Local solutions to Darboux problem with a discontinuous right-hand side

P.Pikuta

Marie Curie-Skłodowska University, Institute of Mathematics pl. Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland

Received January 31, 2008

The existence of a local solution to the Darboux problem $u_{x y}(x, y)=g(u(x, y)), u(x, 0)=u(0, y)=0$, where g is Lebesgue measurable and has at most polynomial growth, is proved.

Key words: Darboux problem, discontinuous differential equations
PACS: 02.30.Jr

1. Introduction

In this paper we deal with the Darboux problem

$$
\begin{align*}
u_{x y}(x, y) & =g(u(x, y)) \text { a.e. in }[0, T] \times[0, T] \tag{1}\\
u(x, 0) & =u(0, y)=0 \tag{2}
\end{align*}
$$

where g is not assumed to be continuous. The problem arises as a natural extension of the Cauchy problem for an autonomous equation $x^{\prime}(t)=f(x(t))$ with a discontinuous right-hand side, see [1].

Definition 1 We say that a continuous function $u:[0, T] \times[0, T] \rightarrow \mathbb{R}$ is a solution to the Darboux problem

$$
\begin{align*}
u_{x y}(x, y) & =g(x, y, u(x, y)) \tag{3}\\
u(x, 0) & =u(0, y)=0 \tag{4}
\end{align*}
$$

if u is a C^{1} function on $(0, T) \times(0, T)$, satisfying the equation (3) a.e. in $[0, T] \times[0, T]$ and the initial condition (4) for all $x, y \in[0, T]$.

In most papers devoted to the discontinuous Darboux problem, see e.g. [2,3], the right-hand side of equations

$$
u_{x y}(x, y)=g(x, y, u) \quad \text { or } \quad u_{x y}(x, y)=g\left(x, y, u, u_{x}, u_{y}\right)
$$

is usually assumed to satisfy Carathéodory-type conditions:

- f is measurable with respect to the first two variables,
- f is continuous or Lipschitz continuous with respect to other variables,
- $|f|$ is bounded by a constant or by an integrable function $M(x, y)$.

Recently, another approach has been presented (see [4,5]) for the equations

$$
u_{x y}(x, y)=g(x y, u(x, y)) \quad \text { and } \quad u_{x y}(x, y)=g(u(x, y)),
$$

showing that strong assumptions of continuity or Lipschitz continuity can be replaced by measurability conditions.

In this paper, the existence of a local solution to the Darboux problem (1)-(2), where g is Lebesgue measurable and has at most polynomial growth, is proved.

Although the main purpose of this paper is to establish an existence theorem for (1)-(2), the method used here (see also [5]) involves functional differential equations, namely, the problem

$$
\begin{aligned}
q^{\prime}(t) & =g\left(\int_{0}^{t} \frac{q(\sigma)}{\sigma} \mathrm{d} \sigma\right) \text { a.e. in }[0, T] \\
q(0) & =0
\end{aligned}
$$

with the same function g as in (1).
Throughout this paper the term measure instead of Lebesgue measure μ is used as well as other concepts such as measurability and integrability are understood as Lebesgue measurability and Lebesgue integrability. By $C[0, T]$ we denote the normed linear space of all continuous functions $x:[0, T] \rightarrow \mathbb{R}$ with the norm $\|x\|=\sup _{t \in[0, T]}|x(t)|$.

2. Main result

Theorem 1 Assume that $g: \mathbb{R} \rightarrow \mathbb{R}$ is measurable and for some $n \in \mathbb{N}, a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$ and $a>0$

$$
a \leqslant g(u) \leqslant a_{0}+\sum_{k=1}^{n} a_{k} u^{k}, \quad u \in[0,+\infty) .
$$

Then there exists $T>0$ such that the problem

$$
\begin{align*}
u_{x y}(x, y) & =g(u(x, y)), \text { a.e. in }[0, T] \times[0, T] \tag{5}\\
u(x, 0) & =u(0, y)=0 \tag{6}
\end{align*}
$$

has a solution.
The proof of Theorem 1 is based on the following lemma.
Lemma 1 If $g: \mathbb{R} \rightarrow \mathbb{R}$ is measurable and for some $n \in \mathbb{N}, a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$ and $a>0$

$$
a \leqslant g(u) \leqslant a_{0}+\sum_{k=1}^{n} a_{k} u^{k}, \quad u \in[0,+\infty),
$$

then there exists $T>0$ such that the problem

$$
\begin{align*}
q^{\prime}(t) & =g\left(\int_{0}^{t} \frac{q(\sigma)}{\sigma} \mathrm{d} \sigma\right) \text { a.e. in }[0, T] \tag{7}\\
q(0) & =0 \tag{8}
\end{align*}
$$

has a solution.
Proof of Lemma 1. Define

$$
b=a_{0}+1
$$

and take $T>0$ such that for all $t \in[0, T]$

$$
a_{0}+a_{1} b t+\ldots+a_{n} b^{n} t^{n} \leqslant b
$$

Let

$$
Z=\{x \in C[0, T]: x(0)=0, a(t-s) \leqslant x(t)-x(s) \leqslant b(t-s), 0 \leqslant s<t \leqslant T\}
$$

Obviously Z is closed and convex. Moreover, for each $x \in Z$ and all $t, s \in[0, T]$ we have

$$
0 \leqslant x(t) \leqslant b T
$$

and

$$
|x(t)-x(s)| \leqslant b|t-s|
$$

which implies that Z is compact.
We claim that $A: Z \rightarrow Z$, defined by

$$
(A q)(t)=\int_{0}^{t} g\left(\int_{0}^{z} \frac{q(\sigma)}{\sigma} \mathrm{d} \sigma\right) \mathrm{d} z, t \in[0, T]
$$

is continuous.
Fix $q \in Z$ and define $h:[0, T] \rightarrow \mathbb{R}$ by

$$
h(z)=\int_{0}^{z} \frac{q(\sigma)}{\sigma} \mathrm{d} \sigma
$$

The function h is continuous, strictly increasing and for each $t, s \in[0, T], t>s$, satisfies

$$
a(t-s) \leqslant h(t)-h(s)=\int_{s}^{t} \frac{q(\sigma)}{\sigma} \mathrm{d} \sigma \leqslant b(t-s)
$$

Thus $h \in Z$, and for each $u, v \in h([0, T])$ we have

$$
\begin{equation*}
\left|h^{-1}(u)-h^{-1}(v)\right| \leqslant \frac{1}{a}\left|h\left(h^{-1}(u)\right)-h\left(h^{-1}(v)\right)\right|=\frac{1}{a}|u-v|, \tag{9}
\end{equation*}
$$

which in turn implies that h^{-1} is absolutely continuous and strictly monotonic on a closed interval $h([0, T])$. Consequently, for each open interval $P \subset h([0, T])$,

$$
(g \circ h)^{-1}(P)=h^{-1}\left(g^{-1}(P)\right)
$$

is measurable. Thus $g(h(\cdot))$ is measurable and $A q$ is well defined.
Observe that $A q \in Z$, because $(A q)(0)=0$ and for all $s, t \in[0, T], t>s$, we have

$$
a(t-s) \leqslant(A q)(t)-(A q)(s)=\int_{s}^{t} g\left(\int_{0}^{z} \frac{q(\sigma)}{\sigma} \mathrm{d} \sigma\right) \mathrm{d} z \leqslant b(t-s)
$$

because for all $z \in[0, T]$

$$
g(h(z)) \leqslant \sum_{k=0}^{n} a_{k}\left(\int_{0}^{z} \frac{q(\sigma)}{\sigma} \mathrm{d} \sigma\right)^{k} \leqslant \sum_{k=0}^{n} a_{k}(b z)^{k} \leqslant \sum_{k=0}^{n} a_{k} b^{k} T^{k} \leqslant b
$$

Fix $\varepsilon>0$ and consider any sequence $q_{n} \in Z, n \in \mathbb{N}$, convergent (uniformly) to $q \in Z$. For each $n \in \mathbb{N}$, define $h_{n}:[0, T] \rightarrow \mathbb{R}$,

$$
h_{n}(z)=\int_{0}^{z} \frac{q_{n}(\sigma)}{\sigma} \mathrm{d} \sigma
$$

By Lusin's theorem there exists a compact set $K \subset[0, b T]$, such that $g_{\mid K}: K \rightarrow[a, b]$ is continuous and

$$
\mu([0, b T] \backslash K)<\frac{a \varepsilon}{8 b}
$$

Since $g_{\mid K}$ is uniformly continuous, there exists $\delta>0$ such that

$$
|u-v|<\delta, u, v \in K \quad \text { implies } \quad|g(u)-g(v)|<\frac{\varepsilon}{2 T} .
$$

For $z \in\left[0, \frac{\delta}{2 b+1}\right]$ we have

$$
\left|h_{n}(z)-h(z)\right| \leqslant \int_{0}^{z} \frac{\left|q_{n}(\sigma)-q(\sigma)\right|}{\sigma} \mathrm{d} \sigma \leqslant \int_{0}^{\frac{\delta}{2 b+1}} \frac{\left|q_{n}(\sigma)-q(\sigma)\right|}{\sigma} \mathrm{d} \sigma \leqslant \frac{2 b \delta}{2 b+1}<\delta .
$$

If $z \in\left[\frac{\delta}{2 b+1}, T\right]$, then

$$
\begin{aligned}
\left|h_{n}(z)-h(z)\right| & \leqslant \int_{0}^{z} \frac{\left|q_{n}(\sigma)-q(\sigma)\right|}{\sigma} \mathrm{d} \sigma=\int_{0}^{\frac{\delta}{2 b+1}} \frac{\left|q_{n}(\sigma)-q(\sigma)\right|}{\sigma} \mathrm{d} \sigma+\int_{\frac{\delta}{2 b+1}}^{z} \frac{\left|q_{n}(\sigma)-q(\sigma)\right|}{\sigma} \mathrm{d} \sigma \\
& \leqslant \frac{2 b \delta}{2 b+1}+\int_{\frac{\delta}{2 b+1}}^{z} \frac{\left\|q_{n}-q\right\|}{\sigma} \mathrm{d} \sigma \leqslant \frac{2 b \delta}{2 b+1}+\left\|q_{n}-q\right\| \int_{\frac{\delta}{2 b+1}}^{T} \frac{\mathrm{~d} \sigma}{\sigma} \\
& \leqslant \frac{2 b \delta}{2 b+1}+\left\|q_{n}-q\right\| \ln \frac{T(2 b+1)}{\delta} .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty}\left\|q_{n}-q\right\|=0$, there exists n_{0}, such that for each $n>n_{0}$

$$
\left\|q_{n}-q\right\|<\frac{\delta}{2 b+1}\left(\ln \frac{T(2 b+1)}{\delta}\right)^{-1}
$$

Therefore, for each $n>n_{0}$ and each $z \in[0, T]$ we have

$$
\left|h_{n}(z)-h(z)\right| \leqslant \sup _{z \in[0, T]}\left|\int_{0}^{z} \frac{q_{n}(\sigma)}{\sigma} \mathrm{d} \sigma-\int_{0}^{z} \frac{q(\sigma)}{\sigma} \mathrm{d} \sigma\right|<\delta .
$$

Consequently, if $n>n_{0}$ and $z \in[0, T]$, then

$$
\left|g\left(h_{n}(z)\right)-g(h(z))\right|<\frac{\varepsilon}{2 T},
$$

provided that $h_{n}(z)$ and $h(z)$ belong to K.
Fix $n>n_{0}$ and define

$$
F=h^{-1}(K) \cap h_{n}^{-1}(K) .
$$

We have

$$
[0, T] \backslash F=[0, T] \backslash\left(h^{-1}(K) \cap h_{n}^{-1}(K)\right)=h^{-1}([0, b T] \backslash K) \cup h_{n}^{-1}([0, b T] \backslash K) .
$$

Therefore, using (9), we get

$$
\begin{gathered}
\mu([0, T] \backslash F) \leqslant \mu\left(h^{-1}([0, b T] \backslash K)\right)+\mu\left(h_{n}^{-1}([0, b T] \backslash K)\right)=\int_{h^{-1}([0, b T] \backslash K)} \mathrm{d} z+\int_{h_{n}^{-1}([0, b T] \backslash K)} \mathrm{d} z \\
\quad=\int_{[0, b T] \backslash K}\left(h^{-1}\right)^{\prime}(z) \mathrm{d} z+\int_{[0, b T] \backslash K}\left(h_{n}^{-1}\right)^{\prime}(z) \mathrm{d} z \leqslant \frac{\mu([0, b T] \backslash K)}{a}+\frac{\mu([0, b T] \backslash K)}{a} \leqslant \frac{\varepsilon}{4 b} .
\end{gathered}
$$

Finally, we obtain

$$
\begin{aligned}
\left\|A q_{n}-A q\right\| & \leqslant \sup _{t \in[0, T]} \int_{0}^{t}\left|g\left(h_{n}(z)\right)-g(h(z))\right| \mathrm{d} z=\int_{0}^{T}\left|g\left(h_{n}(z)\right)-g(h(z))\right| \mathrm{d} z \\
& =\int_{F}\left|g\left(h_{n}(z)\right)-g(h(z))\right| \mathrm{d} z+\int_{[0, T] \backslash F}\left|g\left(h_{n}(z)\right)-g(h(z))\right| \mathrm{d} z \\
& \leqslant \mu(F) \cdot \frac{\varepsilon}{2 T}+\frac{\varepsilon}{4 b} \cdot 2 b \leqslant \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

Thus $A: Z \rightarrow Z$ is continuous.
It follows from Schauder's fixed point theorem that A has a fixed point in Z. Thus the problem (7)-(8) has a solution.

Proof of Theorem 1. Let $T>0$ be defined in the same way as in Lemma 1 and assume that $q:[0, T] \rightarrow \mathbb{R}$ is a solution to the problem (7)-(8). Define $v:[0, T] \rightarrow \mathbb{R}$

$$
v(t)=\int_{0}^{t} \frac{q(\sigma)}{\sigma} \mathrm{d} \sigma
$$

and $u:[0, T] \times[0, T] \rightarrow \mathbb{R}$

$$
u(x, y)=v(x y)=\int_{0}^{x y} \frac{q(\sigma)}{\sigma} \mathrm{d} \sigma
$$

Obviously, u is a C^{1} function and for almost all $(x, y) \in[0, T] \times[0, T]$

$$
u_{x y}(x, y)=v^{\prime}(x y)+x y \cdot v^{\prime \prime}(x y)=q^{\prime}(x y)=g(u(x, y))
$$

Moreover, for all $(x, y) \in(0, T) \times(0, T)$

$$
u(x, 0)=u(0, y)=v(0)=0 .
$$

Thus u is a solution to the problem (5)-(6).

References

1. Binding P., J. Differential Equations, 1979, 31, 183-199.
2. Deimling K., Ann. Mat. Pure Appl., 1970, (4) 86, 217-260.
3. Guglielmino F., Boll. Un. Mat. Ital., 1958, (3) 13, 308-318 (in Italian).
4. Pikuta P., Rzymowski W., J. Math. Anal. Appl., 2003, 277, 122-129.
5. Pikuta P., J. Appl. Anal., 2006, 12, No. 1, 147-152.

Локальні розв’язки проблеми Дарбу з правою частиною, що має розриви

П.Пікута

Інститут математики, Університет Марії Кюрі-Склодовської, Люблін, Польща

Отримано 31 січня 2008 р.

Доведено існування локального розв’язку проблеми Дарбу $u_{x y}(x, y)=g(u(x, y)), u(x, 0)=$ $u(0, y)=0$, де g є вимірна за Лебегом функція, що росте не швидше, ніж поліном.

Ключові слова: проблема Дарбу, диференціальні рівняння з розривами
PACS: 02.30.Jr

