) , u) = SpF̂ (u)Lρ(η(t)) =
∑

µ

uµSpρ(η(t))F̂ (u) ˆ̇ξµ . (38)

Value ˆ̇ξµ = −Lξ̂µ is given by the microscopic Maxwell equations

ˆ̇ξµ = i
∑

µ′

cµµ′ ξ̂µ′ − 4πĵµ − L2ξ̂µ; ĵµ ≡ ĵin(x) = δi2ĵn(x), (39)

(see (6), (15), (16)). Here the term L2ξ̂µ ∼ 1/c must be omitted in the considered
approximation.

Note that the calculation of the trace Spm over the phase space of the medium
gives a formula

Spρ(η)F̂ (u)ĵn(x) ≡ Spfρq(η)F̂ (u)In(x, u, ξ̂) (40)

with a certain function of a microscopic electromagnetic field In(x, ξ̂). Therefore,
using (38)–(40), we have

∂tF (η (t) , u) =
∑

µ

uµSpρq(η(t))F̂ (u)Lµ(u, ξ̂), (41)

where the notation

Lµ(u, ξ) = i
∑

µ′

cµµ′ξµ′ − 4πIµ(u, ξ), Iµ(u, ξ) ≡ Iin(x, u, ξ) = δi2In(x, u, ξ) (42)
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is introduced. The RHS of equation (41) for F (η(t), u) can be expressed through
F (η(t), u) using the formula

F̂ (u)f(ξ̂) = F̂ (u +
∂

∂ξ
)f(ξ)

∣

∣

∣

∣

ξ→0

(43)

which follows from (37). Really, (37), (43) give the necessary closed equation for the
generating functional F (η(t), u)

∂tF (η(t), u) = F (η(t), u +
∂

∂ξ
)
∑

µ

uµLµ(u, ξ)

∣

∣

∣

∣

∣

ξ→0

. (44)

This equation is the equation of fluctuation electrodynamics (FED) in the equilib-
rium medium, i.e. the equation for all the moments of electromagnetic field.

Instead of the GF for moments F (η, u) a GF G(g, u) for correlations (fluctuations,
centered moments) ga ≡ gµ1...µs

of the field can be introduced [6] so that

G(g, u) =
∞
∑

s=2

1

s!

∑

µ1...µs

uµ1
. . . uµs

gµ1...µs
, F (η, u) = exp

(

∑

µ

uµξµ + G(g, u)

)

.(45)

Simple calculation based on the formula

F (η(t), u +
∂

∂ξ
)f(ξ)

∣

∣

∣

∣

ξ→0

= e

∑

µ
ξµ(t)uµ

eG(g(t),u+ ∂
∂ξ

)f(ξ)

∣

∣

∣

∣

ξ→ξ(t)

(46)

gives the following equations for an average value of electromagnetic field and its
correlations

∂tξµ(t) = eG(g, ∂
∂ξ

)Lµ(u = 0, ξ)
∣

∣

∣

ξ→ξ(t), g→g(t)
,

∂tG(g(t), u) =
∑

µ

uµ

{

eG(g,u+ ∂
∂ξ

)−G(g,u)Lµ(u, ξ) − eG(g, ∂
∂ξ

)Lµ(u = 0, ξ)
}

ξ→ξ(t), g→g(t)

(47)

(compare with [6]). Contribution to (47) from linear in ξ̂µ terms from (42) (con-
tribution of free electromagnetic field) can be easily calculated using a method of
differential equation. Really, function

fµ(λ) ≡ eλG(g,u+ ∂
∂ξ

)ξµ (48)

has a derivative

ḟµ(λ) ≡ eλG(g,u+ ∂
∂ξ

)

(

G(g, u) +
∞
∑

s=1

1

s!

∑

µ1...µs

Gµ1...µs
(g, u)

∂s

∂ξµ1
. . . ∂ξµs

)

ξµ ,

where

Gµ1...µs
(g, u) =

∂sG(g, u)

∂uµ1
. . . ∂uµs

. (49)
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Therefore, it satisfies the following differential equation

ḟµ(λ) = G(g, u)fµ(λ) + Gµ(g, u) eλG(g,u), fµ(0) = ξµ . (50)

Solution of this equation leads to identity

eG(g,u+ ∂
∂ξ

)−G(g,u)ξµ = ξµ + Gµ(g, u). (51)

So, equation (47) can be rewritten in the form

∂tξµ(t) = i
∑

µ′

cµµ′ξµ′(t) − 4πjµ(ξ(t), g(t)),

∂tG(g(t), u) = i
∑

µµ′

cµµ′Gµ′(g(t), u)

+
∑

µ

uµ

{

eG(g,u+ ∂
∂ξ

)−G(g,u)Iµ(u, ξ) − eG(g, ∂
∂ξ

)Iµ(u = 0, ξ)
}

ξ→ξ(t), g→g(t)
, (52)

where Iµ(u, ξ) is expressed through In(x, u, ξ) by the formula (42) and

jµ(ξ, g) ≡ jin(x, ξ, g) = δi2jn(x, ξ, g), jn(x, ξ, g) = eG(g, ∂
∂ξ

)In(x, u = 0, ξ). (53)

According to (12), (15), (16) the first formula (52) gives the Maxwell equations;
therefore, jn(x, ξ, g) is the average electric current in the system.

Equations (52) are equations of the FED in the terms of average electromagnetic
field ξµ(t) and its correlations (fluctuations, centered moments) gµ1...µs

(t). These
equations are completely defined by function In(x, u, ξ) which is introduced by the
formula (40). Therefore, the last step of our investigation is to calculate this function.
A typical value to be calculated is

SpwF̂ ĵn(x)M(x′, τ)Rs = Spwĵn(x)ĵl(x
′, τ)

× Rs

(

1

c
{Âl(x

′, τ), F̂} +
1

T
Êl(x

′, τ)F̂

)

=
1

T
Spwĵn(x)ĵl(x

′, τ)Rsαl(x
′, τ, ξ̂ + 4πTu)F̂ , (54)

where

αn(x, τ, u) ≡
∑

i

∫

dx′θinl(x − x′, τ)uil(x
′),

θ1nl(x, t) ≡ λnl(x, t), θ2nl(x, t) ≡ µnl(x, t);

λnl(k, t) = iεnlmk̃m sin ωkt, µnl(k, t) = k̃nk̃l + δ̃nl cos ωkt,

k̃n ≡ kn/k, δ̃nl ≡ δnl − k̃nk̃l . (55)
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Relations (54) also contain the solutions of equations for free electromagnetic field

Ân(x, t) = e−tL0Ân(x) =

∫

dx′

(

µnl(x − x′, t)Âl(x
′) + νnl(x − x′, t)Êl(x

′)
)

,

Ên(x, t) = e−tL0Ên(x) =

∫

dx′

(

λnl(x − x′, t)B̂l(x
′) + µnl(x − x′, t)Êl(x

′)
)

,

νnl(k, t) = −k̃nk̃lct − δ̃nl

sin ωkt

k
(56)

which have the following properties

Ên(x, t) = αn(x, t, ξ̂), {Ân(x, t), F̂ (u)} = 4πc αn(x, t, u)F̂ (u),

{Ân(x, t), ξ̂il(x
′, t′)} = 4πc θinl(x − x′, t − t′). (57)

From the obtained results one can see that

In(x, u, ξ) = In(x, u = 0, ξ + 4πTu), (58)

where function In(x, u = 0, ξ) is given by formulae:

In(x, u = 0, ξ) =
∞
∑

s=2

I(s)
n (x, u = 0, ξ),

I(2)
n (x, u = 0, ξ) =

1

T

0
∫

−∞

dτ1

∫

dx1Inl(x1 − x, τ1) αl(x1, τ1, ξ),

I(3)
n (x, u = 0, ξ) =

1

T 2

0
∫

−∞

dτ1

∫

dx1

τ1
∫

−∞

dτ2

∫

dx2Inlm(x1 − x, τ1; x2 − x, τ2)

× [αl(x1, τ1, ξ)αm(x2, τ2, ξ) + 4πTµlm(x1 − x2, τ1 − τ2)],

I(4)
n (x, u = 0, ξ) =

1

T 3

0
∫

−∞

dτ1

∫

dx1

τ1
∫

−∞

dτ2

∫

dx2

τ2
∫

−∞

dτ3

∫

dx3

× Inlms(x1 − x, τ1; x2 − x, τ2; x3 − x, τ3)[αl(x1, τ1, ξ)αm(x2, τ2, ξ)αs(x3, τ3, ξ)

+ 4πTαm(x2, τ2, ξ)µls(x1 − x3, τ1 − τ3) + 4πTαl(x1, τ1, ξ)µms(x2 − x3, τ2 − τ3)

+4πTαs(x3, τ3, ξ)µlm(x1 − x2, τ1 − τ2)]. (59)

Here correlation functions of currents ĵn(x, t) = e−tL0 ĵn(x)

Inl(x1, τ1) = Spmwĵn(0)ĵl(x1, τ1),

Inlm(x1, τ1; x2, τ2) = Spmwĵn(0)ĵl(x1, τ1)ĵm(x2, τ2),

Inlsm(x1, τ1; x2, τ2; x3, τ3) = Spmwĵn(0)ĵl(x1, τ1)ĵm(x2, τ2)ĵs(x3, τ3)

− Spmwĵn(0)ĵl(x1, τ1)Spmwĵm(x2, τ2)ĵs(x3, τ3)

− Spmwĵn(0)ĵm(x2, τ2)Spmwĵl(x1, τ1)ĵs(x3, τ3)

− Spmwĵn(0)ĵs(x3, τ3)Spmwĵl(x1, τ1)ĵm(x2, τ2) (60)
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are introduced. In the considered approximation (59) the function Iµ(u = 0, ξ) is
given by the formula

Iµ(u = 0, ξ) = Sµ +
∑

µ1

σµ,µ1
ξµ1

+
∑

µ1µ2

σµ,µ1µ2
ξµ1

ξµ2

+
∑

µ1µ2µ3

σµ,µ1µ2µ3
ξµ1

ξµ2
ξµ3

+ O(g5), (61)

where according to (12) and (42) the values Sµ, σµ,µ1
, σµ,µ1µ2

, σµ,µ1µ2µ3
have the struc-

ture

Sµ ≡ Sin(x) = δi2Sn, σµµ1
≡ σin,i1n1

(x, x1) = δi2σn,i1n1
(x − x1),

σµ,µ1µ2
≡ σin,i1n1i2n2

(x, x1, x2) = δi2 σn,i1n1i2n2
(x − x1, x − x2), . . . . (62)

For all of them we obtain concrete expressions

Sn =
4π

T

0
∫

−∞

dτ

∫

dx

τ
∫

−∞

dτ ′

∫

dx′Inlm(x, τ ; x′, τ ′)µlm(x − x′, τ − τ ′) + O(g5),

σn,il(x − x′) =
1

T

0
∫

−∞

dτ

∫

dx′′Inm(x − x′′, τ) λiml(x
′′ − x′, τ) + O(g4), . . . (63)

Formulae (58), (61) make it possible to calculate the values entering the equations
of FED (52). This can be done using the differential equation method (see (50)) for
functions

fµ1...µs
(λ) = eλG(g,u+ ∂

∂ξ
)ξµ1

. . . ξµs
(64)

which leads to a chain of equations of the first order. This chain can be solved
successively starting from equation (50) for fµ1

(λ). This way we obtain

eG(g,u+ ∂
∂ξ

)−G(g,u)ξ1ξ2 = ξ1ξ2 + G12 + ξ1G2 + ξ2G1 + G1G2

eG(g,u+ ∂
∂ξ

)−G(g,u)ξ1ξ2ξ3 = ξ1ξ2ξ3 + G123 +

[

G12(
1

2
G3 + ξ3) + c.p.

]

+

[

G3(ξ1ξ2 +
1

2
G12 +

1

2
ξ1G2 +

1

2
ξ2G1 +

1

3
G1G2) + c.p.

]

,(65)

where for simplicity a highly reduced notation

ξi ≡ ξµi
, G1...s ≡ Gµ1...µs

(66)

is used.
We will not substitute expressions (65) into equations (52) completely, and re-

strict ourselves to a final formula for average current in the system jµ(ξ, g)

jµ(ξ, g) = Sµ +
∑

µ1

σµ,µ1
ξµ1

+
∑

µ1µ2

σµ,µ1µ2
(gµ1µ2

+ ξµ1
ξµ2

)

+
∑

µ1µ2µ3

σµ,µ1µ2µ3
(3gµ1µ2

ξµ3
+ gµ1µ2µ3

+ ξµ1
ξµ2

ξµ3
) + O(g5). (67)
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This formula is a material equation for the FED. Values σµ,µ1
, σµ,µ1µ2

, σµ,µ1µ2µ3
can

be called generalized conductivities. According to (62) they take into account a
spatial dispersion. In equilibrium, the electric current in the considered system must
vanish

jµ(ξ = 0, geq) = 0, (ξeq = 0). (68)

Therefore, the material equation (67) can be rewritten in the form

jµ(ξ, g) =
∑

µ1

σµ,µ1
ξµ1

+
∑

µ1µ2

σµ,µ1µ2
(δgµ1µ2

+ ξµ1
ξµ2

)

+
∑

µ1µ2µ3

σµ,µ1µ2µ3
(3gµ1µ2

ξµ3
+ δgµ1µ2µ3

+ ξµ1
ξµ2

ξµ3
) + O(g5), (69)

where

δgµ1...µs
= gµ1...µs

− geq
µ1...µs

. (70)

Let us compare the developed theory with the theories having a truncated set
of nonequilibrium correlations as independent variables. In usual nonlinear electro-
dynamics (NED) correlations gµ1...µs

should be functions of electromagnetic field
gµ1...µs

(ξ) and a function j0µ(ξ) ≡ jµ(ξ, g2(ξ), g3(ξ) . . . ) is material equation of the
NED (we use a more detailed notation jµ(ξ, g2, g3, . . . ) ≡ jµ(ξ, g)). Time equations
for all correlations (52) should be satisfied with functions gµ1...µs

(ξ(t)) (2 6 s < ∞).
In FED taking into account only binary correlations gµ1µ2

(FED2) triple and more
complicated correlations should be functions of electromagnetic field and binary
correlations gµ1...µs

(ξ, g2) (3 6 s < ∞ ). The material equation of the FED2 in the
terms of function (67) is given by formula j1µ(ξ, g2) ≡ jµ(ξ, g2, g3(ξ, g2), . . . ). Time
equations for triple and more complicated correlations (52) should be satisfied with
functions gµ1...µs

(ξ, g2) (3 6 s < ∞).
Let us truncate the equations (47) of the FED taking into account only binary

correlations and construct the corresponding equations of the FED2. Note that the
FED2 which describes the electromagnetic field with ξµ and gµ1µ2

can be built based

on our equations (19), (22), (26) with operator of RDP’s η̂a= ξ̂µ, ξ̂µ1
ξ̂µ2

(see [8,9]).
In this case ρq is a Gauss distribution

ρq = e
Ω−

∑

µ
Zµξ̂µ−

∑

µµ′

Zµµ′ ξ̂µξ̂µ′

(71)

and averages Spρq ξ̂µ1
. . . ξ̂µs

can be calculated in the terms of ξµ and gµµ′ using the
generating functional

Fq(u) = SpfρqF̂ (u) = e

∑

µ
uµξµ+ 1

2

∑

µµ′

uµuµ′gµµ′

. (72)

In order to compare FED and FED2 we need gµ1...µs
(ξ, g2) which can be obtained

with a generating functional method. According to (30), (31), (37), (45) and using
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the reduced notation (66) we have

G(u) = ln F (u) = ln Spρ(η)F̂ (u) = ln Sp
(

ρqw + ρ(1) + ρ(2) + ρ(3) + O(g4)
)

F̂ (u)

= ln Fq(u) + Fq(u)−1Sp
(

ρ(2) + ρ(3)
)

F̂ (u) + O(g4) = ln Fq(u)

+

[

1

3!

∑

123

u1u2u3Sp
(

ρ(2) + ρ(3)
)

ξ̂1ξ̂2ξ̂3 +
1

4!

∑

1234

u1u2u3u4Sp
(

ρ(2) + ρ(3)
)

× ξ̂1ξ̂2ξ̂3ξ̂4 + O(g2u5, g3u5, g4)

][

1 +
∑

5

u5ξ5 + O(u2)

]−1

,

(
∑

i

≡
∑

µi

) because Spρ(s)ξ̂1 = 0, Spρ(s)ξ̂1ξ̂2 = 0 for s > 1 (see (20), (22)). This

relation leads to the following expressions for correlations

g123(ξ, g2) = Sp(ρ(2) + ρ(3))ξ̂1ξ̂2ξ̂3 + O(g4) ∼ g2,

g1234(ξ, g2) = Sp(ρ(2) + ρ(3))
[

ξ̂1ξ̂2ξ̂3ξ̂4 −
(

ξ̂1ξ̂2ξ̂3ξ4 + c.p.
)]

+ O(g4) ∼ g2. (73)

Taking into account these estimates and formula (69) we obtain an average current
for FED2

j1µ(ξ, g2) =
∑

µ1

σµ,µ1
ξµ1

+
∑

µ1,µ2

σµ,µ1µ2
(ξµ1

ξµ2
+ δgµ1µ2

)

+
∑

µ1,µ2,µ3

σµ,µ1µ2µ3
(ξµ1

ξµ2
+ 3gµ1µ2

) ξµ3
+ O(g5) (74)

and the averaged electromagnetic field ξµ(t) satisfies the Maxwell equation

∂tξµ = i
∑

µ′

cµµ′ξµ′ − 4πj1µ(ξ, g2), (75)

(see (52)). According to (49), (52), (58) time equation of the FED for the binary
correlations has the form

∂tgµµ′ = i
∑

µ′′

cµµ′′gµ′′µ′ − 4πeG(g, ∂
∂ξ

)

(

Gµ(g,
∂

∂ξ
) + 4πT

∂

∂ξµ

)

× Iµ′(u = 0, ξ) + (µ ↔ µ′)). (76)

Now using formulae (45), (49), (61) and estimates (73) we obtain the following
equation of the FED2 for binary correlations

∂tgµµ′ = i
∑

µ′′

cµµ′′gµ′′µ′ − 4π
∑

µ′′

(gµ′′µ′ + 4πTδµ′′µ′)

×

(

σµ,µ′′ + 2
∑

µ1

σµ,µ′′µ1
ξµ1

+ 3
∑

µ1,µ2

σµ,µ′′µ1µ2
(ξµ1

ξµ 2
+ gµ 1µ 2

)

)

+ (µ ↔ µ′) + O(g5). (77)
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Expressions (74), (75), (77) give equations of the FED2, i.e. the equations of the
FED taking into account only binary correlations.

Note finally that we cannot build the NED similar to our consideration of FED2

because quasi-equilibrium distribution ρq (22) does not exist. This probably indicates
that a reduced description of electromagnetic field only by average electric and
magnetic fields in a general case is impossible (see also [10]).

In the present work the classical FED is considered. This theory is a limit of
the corresponding quantum theory. In a quantum case the binary correlation func-
tion gµ1µ2

is closely related to the Wigner photon distribution functions. Therefore,
equation (77) is similar to the kinetic equation for photons in which square in gµ1µ2

terms describe the photon-photon collisions in the medium.

4. Conclusions

Thus, there has been built a fluctuation electrodynamics of classical electromag-
netic field in equilibrium medium as a theory which describes its nonequilibrium
states by average field and all field correlations. Equations of the fluctuation elec-
trodynamics are written in terms of a generating functional for moments of the
field and in terms of an average field and a generating functional for correlations
(fluctuations, centered moments). It was established that the right hand sides of
the corresponding equations are completely defined by an average electric current
calculated in the present paper up to the fourth order in electromagnetic interacti-
on. The dependence of the current on electromagnetic field and its correlations (the
material equation of the theory) is nonlinear, local in time and nonlocal in space
(spatial dispersion). The paper discusses the relation of the developed theory to the
description of the electromagnetic field with average field and its binary correlations.

This work was supported by the State Foundation for Fundamental Research of
Ukraine (project No. 2.7/418) and INTAS (project No. 00–577).
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Класична флуктуаційна електродинаміка

О.Й.Соколовський, А.А. Ступка

Дніпропетровський національний університет,
вул. Наукова 13, Дніпропетровськ, Україна, 49050

Отримано 3 серпня 2005 р., в остаточному вигляді

– 8 листопада 2005 р.

Cистема, яка складається з рівноважного середовища із зарядже-
них частинок і електромагнітного поля, розглянута в класичному
випадку та при малій взаємодії між підсистемами. Функцію розпо-
ділу системи розраховано з точністю до третього порядку за елек-
тромагнітною взаємодією. Поле описується усіма моментами елек-
тричного та магнітного поля, які обрані параметрами скороченого
опису в рамках метода скороченого опису нерівноважних станів
Боголюбова. Як гранична умова до рівняння Ліувілля застосована
узагальнена умова Боголюбова повного ослаблення кореляцій між
підсистемами. Одержані часові рівняння для параметрів скороче-
ного опису записані в компактній формі за допомогою породжую-
чого функціоналу для моментів поля та породжуючого функціоналу
для кореляцій поля (центрованих моментів, флуктуацій). Отримані
рівняння узагальнюють нелінійну електродинаміку в рівноважному
середовищі на випадок врахування флуктуацій електроманітного
поля.

Ключові слова: метод скороченого опису нерівноважних станів

Боголюбова, узагальнена гранична умова повного ослаблення

кореляцій, флуктуаційна електродинаміка у рівноважному

середовищі, породжуючий функціонал
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700


