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An infinite convergent sequence of improving non-increasing upper bounds to the low-lying branch of the slow-
moving “physical” Fröhlich polaron ground-state energy spectral curve, adjacent to the ground state energy
of the polaron at rest, was obtained by means of generalized variational method. The proposed approach is
especially well-suited for massive analytical and numerical computations of experimentally measurable prop-
erties of realistic polarons, such as inverse effective mass tensor and excitation gap, and can be elaborated
even further, without major alterations, to allow for treatment of multitudinous polaron-like models, those de-
scribing polarons of various sorts placed in external magnetic and electric fields among them.
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1. The polaron concept

A local change in the electronic state in a crystal leads to the excitation of crystal lattice
vibrations, i.e. the excitation of phonons. And vice versa, any local change in the state of the
lattice ions alters the local electronic state. This situation is commonly referred to as an “electron–
phonon interaction”. This interaction manifests itself even at the absolute zero of temperature, and
results in a number of specific microscopic and macroscopic phenomena such as, for example, lattice
polarization. When a conduction electron with band mass m moves through the crystal, this state
of polarization can move together with it. This combined quantum state of the moving electron
and the accompanying polarization may be considered as a quasiparticle with its own particular
characteristics, such as effective mass, total momentum, energy, and maybe other quantum numbers
describing the internal state of the quasiparticle in the presence of an external magnetic field or
in the case of a very strong lattice polarization that causes self-localization of the electron in the
polarization well with the appearance of discrete energy levels. Such a quasiparticle is usually called
a “polaron state” or simply a “polaron”.

The concept of the polaron was first introduced by L.D. Landau [1], followed by much more
detailed work by S.I. Pekar [2] who investigated the most essential properties of stationary polaron
in the limiting case of very intense electron-phonon interaction, in the so-called adiabatic approx-
imation. Subsequently, Landau and Pekar [3] investigated the self-energy and the effective mass
of the polaron for the adiabatic regime. Many other famous researchers have contributed to the
development of polaron theory later on [4–9]. The polaron concept remains of interest from at least
two points of view, practical and theoretical: it describes the physical properties of charge carriers
in polar crystals and ionic semiconductors and, at the same time, represents a simple, but rich in
content, field–theoretical model of a particle interacting with a scalar boson field.

The model under consideration is the standard quantized Fröhlich polaron Hamiltonian intro-
duced by H. Fröhlich [6]
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The operators p̂ and r̂ stand for the electron momentum and position coordinate quantum opera-
tors, satisfying the usual commutation relations

[p̂i, r̂j ] = −i~δij ,

and the operators b+
k
, bk, satisfying the usual commutation relations

[bk, b
+
k′] = δkk′ , [bk, bk′ ] = 0,

are Bose operators of creation and annihilation of longitudinal optical phonons of energy ~ω and
wave vector k. It is assumed that the phonon wave vector runs over a very large but finite quasi-
discrete set of values

k =

{
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, ni = 0,±1,±2, . . . ,±(L/2− 1),+L/2, i = 1, 2, 3,

where a3 is the volume of the unit crystal cell and L3 is the number of these cells within the volume
V of the crystal, L assumed to be even. The limit V → ∞ corresponds to the rule of the transition
from the quasi-discrete to continuous spectrum
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to be applied to all relevant expressions. Here kD = (6π2)1/3/a is the Debye wave vector, a being the
lattice constant. For any realistic, or “physical”, observable polaron, the value of kD is finite whilst
the limit kD → ∞ corresponds to the so-called “field-theoretical” polaron model. It is important
to emphasize from the very start that in this study we are mainly preoccupied with “physical”
polaron model. Extensive useful discussion on various aspects of phenomenological polaron physics
as well as on the derivation of physical quantum polaron model (1) and methods of its treatment
can be found in [10] and refs. therein. For the matter of convenience it is assumed further on that
~ = ω = 1, m = 1/2.

2. Low-lying branch of the polaron energy spectrum

It is known that the polaron total momentum

P̂ = p̂+
∑

k

kb+
k
bk

is a constant of the motion and commutes with the Hamiltonian (1). Therefore, it is possible to

transform the Hamiltonian to the representation in which P̂ becomes a “c”-number by means of
the unitary transformation

H → H̃, H̃ = S−1HS, S = exp
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in the p̂-representation where P̂ becomes a quantum “c”-number P, the value of the polaron total
momentum, and the Hamiltonian (2) no longer contains the electron coordinates. Another unitary
transformation

H̃ → H(f), H(f) = U−1H̃U, U = exp

{

∑

k

fk(b
+
k
− bk)

}

,

provides us with the Hamiltonian

H(f) =
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or, in a much more convenient albeit equivalent form,
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which is just the sole Hamiltonian to be treated further on.
The ultimate goal is to find the lowest eigenvalue Eg(α,P, kD) of this Hamiltonian correspond-

ing to the ground state energy of the slow-moving polaron for a given total polaron momentum P.
Then, the function Eg(α,P, kD) could be expanded in powers of P as

Eg(α,P, kD) = Eg(α, 0, kD) +
P 2

2meff
+O

(

P 4
)

,

where Eg(α, 0, kD) is the ground state energy of the polaron at rest and the coefficient meff can
be interpreted as the polaron effective mass. In a general spatially anisotropic case, the so-called
inverse mass tensor

(

1

meff

)

ij

=
∂2E(α,P, kD)

∂Pi∂Pj

∣

∣

∣

∣

∣

P=0

should be introduced instead of the scalar effective mass parameter meff . Another important goal
would be to evaluate the so-called excitation gap, i.e. the distance between the ground and the
first excited state of the slow-moving polaron Hamiltonian (3). It is worth noticing that P < 1
condition is to be imposed throughout all these calculations to avoid the creation of real phonons.

Extensive work has already been done to evaluate E(α,P, kD) directly through conventional
perturbational calculations or to find the upper bound estimates for its value by means of multi-
tudinous variational methods. These approaches are beyond the scope of this work. It is only worth
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mentioning that, as a rule, perturbational schemes do not provide us with reliable error bound es-
timates whilst the quality of upper bounds derived by variational methods depends mostly on
the choice of proper trial states in any particular case and, being this way, these bounds can-
not be improved significantly, not to say infinitely, step by step, through any regular scheme of
calculations.

The purpose of the present research is to show that infinitely improvable upper bounds for
the low-lying branch of the “physical” polaron energy spectrum E(α,P, kD) can be obtained by
generalized variational method formulated for the first time in [12] and later in [14] in a different
context.

3. “Physical” versus “field-theoretical” polaron

Let us put fk = −Vk in (3), so that

H(f) =

(

P−
∑

k

k(b+
k
− Vk)(bk − Vk)

)2

+
∑

k

b+
k
bk −

∑

k

V 2
k .

It is seen that

Eg(α,P, kD) > −
∑

k

V 2
k → −α

2kD
π

as V/r30 → ∞ (4)

for arbitrary values of model parameters α,P and kD. The inequality (4) clearly shows the difference
between the “physical” and “field-theoretical” polaron models. For the former, the ground state
energy can only decrease no faster than linearly in α for any fixed P and kD, while the latter,
as is well-known from numerous previous studies, allows for the quadratic in the electron-phonon
interaction constant upper bound

Eg(α, 0, kD) 6 −
α2

3π
,

incompatible with (4) for large enough α. Nevertheless, the “field-theoretical” limit kD → ∞
has been routinely applied in quite a few polaron studies rather formally, mainly to facilitate
analytical calculations of improper integrals arising along the way, without giving much thought to
underlaying physics. Actually, for optical polarons observed so far in many practically important
crystal substances, such as alkali halides, the value of dimensionless maximum wave vector kD is not
large but rather manifestly small. For example, kD ≈ 0.3551 in units of 1/r0 for KCl, accompanied
by kD ≈ 0.41 for KBr. It is also known that hardly any practical necessity exists to carry out
calculations for α > 10 in the case of experimentally observable “physical” polarons. Hence, it
seems perfectly justified and sensible to treat “physical” and “field-theoretical” polaron models in
a different way from the very beginning.

4. Generalized variational method

It was proved in [12] following the ideas outlined in [13], and also found later in [14] by a different
approach, that for a quantum system represented by some Hamiltonian Ĥ and any normalized trial
state |ψ〉, such that 〈ψ|ψ〉 = 1,

Eg 6 min
(

a
(n)
1 , . . . , a(n)n

)

6 〈ψ|Ĥ |ψ〉,

where the ordered by increase real numbers
(

a
(n)
1 , . . . , a

(n)
n

)

are the roots of the n-th order poly-

nomial equation

Pn(x) =

n
∑

i=0

Xix
n−i = 0,
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whereby X0 ≡ 1 and all the other coefficients Xi, 1 6 i 6 n are provided by the system of n linear
equations

MX+Y = 0,

with
Yi =M2n−i, Mij =M2n−(i+j), i, j = 1, 2, . . . n,

and
Mm =

〈

ψ|Ĥm|ψ
〉

.

It is assumed that all moments Mm are finite. Moreover, it was proved that a limit exists

Eg = lim
n→∞

min
(

a
(n)
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)

,

and the following inequality holds
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.

For example, at the first order
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1 = 〈ψ|Ĥ |ψ〉,

and at the second order
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, (5)

where K2 and K3 are the cumulants

K2 =
〈

ψ|(Ĥ − 〈ψ|Ĥ |ψ〉)2|ψ
〉

, K3 =
〈

ψ|(Ĥ − 〈ψ|Ĥ |ψ〉)3|ψ
〉

.

It is obvious that the second order upper bound (5) would lie below the first order upper bound
for most physically relevant quantum models and most reasonable choices of the trial state |ψ〉.

Moreover, if 〈ψ|Eg〉 6= 0 , then limn→∞ min
(

a
(n)
1 , . . . , a

(n)
n

)

= Eg.

Furthermore, an excitation gap, should there happen to be any discernable one in the spectrum,
can be approximated at the n-th order by the difference

Gn = a
(n)
2 − a

(n)
1 .

5. Infinitely improvable upper bounds for “physical” polaro n at rest

For P = 0, canonically transformed Fröhlich polaron model (3) can be written down as
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Let us choose phonon vacuum state |0〉 as a trial state |ψ〉 for H(f), so that inequality

Eg(α, 0, kD) 6 〈0|H(f)|0〉 = 2
∑

k

Vkfk +
∑

k

(1 + k2)f2
k

holds, the right-hand side of which is minimized by

fk = −Vk/(1 + k2),

and, eventually,

Eg(α, 0, kD) 6 −α ·
2

π
arctg(kD), Eg(α) 6 −α if kD → ∞. (6)

The bound (6) is precisely the upper bound derived in [11] for finite kD. In order to better calculate
the upper bounds at higher orders of generalized variational method it is only necessary to calculate
moments 〈0|Hm(f)|0〉 for sufficiently large integer exponents m. This can be easily accomplished
by means of the Wick theorem. The resulting multitudinous products of integrals of the kind

kD
∫

0

kpdk

(1 + k2)q
, p, q − non-negative integers, (7)

can be evaluated analytically wherever necessary as well as all the concomitant integrals over the
angular variables of the corresponding wave vectors.

At the second order variational approximation (5)

Eg(α, 0, kD) 6 min
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a
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1 , a
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2

)
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2

π
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K3

2K2
−

[

(

K3

2K2
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+K2
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,

K2 = α2 2

3π2

(
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,

K3 = α2 4

3π2

(
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1 + k2D

)2

+ α2 8

3π2

(

kD −
3

2
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1

2
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)
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(
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, (8)

lim
α→∞

Eg(α, 0, kD)

α
6 −

2

π
arctg(kD)−

2

3π

(

arctg(kD)−
kD

1 + k2D

)

,

while
lim

kD→∞

Eg(α, 0, kD) 6 −α.

The excitation gap is approximated at the second order as

G2(α, 0, kD) = a
(2)
2 − a

(2)
1 = 2

[

(

K3

2K2

)2

+K2

]1/2

with
lim
α→0

G2(α, 0, kD) = 0 and lim
kD→∞

G2(α, 0, kD) = ∞

correspondingly.
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6. Infinitely improvable upper bounds for slow-moving “phys ical” polaron

The same trial state |0〉 can be employed in general case P 6= 0 leading to inequality

Eg(α,P, kD) 6 〈0|H(f)|0〉 = P 2 + 2
∑

k

Vkfk +
∑

k

(

1 + k2
)

f2
k − 2

∑

k

(P · k)f2
k +

(

∑

k

f2
kk

)2

,

the right-hand side of which is minimized by

fk = −Vk/
[

1− 2k ·P(1− η) + k2
]

,

where η is defined self-consistently by the equation

ηP =
∑

k

f2
k
k =

∑

k

V 2
k k/

[

1− 2k ·P(1 − η) + k2
]

,

or, alternatively, by

ηP 2 =
∑

k

V 2
k k ·P/

[

1− 2k ·P(1− η) + k2
]

,

as was done in [11]. A compromise choice

fk = −Vk/
[

1− 2k ·P+ k2
]

,

eliminating all terms linear in Bose operators b+
k
, bk in (3), is equally possible too, while the

simplest choice
fk = −Vk/(1 + k2)

seems to be the choice of preference, especially if the persistent no-real-phonons condition |P| < 1
is kept in mind and accounted for, because the technicalities of calculation of arbitrary order
moments 〈0|Hm(f)|0〉 for this choice are exactly the same as they were in the case P = 0, i.e.
based on the Wick theorem exclusively and without involvement of any integrations over wave
vectors more complicated and laborious than the integration (7).

7. Summary

It was shown that ground-state energy function Eg(α,P, kD) of the slow-moving “physical”
Fröhlich polaron can be approximated from above by infinite convergent sequence of upper bounds
applicable for arbitrary values of the electron-phonon interaction strength α, polaron total mo-
mentum P and limiting wave vector kD. These bounds are provided by the generalized variational
method. Then, various experimentally observable polaron characteristics of practical interest can
be derived from these bounds. The proposed algorithm for the construction of the upper bounds is
well suited for implementation by means of modern programming and computational environments
destined for seamless fusion of analytical and numerical computation within the same application,
such as, for example, Mathematica or Maple. The usage of the parallel computing techniques is
advisable and would be highly advantageous, too, due to the intrinsic nature of the algorithm
heavily relying on the Wick theorem and recursion relations for massive analytic integrations over
wave vectors.

The proposed approach is in no way limited to the Fröhlich polaron model considered above.
It is rather universal and, being so, applicable without any major alterations to a broad range of
polaron models of all sorts, including those ones concerned with manifestations of various polaron-
like phenomena in quantum systems of lowered dimensions, such as quantum wells, wires and dots,
with or without external electric and/or magnetic fields.

It would be highly desirable to complement convergent non-increasing upper bounds to the
ground state energy Eg(α,P, kD) with a sequence of infinitely improving non-decreasing lower
bounds derived, for example, by means of the method of intermediate problems in the theory
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of linear semi-bounded self-adjoint operators on rigged Hilbert space, because, under favorable
conditions, this combined set of two-side bounds might provide us with virtually precise magnitude
for the energy of the slow-moving polaron. An algorithm for the construction of the lower bounds
of this kind was proposed in [15, 16].

It is essential to stress once again that the method of the upper bounds, as presented above, was
shown to be applicable to the so-called “physical” polaron model where kD is finite, which property
has been consistently employed throughout all calculations. Nevertheless, this does not mean at all
that no generalization of the method to the case of the “field-theoretical” polaron model is possible.
Actually, the main formal obstacle to such a generalization stems from the fact that the moments
〈0|Hm(f)|0〉 and, consequently, the cumulants, of higher orders diverge for kD → ∞, as illustrated,
for example, by equation (8) showing linear divergence in kD of the third order cumulant K3. The
appearance of divergencies of this type is not the flaw of the method itself. It is rather incurred by
improper choice of the phonon vacuum state |0〉 as the trial state |ψ〉, which choice is well-suited
for extensive “physical” polaron calculations but inappropriate for the analysis of the properties of
“field-theoretical” polaron. A research on upper bounds to the “field-theoretical” polaron ground
state energy derived by generalized variational method with properly designed trial states will be
published elsewhere.

A plain-style approach to the “field-theoretical” polaron problem is always feasible strictly
within the framework of the “physical” polaron studies already undertaken, which would mean
limiting the range of the interaction constant magnitude 0 < α < αmax and choosing large enough
kD and large enough order n of the variational approximation scheme. Then, the ground state
energy function Eg(α, kD,P) of the “physical” polaron and, consequently, its upper bounds, will
approximate the corresponding function Eg(α, kD → ∞,P) of the “field-theoretical” polaron from
above for this restricted domain of α. An alternative option going along the same pattern of
reasoning would be to majorize initial Hamiltonian (3) from above by modifying the electron-

phonon interaction as Vk → Vke
−εk2

, ε > 0. This measure ensures finiteness of all moments and
cumulants under the passage to the limit kD → ∞ which could be undertaken now immediately
at the beginning of the calculations. Then, to obtain reasonable upper bounds to the ground state
energy of the “field-theoretical” polaron for any value of α belonging to the restricted domain
0 < α < αmax, one has to choose small enough ε and carry out calculations at large enough order
n of the generalized variational method. Exemplary calculations of this kind will be published
elsewhere too.
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Нескiнченнопокращенi верхнi границi в теорiї поляронiв

А.В. Солдатов

Математичний iнститут iм. В.А. Стєклова, Вiддiл механiки, Москва, Росiя

За допомогою узагальненого варiацiйного методу було отримано нескiнченнозбiжну послiдовнiсть

покращених незростаючих верхнiх границь до низьколежачої гiлки спектральної кривої “фiзичного”
полярона Фролiха в основному енергетичному станi, що повiльно рухається, i яка є прилеглою

до основного енергетичного стану полярона в спокої. Запропонований пiдхiд особливо пiдходить

для громiздких аналiтичних i числових обчислень експериментально вимiрюваних властивостей

реалiстичних поляронiв, таких як тензор оберненої ефективної маси i щiлина збуджень, вiн
може бути розвинутий навiть далi, без значних змiн, для опису численних поляроноподiбних

моделей, зокрема таких, якi описують полярони рiзних сортiв, розмiщених у зовнiшнiх магнiтних

та електричних полях.

Ключовi слова: модель полярона Фролiха, оцiнки верхнiх границь, варiацiйний метод, енергiя
основного стану
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