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We investigate thermal fluctuations of order parameters (director for meso-
morphic subsystem and density for isomorphic liquid) in filled liquid crystal.
We consider finite-size system with geometry of plane-parallel layer with
zero boundary condition. We use a special model that takes into account
the interaction of mesomorphic and isotropic subsystems and find general
expressions for pair correlators. Based on these expressions we calculate
the shift of critical temperature of isotropic liquid due to the interaction with
the mesomorphic subsystem and space limitation.
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1. Introduction

It is well known that in liquid-crystalline systems, thermal fluctuations of director
orientation can be very strong especially in close vicinity to phase transition [1-3].
Since the susceptibility of the system is extremely high, any external perturbations
can cause drastic changes in the behaviour of the system. We expect that if there
are impurities in the system, they can affect its correlative behavior. To clarify this
point we consider a mesomorphic system with isotropic inclusions. We propose an
expression for the total energy of the system and based on this expression calculate
(in general form) the pair correlators for fluctuations of order parameters (director
for mesomorphic liquid and local density for isotropic liquid).

Plenty of different effects due to the presence of impurities can be observed in
liquid crystals [4-8]. The most remarkable of them are the cooperative processes
in ferronematics, i.e., liquid crystals with ferroparticles [8-16]. For these systems
many fruitful results were obtained of both theoretical end experimental nature.
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But this does not mean that if impurity particles have no magnetic moment then
nothing interesting happens. For macroparticles one can mention very interesting
effects dealing with topological defects in director distribution in filled liquid crystals
[17-22]. From this point of view the size of the particles is the question of great
importance. Here we consider microscopic impurities. Some useful results can be
received in this case as well. Besides pair correlation we investigate the shift of
critical temperature in the system due to the presence of mesomorphic component
(i.e. liquid-crystalline subsystem).

2. Formalization of the problem

We consider the elastic energy of mesomorphic subsystem in the one-constant
approximation, i.e. we take

Ry = % / ((aiv)? + (roti)?)av, (1)

where K is elastic Frank constant. We also consider the isotropic subsystem of
microscopic impurities. As an order parameter for this subsystem we take local
density p(7) of impurities. The energy related to the impurity subsystem is of the
ordinary form

B = [ (o + 05 p?) . &)

and here a and b are phenomenological parameters of the model. We have to take
into the account interactional part of energy between mesomorphic and isotropic
subsystems. We do it at the stage of finding the fluctuation part of the total energy.
This fluctuation part of the energy is caused by deviation of the director from its
equilibrium direction and the density from its average value. We assume that the
equilibrium director is oriented along z-axes and we define the average density of
isotropic subsystem as py. Then we take n = 1y + on and p = py + dp, where
on = (dny, ony, 0) is the fluctuation of the director as well as dp is the fluctuation of
density. Fluctuation parts of energies F, and F},, then are as follows

K don,  9on,\* (9on, 9on,\’
5Fel_5/<(8a:+8y>+(8y_8x)
aon, > [9on,\*
+(az>+(82)>dv, )

0Fm = % / (a(5p)2+b(V5p)2>dV (4)

We consider the finite-size system of thickness L and assume that z-axis is perpen-
dicular to the plane of the layer. Fluctuation part of the energy of the subsystem
interaction in a general case can depend on fluctuations dn,, dn,, dp and their deriva-
tives as well. Here we will not consider the general situation and take the fluctuation
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part of interaction energy as follows:

8(5,0 (%n 8(571
EH - Y d Y
§Fp = —W / = ) 1% (5)

which means self-ordering of fluctuations along z-axis. Here W is the parameter
that characterizes the energy of interaction of subsystems (it could be positive or
negative). Let us consider the hard boundary conditions which mean the absence of
fluctuations on the restricting surfaces. In this case we can take the next expansion
for én,, on, and dp:

ong, = i OMeym SIN (WZLZ>, (6)

m=1
op = iépmsin(W;Z), (7)
m=1

where a = x,y. After inserting (6) and (7) in (3)-(5) and making Fourier transfor-
mation in xy-plane and integrating on z from 0 to L we can easily get

o = G XX (0

P = WZZ(a+b<q2+w2m2/L2>)rapm<q>\2, (9)

) (e @F + Brm@F). (9

T = o zz " (3 0) B (@

o () + 30 (@) (015, () + 075, (0))). (10)

and here V' is the volume of the system and the star means complex conjugation.
If we define symmetrical matrices A,, as follows

K( 2 QLZ’L2> 0 _szmQ
Anlg) = 0 K (g W (1)
_szmQ _Wf;mQ a+ b( 2 ”Lgﬁ)

then we can present the fluctuation part of total energy like this:

5F = 25 3 i @) (). (12
where
5nx,m(c.7)
617 (q) = | Onym(q) (13)
5/)m(Q)

and “4” means transposition and complex conjugation.
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3. Finding pair correlators

To diagonalize the expression (12) we take new order parameters gm(q) according

to relation
() = Un(0)&m(q), (14)
and in this case from (12) we can get

o0

Z Z 3€5(0) B (906 ), (15)

where matrix
Bu(q) = U (@) A (@) Uni(q) (16)

should be of diagonal form. Matrix Um( ) can be presented as a direct sum of unit
eigenvectors &, (q) (i = 1,2, 3) of matrix A,,(q). Diagonal elements of matrix B, (q)
then coincide with eigenvalues of matrix A,,(q).

Eigenvalues of matrix A,,(q) are

2,12

m ™™m
AN™(q) = K(q2+ =) (17)
Nm(g) = (F(m )£/ [F Q)]? + 8w, ), (18)
where we have defined
2,2 2,2
P = K(¢+ ) = (atb(e+ ) (19)
Wr?m?
Wy, = T3 (20)
The corresponding eigenvectors are
1 -1
é»l,m(CZ) = ﬁ 1 ) (21)
0
—1
1 pog (PP F VIR R +sug)
rm(q) = i:F = 2w (F(m)( ):F\/[F(m)( )]2+8w2)1 )
2/ + suz, | 20\ OF VIO S
(22)

and here k = 2,3. Then we get for the fluctuation part of the total energy

zzzxk Ioek (23)
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where 0¢F () is k-th element of vector 6&,(q). After statistical averaging we can

find that LTV )
(1668 (q)]) = 25— ———
L2 2™ (q)

But as usual we need to know the correlators (dn’ (¢)[0n7,(q)]*). Namely we can get

(24)

(Onp (@) [6m), ()] = UM UE (0){|08% (0))

NE

k

= D chm@lel (@ (0 (@), (25)

k=1

1

w ||

here we have defined elements of eigenvectors €, (q) as €}, (i,k =1,2,3).

4. Shift of critical parameters

Knowing the expressions for eigenvectors €y ,,(¢) and eigenvalues )\,(cm) (q) one can
find the pair correlators (dn' (q)[0n?, (¢)]*). For example, the correlator of density
fluctuations is

(16pm(@)?) = (lon3,(q) Z\ekm 2(|0€E () )

2

T
_ kJBLZV <a 4 b(? 4+ wPm? /L) —

2wy, -1
K(q2+7r2m2/L2)> - (20)

We see that in comparison with the pure isotropic system, the structure of pair
correlator in the case of mixed system is more complex. There is an extension caused
by interaction with mesomorphic subsystem in the expression (26).

We also know that for infinite system

1
5p(q)|?) ~ 27
(0@ ~ —5ms (27)
and the condition for critical point is @ = 0. As usual one takes
= ao(T - To), (28)

where T, is critical temperature. Obviously the interaction with mesomorphic sub-
system causes a shift of critical parameters and namely, critical temperature. For
the mixed system we have the following equation for new critical temperature 7™x:

br®  2wil® br?  2W 32

o AL A} 29
T T K2 Tt T KD (29)
Taking into account (28) we get
. w2 /22
Tmix —< _ b). 30
¢ + CloL2 K ( )
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The shift of critical temperature (in comparison with spatially infinite system) takes
place for two reasons (in our case). First of all critical temperature changes as a
result of space limitation (addition bm?/L? in equation (29)). This lowers critical
temperature. The presence of mesomorphic subsystem rises the critical tempera-
ture (addition 2W?7?/(KL?) in equation (29)). Thus, the total change of critical
temperature can be both positive and negative.

5. Conclusion

We have shown that the interaction of isotropic and mesomorphic subsystems
causes significant changes in the structure of order parameter fluctuations. Never-
theless from the point of view of possible experiment we should note that it is hard
enough to clarify the effect of impurities on correlative behavior of the system. As
a matter of fact, in the experiment we normally measure the intensity of light scat-
tering [1-3,22]. This intensity is determined mainly by the most singular correlator.
This means that the above mentioned peculiarities of pair correlation cannot be seen
from direct measurements.

It is much easier to find the shifts of critical parameters (for example critical
temperature). Similar results (using different model) concerning the dependence
of critical temperature on the concentration of impurities were received previously
[4,23]. Here we have considered one of the possible mechanisms of interaction be-
tween mesomorphic and isotropic subsystems. Using the above proposed scheme we
can consider a more general model of interaction. But in any case we get expressions
for critical parameter shifts and then compare experimental data with theoretical
predictions. Moreover, to compare the predictions of the model with experimental
data we can interpret the above considered system (probably with minor modifica-
tions) as the isotropic liquid with mesomorphic inclusions. From this point of view
our results are in good agreement with experimental data not only in the part of
critical temperature shift but regarding the structure of pair correlation functions
as well (see for example [23-25]).
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Tennosi pnykTyauii opieHTauill AgMpeKTopa B
HeMaTU4YHOMY pPiAKOMY KpuUcTani 3 AoMiluKamMun

O.M.Bacunbes?!, I.M.MNiHnkeBny 12

Kniscbkunin yHiBepcuTeT iMeHi Tapaca LLeB4yeHka,
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JocniopxyloTbcs Tennosi GnykTyauii napameTpis nopsaaky (oMpekTop
Ons pigKOKpUCTaniyHOi NigcucTeMmn Ta ryCtuHa ang isoTPOnHOI piamHm)
B PiZKOMY KpucTani 3 4oMilkaMun. Po3rnsaaetbcs NpoCTopoBo oOMexe-
Ha cMcTemMa 3 reoOMeTpIE0 NNOCKOro napanesnbHOro NpoLapky 3 Hysbo-
BUMU FPaAHUYHUMKN yMOBaMU. 3anpornoHOBaHO MOAENb, WO BPaxOBYE
B3aEMOLiI0 PiAKOKPUCTANIYHOI Ta i30TPOMNHOI NiACUCTEM Ta 3HAXOOATb-
Cs 3arajibHi BMpas3un s napHUX KOpPendaTtopie. Ha OCHOBI uux Bupasis
PO3pPaxoBYETLCS 3CYB KPUTUYHOI TeMnepaTypu i30TPOMNHOI nigcmcTemu,
O BUHMKAE BHACIOOK B3aEMO/AIT 3 PiOKMM KPUCTaNOM Ta Yepes npoc-
TOpOBE OOMEXEHHS.

Knwo4oBi cnoBa: pigkuii kpyuctas, AOMILLIKA, NapHi KOPENsLii, KoUTNYHa
Temneparypa

PACS: 61.30.-v, 61.30.Gd, 64.70.Md
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