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Phase transitions in the lattice model of intercalation
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The lattice model which can be employed for the description of intercalation of ions in crystals is considered
in this work. Pseudospin formalism is used in describing the interaction of electrons with ions. The possibility
of hopping of intercalated ions between different positions is taken into account. The thermodynamics of the
model is investigated in the mean field approximation. Phase diagrams are built. It is shown that at high values
of the parameter of ion transfer, the phase transition to a modulated phase disappears.
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Theoretical description of intercalation of ions in crystals appears to be an urgent problem be-
cause metal oxides are very promising electrode materials as hosts for ion (e. g., lithium) insertion.
In [1-3] quantum chemical Hartree-Fock and density-functional calculations were performed to
investigate lithium intercalation in TiOy crystals. It was shown that Li is almost fully ionized once
intercalated (Li looses its valence electron). It was revealed that reconstruction of electron spectrum
at intercalation takes place. Thus, ion-electron interaction can play a significant role. At intercala-
tion of lithium in TiOg, phase separation into Li-poor (Li..01TiO2) and Li-rich (Lig.5-0.6TiO2)
phases occurs. This two-phase behaviour leads to a constant value of electrochemical potential [4,5].
In [6], the theoretical investigation of intercalation was performed using the Hamiltonian which
included the interaction between ions only. In our previous work [7] we formulated the pseudospin-
electron model of intercalation and took into account the ion-electron interaction. It was shown
that the effective attractive interaction between ions is formed due to the pseudospin-electron in-
teraction and thus the condition of the appearance of phase transition was established. It was found
that the capacity of the system increases near the phase transition point. In the present paper we
consider the possibility of a transfer of intercalated ions and investigate the thermodynamics of
the model.

The Hamiltonian of the model is written as follows:

H = ZQ”S:FS; + Ztijc;cjg + Z(QSZZTLZJ - [IJTLZ'U) - Z hSZZ . (1)
i ijo io i
The pseudospin variable S? takes two values; S7 = 1/2 when there is a lithium ion in a site ¢ and
S? = —1/2 when there is no lithium ion, c;; and c¢;, are electron creation and annihilation opera-
tors, respectively. We consider the possibility of ion and electron jumps between sites (the first and
the second term in (1)) and interaction of electrons with lithium ions (g term); p and h play the role
of chemical potentials of electrons and Li ions, respectively. The Hamiltonian is similar to the one
used in describing a system of coexisting itinerant electrons and local pairs when the creation and
destruction operators for local pairs (hard-core bosons) obey the Pauli spin 1/2 commutation rules
(for example, see [9]). However, it should be noted that in [9] the chemical potential of the local pairs
and itinerant electrons was the same and the regime of a fixed total number of particles was used.
To investigate the thermodynamics of the model we use the following simplification:

gniS;  —  g(ni)S; + gni(S7) — g(n:)(S7),
+a- +\a— +a— +a—
Q5787 — QUST)ST +QST(S)) —USTHS)), (2)
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where the pseudospin-electron interaction and ion transfer are taken into account in the spirit of
the mean field approximation (MFA) through internal self-consistent fields which act on electrons
and pseudospins.

We consider the possibility of the formation of a modulated (chess-board - like) phase and that
is why we introduce two sublattices: (3 niao) = N, (SZ,) = Na, Where o = 1,2 is a sublattice
index, 7 is an elementary cell index. The Hamiltonian of the model in the MFA is as follows:

gMFA Z(gna _ H)niao’ + Z(gna — h)Sfa + Z t%ﬁcitwcjﬁg + Z2Qaﬁ<5§> fﬁ
oo [1e ia,j 3 afi
~9'>" e — NOUST)(SE), ®)

o

where N is the number of the lattice sites, @ = Q'? = Q%' =37 Q12 QM = 02 =1 = 1** = 0.

To diagonalize the Hamiltonian, we pass to k-representation and perform the transformations

Ckle = COSQCrio + 8N PCros
Ck2o = —sin d)ékla' + cos ¢5k2a' ’
¢ _om—n2
sin2¢ = k , COS2¢p = I3 ; (4)
(gmF12)2 442 (gm312)2 4 42
Sz, =07, c080, + 0, sinb,, SE =0}, cosl, — o, sinb,,
. 20(S% —an
sinf, = f\<a5>’ cosf, = %,
Ay = \/(gna —h)2+(20(S5)2,  a#p. (5)
Then the Hamiltonian is as follows:
. T, N .
H = ) (Mo — Witkao — P Aa0iy — 93(711771 + nanz) — NQ(ST)(S3), (6)
ack io
_l’_ —
Mo = g+ (—1)“\/@"1—2"2)2 +17. (7)

The electron band changes its position at intercalation (see [7] for more details). Besides, the
doubling of a unit cell leads to the splitting in the electron spectrum [8].

The equations for electron and ion concentrations can be obtained using the diagonal Hamil-
tonian (6):

1 1+ cos2 Ao =t -1 1—cos2¢ [ *ks—n -1
”aW?(%(“T +1) +f(e ! “) ’

No = h;ﬂtanh (ﬁ_;w) ,

{03

Q(S2 \
(8%) = 2 2; 5 tanh (%) . (8)

{03

The grand canonical potential can be written as follows:

L0 T i -
b IS (1)
k,o

A A
—TIn (4 cosh % cosh %) — g(nim + nana) — 2Q(STH(ST). (9)
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The obtained set of equations was solved numerically (we use the grand canonical potential (9) to
find thermodynamically stable states).

In calculations we used the semielliptic density of states, p(e) = WQVQ VIVZ —e2 —W <e< W,
where W is a half-width of the electron band (in our calculations we put W = 1).
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Figure 1. The dependence of ion concentration on chemical potential of the ions. The parameter
values are: ¢ = 0.5, W =1, u =0, T = 0.05, 2 = 0(a), 2 = 0.3(d).

In figure 1 the dependence of the ion nion, = 14 + 1/2 concentration on the chemical potential
of ions is shown (a similar behaviour is obtained for the electron concentration) in the regime of
a fixed chemical potential of electrons for the following set of parameters: W = 1,9 = 0.5,T =
0.05,1 = 0,92 = 0(a),Q = 0.3(b). Solid line corresponds to the case of a uniform phase with
(S*) = 0, dotted line relates to the case of a uniform phase with (S®) # 0, dashed line relates
to the case of the modulated phase ((S{,) = 0 for the case @ = 0 and (S7,) # 0 for the case
Q =0.3). From figure 1 we can see that the system undergoes a phase transition from a uniform to
a modulated phase (nion; and njono are the ion concentrations in two sublattices in a modulated
phase). The mean value (S*) is equal to zero in the case 2 = 0 and at  # 0 an additional
phase with (S®) # 0 can appear. When the system goes from a uniform phase to a modulated
phase, the jumps of ion and electron concentrations occur. This means that in the regime of fixed
concentrations, the phase separation in two phases (uniform and modulated) with different ion and
electron concentrations takes place [10].
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Figure 2. The dependence of ion concentration on chemical potential of the ions. The parameter
values are: ¢ = 0.5,W =1, T = 0.05, 2 = 0.5, u = 0(a), Q@ =0, u = 0.6(d).
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In figure 2 the dependence of ion concentration on chemical potential of ions is shown for the
cases 1 = 0,02 = 0.5(a) and p = 0.6, = 0(b). We can see that at high values of the parameter
of ion transfer 2, the phase transition to a modulated phase (and the phase separation in the
regime of the fixed concentrations) disappears. When the chemical potential is placed near the
band edges, the phase transition of the first order between two uniform phases with jumps of the
ion and electron concentration can appear; this is illustrated in figure 2(b).
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Figure 3. Phase diagrams in the (h — ) plane ((a) — u = 0, (b) — u = 0.8). The parameter
values are: g = 0.5, W = 1,T = 0.05. (1),(3) - uniform phase with (S*) # 0 ((1): (ST) = (S3),
(3): (ST) = —(5%)); (2) — uniform phase with (S”) = 0; (4) — modulated phase ((a): (ST2) =0,
(b): () #0).

In figure 3 the h — Q phase diagrams are shown for the cases = 0 (at the centre of the band)
and pu = 0.8W (near the band edge). In figure 4 the h — p phase diagram is shown. It is easy to
see from figures 3, 4 that at high values of the parameter of the ion transfer {2, the only possible
phases are the uniform phases with (S?) # 0 and (S*) = 0.

Thus, we may conclude that the ion transfer leads to the disappearance of phase transitions
with jumps of the ion and electron concentrations. Besides, the new phase with (S*) # 0 appears
due to the presence of ion hopping between sites; this phase is an analogy to a superfluid phase
in the systems of hard-core bosons. To investigate this phase in detail we should examine the
behaviour of the conductivity and other characteristics of the system. This is the task for future
investigations.

Figure 4. Phase diagram in the (h — p) plane. The parameter values are: ¢ = 0.5, W = 1,
T = 0.05,Q = 0.3. The phase notations are the same as in figure 3.
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da30Bi nepexoaun B rpaTKkoBiii Mogeni iHTepkanauii

T.C.Mucakosuy, B.O.KpacHos, |.B.Ctactok

IHCTUTYT Pi3nkm KoHaeHcoBaHMxX cncteMm HAH Ykpainu,
79011 JlbBiB, Byn. CBEHUIUbKOrO, 1

OTtpumano 10 nuctonapa 2008 p.

B paHin po6oTi po3rnsaaeTbca rpaTkoBa MoAesb, gka Moxe OyTn 3acTocoBaHa [AJi ONucy iHTepKansauii
ioHiB B kprcTanu. BukopuctaHo ncesnocniHoBWiA dopmaniaMm Ans Onucy B3aeMOofji e1eKTPOHIB 3 ioHaMu
Ta BPaxoBaHO MOXJIMBICTb NEPECKOKIB IOHIB MiX Pi3HMMM No3uuigmu. JocniaxeHo TepMoanHamiky Moaeni
B HabnuxeHHi cepeanHboro nons. NobynosaHo das3osi giarpamu. MNokasaHo, WO NPU BEANKNX 3HAYEHHSIX
ioHHOro nepeHocy $a3oBuin nepexia, y MoaynboBaHy dasy 3HUKaE.

Knio4oBi cnoBa: iHTepkasisiuisa, pa3osi nepexonu, NnCeBAOCMiH-€/IEKTPOHHA MOAEb

PACS: 64.75.+g, 71.20.Tx, 64.70.-p
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