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Introduction

The path integral method was proposed by R. Feynman as a new approach [1] to the solution
of quantum mechanical problems. Nowadays it became one of the most powerful methods in the-
oretical physics. Many applications (see [2–5]) of this method are devoted to diverse important
problems. In articles [6, 7] describing physical analogies, the path integral method was applied to
a series of financial tasks. One of these tasks is the problem of evaluating the option price, initi-
ated in the seminal work [8] which is known as the Black-Scholes model (see appendix A). Some
generalization of this model is the Merton-Garman model, where there was suggested [6, 7, 9] a
suitable dynamics equation of the option price. Just like the Schrodinger equation, the Merton-
Garman equation is of evolution type. Hence, the path integral method is well fit for presenting the
corresponding solution in a closed form and reduces the problem to quadratures. In articles [6, 7]
the path integral representation was constructed for the operator evolution kernel (propagator) of
a Merton-Garman Hamiltonian.

Meanwhile, while constructing the evolution operator kernel in [6, 7], there were encountered
a few shortcomings. In particular, the operator structure of the Merton-Garman Hamiltonian was
not taken into account which holds the terms with mutually non-commuting summands by analogy
with momentum and coordinate operators of quantum mechanics. In the case under regard, the
evolution operator kernel for the Merton-Garman equation is not determined within the Feyn-
man path integral (on the phase space) from the classical Hamiltonian function entailing from
the Hamiltonian operator by replacing the momentum and coordinate operators by their classical
expressions p̂y → py (p̂y = −i ∂/∂y). Correspondingly, the same holds for the path integral in the
configuration space, and thus the classical Lagrange function does not make it possible to correctly
determine the evolution operator kernel. The situation mentioned above is well known [2, 3, 10–12]
in quantum mechanics and concerns the operator ordering problem. It is known [10] that in the
case of terms with non-commuting factors within the Hamiltonian the corresponding action in the
path integral still contains additional components. Subject to the Trotter formula approach (which
was used in [6, 7]), the above mentioned components were chosen from the correct form of the
resulting Hamiltonian evolution equation based on the obtained evolution operator kernel. As it
follows from [10] (see also [11]), since these additional components were not taken into account the
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evolution operator kernel does not correspond to the initial one but rather to some other operator
symmetrized over the momentum operators with the Hamiltonian operator. Thus, the evolution
operator kernel constructed in [6, 7], does not correspond to the initial Merton-Garman Hamilto-
nian but to some other Hamiltonian. The determination of these additional components within the
Trotter approach is a rather cumbersome procedure [10]. In our work, we use an alternative ap-
proach for construction of the path integral evolution operator kernel representation based on the
Gaussian path integral within the T -product approach [11, 13] (see appendix B). It is well known
that this approach is effective for Hamiltonians with quadratic momentum dependence, that is the
case for the Merton-Garman Hamiltonian. We constructed the corresponding path integral evo-
lution kernel representation for the Merton-Garman equation having interpreted the integration
variable as the velocity [2, 11]. Moreover, we determined the additional components within the
natural Gauss integration procedure assuming the proper symmetrization. Based on this evolution
operator kernel we presented an analog of the Black-Scholes formula for a European call option
price.

1. The basic Merton-Garman model setting

Within the Black-Scholes model [6, 8] two main financial instruments are considered: bank
account and stocks. A bank account change Π(t) > 0 – on risk-free instruments and governed by
the equation:

dΠ(t) = rΠ(t)dt, (1)

where the value of r > 0 – interest rate. A share price change S(t) > 0 – can be determined from
the stochastic equation:

dS(t) = φS(t)dt+ σ S(t)R(t)dt, (2)

φ > 0 – is the expected return on the security S(t) and σ > 0 – stock price volatility (the standard
deviation). The quantities φ, σ are taken to be constant. The second summand (2) contains a
Gaussian random function R(t) (the white noise), whose first moments are equal:

〈R(t)〉 = 0, 〈R(t)R(t′)〉 = δ(t− t′). (3)

The brackets above 〈. . .〉 denote the Gauss average of the random variable R(t). Stochastic equa-
tion (2) is called a geometric (as well as economical) Brown motion [14]. As concerns the classical
Langevin equation for the Brown particle velocity [15, 16], a random component of equation (2) is
proportional to S(t). The quantity dW (t) = R(t)dt in equation (2) is also referred to as the stan-
dard Brown motion (or the Wiener process) which describes the independent increases of quantity
R(t) with characteristics:

〈W (t)〉 = 0, 〈W (t)W (t′)〉 = min(t, t′).

The basic assumptions of the classical option pricing theory are that the option price C(t, S(t))
at time t is a continuous function of time and its underlying asset’s price S(t). To realize this
dependence, it is necessary to impose some relationships. The Black and Scholes idea, concerning
the determination of a rational option price [8], was based on a call option payment (premium)
C(t) at a moment of time t (0 6 t 6 T ), considered by an option seller as a minimal capital
(investment portfolio), whose investments will permit a contract to get fulfilled. Making use of this
aspect, Black and Scholes have determined [6, 8] the following investment portfolio:

C(t, S(t)) = Π(t) +
∂C(t, S(t))

∂S(t)
S(t). (4)

The first summand in (4) means the premium part which is placed in the bank account, the second
part is assigned for buying shares at market prices S(t). Within the economical sense, namely
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coefficient ∂C(t, S(t))/∂S(t) > 0 determines the amount of shares bought at the price S(t). For
option price dynamics equation to be obtained we need to find the change in time of both parts
of equality (4), having taken into account equations (1), (2). In particular, in the left hand side
of (4) one obtains (for brevity, the t-argument is omitted):

dC

dt
=

∂C

∂t
+

∂C

∂S

dS

dt
+

1

2

∂2C

∂S2

(dS)2

dt
. (5)

The last summand in (5) needs to take [6, 14] the relationship (dS)2 = σ2S2dt into account. Taking
now the derivative from the right hand side of (4) and equating it to (5), upon some simplifications,
one obtains [6, 8, 14] the Black-Scholes equation:

∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2 ∂

2C

∂S2
= rC. (6)

Making change of variables S = ex (x ∈ R) we obtain equation (43). Its solution (appendix A)
permits to obtain the Black-Scholes formula for the rational option price (55).

As it was noticed above, the volatility σ2 within the Black-Scholes model is a constant value.
Thus, some generalizations of the Black-Scholes model were proposed in which the volatility changes
with time. In particular, in a rather general form, the volatility dynamics equation was written
[6, 9] as follows:

dV (t) = [λ+ µV (t) + ξV α(t)R2(t)] dt, (7)

where V (t) = σ2(t), R2(t) – Gauss white noise. There are also conditions imposed on the constants
λ, µ , ξ which provide the positivity V (t) > 0. Then, the dynamics share price can be written as
follows:

dS(t) = φS(t)dt+
√

V (t)S(t)R1(t)dt. (8)

The correlation Gauss white noise R1(t), R2(t) moments are determined by relationships (3), as
well as by:

〈R1(t)R2(t
′)〉 = ρ δ(t− t′) (9)

with the correlation parameter −1 6 ρ 6 1.
While deriving the dynamics option price equation the Black-Scholes portfolio property (4) was

taken into account. It is easy to see that the relationship structure of (4) gives rise to the summand
contraction of ∽ dS(t)/dt, and the equation (6) does not contain the terms proportional to the
random component ∽ R(t). Meanwhile, the price S(t) is determined at time t (similar to the Brown
particle velocity, whose velocity is known at initial moment t, but its change is a random variable).
Making use of this property while forming the investment portfolio, the following equation was
obtained (its more detailed analysis can be found in [6, 7]) for the option price dynamics:

∂C

∂t
+ rS

∂C

∂S
+ (λ+ µV )

∂C

∂V
+

1

2
V S2 ∂

2C

∂S2
+ ρξV 1/2+αS

∂2C

∂S∂V
+ ξ2V 2α ∂

2C

∂V 2
= rC. (10)

Introducing new variables S = ex, V = ey (x, y ∈ R) equation (10) can be written down as follows:

∂C(t)

∂t
= HMGC(t), (11)

where we denoted the quantity:

HMG =− ey

2

∂2

∂x2
+

(

ey

2
− r

)

∂

∂x
+ r −

(

λe−y + µ− ξ2

2
e2y(α−1)

)

∂

∂y
−

− ρξey(α−1/2) ∂2

∂x∂y
− ξ2

2
e2y(α−1) ∂2

∂y2
, (12)

which means exactly the Merton-Garman Hamiltonian. It is easy to see that the first three sum-
mands in (12) correspond to the Black-Scholes Hamiltonian term, while the next ones are owing
to the stochastic dynamics of the volatility.
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2. The path integral representation of the Merton-Garman equation

The continuous solutions to equation (46), which is understood in the standard generalized
sense, can be represented in the form:

C(t) = e−τHMGC(T ), (13)

where C(T ) is the value of the option price at time t, which is determined by function (53). The
evolution operator kernel in (13), similar to (48), can be determined by the relationship:

g(τ, x− x0 , y, y0) = e−τHMGδ(x− x0)δ(y − y0). (14)

Since the Hamiltonian coefficients in (12) are independent of the variable x, based on the
experience at the construction of the Black-Scholes Hamiltonian and its evolution operator kernel,
one can make the Fourier transformation with respect to the x-variable and as a result, one obtains
the Hamiltonian (12) in the form:

H̃MG(k) = h0(k, y) + h1(k, y)
∂

∂y
− ξ2

2

(

ey(α−1) ∂

∂y

)2

, (15)

where we have denoted:

h0(k, y) =
ey

2
k2 + i

(

ey

2
− r

)

k + r, (16)

h1(k, y) = −iρξey(α−1/2)k −
(

λe−y + µ− ξ2α

2
e2y(α−1)

)

. (17)

Respectively, the Fourier image of the kernel (14) is determined as:

g̃(τ, k, y, y0) = e−τH̃MG(k)δ(y − y0). (18)

2.1. The case α = 1

Consider the simplest case α = 1 where the coefficient at the operator ∂2/∂y2 does not depend
on the variable y. Having chosen the complete square form in the Hamiltonian (15), one obtains:

H̃MG(k) = −1

2

(

ξ
∂

∂y
− h(k, y)

ξ

)2

+ h0(k, y) +
1

2

h2(k, y)

ξ2
− 1

2
h′(k, y). (19)

Here the quantity h(k, y) equals the value h1(k, y) (16) for α = 1:

h(k, y) = −iρξey/2k −
(

λe−y + µ− ξ2/2
)

and the summand h′(k, y) means the derivative of the h(k, y) with respect to the variable y:

h′(k, y) = λe−y − ik
1

2
ρξey/2.

Namely, a similar summand, as we will show below, was not taken into account in articles [6, 7]. In
our case, this appears to have been caused by the corresponding symmetrization performed in (19).
One can also observe that this summand is important for the Hamiltonian (19) (in the coordinate
representation k → −i∂/∂x) whose form would take an incomplete form:

H∗

MG =− ey

2

∂2

∂x2
+

(

ey

2
− r

)

∂

∂x
+ r −

(

µ− ξ2

2

)

∂

∂y
− λ

2

(

e−y ∂

∂y
+

∂

∂y
e−y

)

−

− ρξ

2

∂

∂x

(

ey/2
∂

∂y
+

∂

∂y
ey/2

)

− ξ2

2

∂2

∂y2
. (20)
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It is seen that that summands with non-commuting factors in (20) are written in a symmetrized
form. Namely, as it was already mentioned above, the path integral representation of the evolution
operator kernel, constructed in [6, 7], corresponds to (20) in contrast to the initial Hamiltonian (12)
(for α = 1).

The evolution operator in (18) can be transformed by using the expression (56):

e−τH̃MG(k) = N (τ)

∫

Dv exp



−1

2

τ
∫

0

v2(t)dt



×

× T exp





τ
∫

0

[

−h0(k, y)−
1

2ξ2
h2(k, y) +

1

2
h′(k, y) +

1

ξ
v(t)h(k, y)

]

dt−
τ
∫

0

ξv(t)dt
∂

∂y



 . (21)

The latter summand in the T -exponent contains a shift-operator which can be disentangled with
respect to (63), since the T -exponent becomes a usual one:

T exp



−
τ
∫

0

ξv(t)dt
∂

∂y



 = exp



−
τ
∫

0

ξv(t)dt
∂

∂y



 ,



T exp



−
τ
∫

0

ξv(t)dt
∂

∂y









−1

= exp





τ
∫

0

ξv(t)dt
∂

∂y



 .

Respectively, for the operator kernel (18), upon simple transformations which are omitted, one can
obtain:

g̃(τ, k, y, y0) = N̄ (τ)

∫

Dv exp



− 1

2ξ2

τ
∫

0

[v(t)− h(k, ỹ)]2dt−
τ
∫

0

h0(k, ỹ)dt



×

× exp





1

2

τ
∫

0

h′(k, ỹ)dt



 δ



y − y0 −
τ
∫

0

v(t)dt



 , (22)

where we denoted ỹ = y −
∫ τ

t
v(t′)dt′ and the constant N̄ (τ) is determined from the condition:

N̄ (τ)

∫

Dv exp



− 1

2ξ2

τ
∫

0

v2(t)dt



 = 1.

The path integral (22) is defined in the space of velocities [2, 11]. The quantity

L(k) =
1

2ξ2
[v − h(k, y)]2 + h0(k, y)

means a Lagrangian function (for imaginary time) and the summand −h′(k, y)/2 – the additional
term. Relationship (22) determines the Fourier image with respect to x-variable. For the Fourier
inverse transform one needs to separate in (22) the k-dependence:

g̃(τ, k, y, y0) = e−τrN̄ (τ)

∫

DveS0 exp

(

−1

2
τσ̃2k2 − iτk

[

σ̃2/2− r̃
]

)

δ



y − y0 −
τ
∫

0

v(t)dt



 ,

(23)
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where we denoted:

S0 = − 1

2ξ2

τ
∫

0

[

v(t) + λ e−ỹ + µ− ξ2/2
]2

dt+
1

2
λ

τ
∫

0

e−ỹdt,

σ̃2 = (1− ρ2)
1

τ

τ
∫

0

eỹdt,

r̃ = r − 1

2
ρ2

1

τ

τ
∫

0

eỹdt+ ρ

(

ξ

4
− µ

ξ

)

1

τ

τ
∫

0

eỹ/2dt− ρ

ξ

1

τ

τ
∫

0

eỹ/2v(t)dt− λρ

ξ

1

τ

τ
∫

0

e−ỹ/2dt. (24)

Performing the inverse Fourier transform we obtain the evolution operator kernel:

g(τ, x− x0 , y, y0) = N̄ (τ)

∫

DveS0
e−τr

√
2πτσ̃2

×

× exp

(

−1

2

(

x− x0 + τ
[

r̃ − σ̃2/2
])2

τσ̃2

)

δ



y − y0 −
τ
∫

0

v(t)dt



 . (25)

Thus, formula (25) is a path integral representation of the evolution operator kernel for the Merton-
Garman Hamiltonian in the case α = 1. As it was mentioned earlier, the comparison of this result
with the formula from [6, 7] shows that the latter does not contain the second summand in S0 , as
well as there is a change in the corresponding numerical coefficient in the third summand r̃. Recall
that in [6, 7] there is used a Feynman path integral defined in the configurational phase space,
in contrast to the kernel (25) which is represented in the velocity phase space. The connection
between both representations can be found in appendix C.

Making use of this kernel, we obtain a generalization of the Black-Scholes result (55) for the
option price. For this to be done, we need to multiply the kernel g(τ, x− x0 , y, y0) by the payment
function (53) and integrate over the variables x0, y0. Since function (53) does not depend on y0 ,
the integral with respect to y0 is easily performed owing to the presence of δ-function. As a result
we obtain:

C(t, S(t)) = N̄ (τ)

∫

DveS0

[

S(t)eτ∆rN(d̃+)− e−τrKN(d̃−)
]

, (26)

where we denoted ∆r = r̃ − r and quantities d̃± are determined by (55) for d± by means of the
change r → r̃, σ → σ̃.

2.2. The case of arbitrary α-values

In this case, in order to obtain the path integral representation of the evolution operator we
will act the following way. First, we will make use of the path integral (56) for linearization of the
third summand in (15):

e−τH̃MG(k) = N (τ)

∫

Dw exp



−1

2

τ
∫

0

w2(t)dt



×

× T exp



−
τ
∫

0

h0(k, y)dt−
τ
∫

0

[

h1(k, y) + ξw(t)ey(α−1)
] ∂

∂y
dt



 . (27)
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Then, we use the path integral (61) for linearization of the summand with the derivation opera-
tor (27). Preliminarily, let us denote:

A(t) = −1

2

[

h1(k, y) + ξw(t)ey(α−1)
]

, B(t) =
∂

∂y
,

[A(t), B(t)]− =
1

2

[

h′

1(k, y) + (α− 1)ξw(t)ey(α−1)
]

= −A′(t).

The sense of the previous transformations, as we observed before, is in splitting a shift-operator
which permits to perform the T -operation. As a result, for the T -exponent (27) we obtain the
relationship:

T exp



−
τ
∫

0

h0(k, y)dt−
τ
∫

0

[

h1(k, y) + ξw(t)ey(α−1)
] ∂

∂y
dt



 =

= N (τ)
2
∫

DvDu exp



−1

2

τ
∫

0

v2(t)dt− i

τ
∫

0

v(t)u(t)dt



×

× T exp



−
τ
∫

0

{

[v(t) + 2 iu(t)]A(t) + v(t)
∂

∂y
+A′(t) + h0(k, y)

}

dt



 . (28)

Disentangling the exponent containing the shift-operator and substituting it into (27), we write
down the evolution operator in the form:

e−τH̃MG(k) = N (τ)

∫

Dv exp



−1

2

τ
∫

0

v2(t)dt



Φ(v) exp



−
τ
∫

0

h0(k, ỹ)dt



 exp



−
τ
∫

0

v(t)dt
∂

∂y



 ,

(29)

where we denoted:

Φ(v) = N (τ)

∫

Du exp



−i

τ
∫

0

v(t)u(t)dt



N (τ)

∫

Dw exp



−1

2

τ
∫

0

w2(t)dt



×

× exp



−
τ
∫

0

{

[v(t) + 2iu(t)]Ã(t) + Ã′(t)
}

dt



 . (30)

Let us note here that (~)-barred quantities differ from those, used before, by the change to y → ỹ,
where ỹ = y −

∫ τ

t
v(t′)dt′.

While calculating Φ(v) it is necessary to perform integration with respect to variables w(t)
and u(t). Since the mentioned integrals are Gaussian, they can be performed in closed form. Upon
simple but a bit cumbersome calculations, which are omitted, we obtain:

e−τH̃(k) = N̄ (τ)

∫

Dv
∏

t

e−ỹ(α−1) exp



− 1

2ξ2

τ
∫

0

[v(t)− h1(k, ỹ)]
2

e2ỹ(α−1)
dt



×

× exp



−
τ
∫

0

h0(k, ỹ)dt+
1

2

τ
∫

0

h′

1(k, ỹ)dt+
1

2
(α− 1)

τ
∫

0

[v(t)− h1(k, ỹ)] dt



 exp



−
τ
∫

0

v(t)dt
∂

∂y



 .

(31)

Respectively, for the Fourier representation of the kernel (18) one obtains the relationship:

g̃(τ, k, y, y0) =N̄ (τ)

∫

Dv
∏

t

e−ỹ(α−1) exp



−
τ
∫

0

L(k, v(t), ỹ) dt



 δ



y − y0 −
τ
∫

0

v(t)dt



 , (32)
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where we denoted the function:

L(k, v, y) =
1

2ξ2
[v − h1(k, y)]

2

e2y(α−1)
+ h0(k, y)−

1

2
h′

1(k, y) +
1

2
(α− 1) [v − h1(k, y)] . (33)

Let us mention here that the representation (32) corresponds to the structure [2, 11, 12] of the path
integrals subject to the curvilinear coordinates. As is seen from (32) the kernel is not determined by
means of a “classical” Lagrange function which is assigned to the Hamiltonian (12). It is not hard
to observe that this Lagrange function (for the imaginary time) is determined by the relationship:

L0(k, v, y) =
1

2ξ2

[

v − h̄(k, y)
]2

e2y(α−1)
+ h0(k, y), (34)

where we denoted

h̄(k, y) = −iρξey(α−1/2)k −
(

λe−y + µ− ξ2

2
e2y(α−1)

)

, (35)

the quantity h0(k, y) is determined by (16). Note also that h̄(k, y) is different from h1(k, y) (17) by
a factor α in the last summand. It is evident that the difference between L(k, v, y) and L0(k, v, y)
determines the above mentioned additional terms. The corresponding terms are not taken into
account in [6] for the constructed evolution operator kernel of the Hamiltonian (12). Note also
that at the change L(k, v, y) → L0(k, v, y) in (32), the obtained kernel will correspond not to
operator (12), but to its analog H∗

MG , being in some way symmetrized over operators ∂/∂y. The
structure H∗

MG can be determined, in particular, making use of the approach devised in [11].
The next step, having split the dependence on the k-variable, one can obtain:

g̃(τ, k, y, y0) = e−τrN̄ (τ)

∫

Dv
∏

t

e−ỹ(α−1)eS0×

× exp

(

−1

2
τσ̃2k2 − iτk

[

σ̃2/2− r̃
]

)

δ



y − y0 −
τ
∫

0

v(t)dt



 , (36)

where we denoted:

S0 =− 1

2ξ2

τ
∫

0

[

v(t) − h(ỹ)
]2

e2ỹ(α−1)
dt+

1

2

τ
∫

0

h′(ỹ)dt+
1

2
(α− 1)

τ
∫

0

[

v(t)− h(ỹ)
]

dt,

σ̃2 =(1− ρ2)
1

τ

τ
∫

0

eỹdt,

r̃ = r − ρ2
1

τ

τ
∫

0

eỹdt− ρξ

4

1

τ

τ
∫

0

eỹ(α−1/2)dt− ρ

ξ

1

τ

τ
∫

0

[v(t)− h(ỹ)] eỹ(3/2−α)dt,

h(y) =−
(

λe−y + µ− ξ2α

2
e2y(α−1)

)

. (37)

Here h′(y) means the derivative of function with respect to a suitable argument. Performing the
inverse Fourier transform we obtain the evolution operator kernel in the case of arbitrary α-values.

g(τ, x− x0 , y, y0) = N̄ (τ)

∫

Dv
∏

t

e−ỹ(α−1)eS0
e−τr

√
2πτσ̃2

×

× exp

(

−1

2

(

x− x0 + τ
[

r̃ − σ̃2/2
])2

τσ̃2

)

δ



y − y0 −
τ
∫

0

v(t)dt



 . (38)
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Then, the generalization of the Black-Scholes for the option price will take the form:

C(t, S(t)) = N̄ (τ)

∫

Dv
∏

t

e−ỹ(α−1)eS0

[

S(t)eτ∆rN(d̃+)− e−τrKN(d̃−)
]

. (39)

3. Some comments concerning path integral calculations

Works [6, 7, 17] present the formulas for the kernel calculation (65) in the case α = 1, λ = 0.
Meanwhile, the sub-integrand in (65) was represented as a three-tuple series:

1√
2πτσ̃2

exp

(

−1

2

(

x− x0 + τ
[

r̃ − σ̃2/2
])2

τσ̃2

)

→

→
∑

n,m,k

anmk





1

τ

τ
∫

0

ey(t)dt





n



1

τ

τ
∫

0

ey(t)/2dt





m
(

ey(0)/2
)k

. (40)

Then, for a general series term:

∞
∫

−∞

dy0

y
∫

y0

D′yeS0





1

τ

τ
∫

0

ey(t)dt





n



1

τ

τ
∫

0

ey(t)/2dt





m
(

ey(0)/2
)k

there was obtained its closed form. Nonetheless one can be easily convinced that such an approach
to calculations is wrong, since the used series expansion (40) does not exist.

Thus, it is reasonable to mention some approximate methods of calculating the path integrals,
in particular, for the case α = 1. Consider a formula for the option price (26). We will represent
the corresponding path integrals in (26) as those with respect to the Gauss measure:

C(t, S(t)) =

∫

dµ(v)
[

S(t)F+(v)− e−τrK F−(v)
]

, (41)

where dµ(v) = N̄ (τ)DveSG – means a probabilistic Gauss integration measure. Here, the quantity
SG is given by the expression:

SG = − 1

2ξ2

τ
∫

0

[

v(t) + µ− ξ2/2
]2

dt,

and the next terms F±(v) hold the remaining factors of formula (26). It is easy to see that the
values F±(v) are bound by v ∈ R. Therefore, the integrals used in (41) exist. For an approxi-
mate calculation of path integrals (41) one can use numerical quadrature formulas, presented, in
particular, in [18].

The use of approximation approaches is also of some interest. In solving the problems of quan-
tum mechanics and statistical physics, the mean-path-approximation [1, 19] was effectively used.
From this point of view let us rewrite formula (26) in the form:

C(t, S(t)) = N̄ (τ)

∫

Dv
[

S(t)eS+ − e−τrKeS−

]

.

The mean-path approximations could be naturally considered as zero-approximations. In this case
within the quantities S± we will make the change:

ỹ(t) → ym =
1

τ

τ
∫

0

ỹ(t)dt = y − 1

τ

τ
∫

0

t v(t)dt.
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Upon the above mentioned change, the quantities S± will depend on the integration variables via
the expressions:

τ
∫

0

v(t)dt,
1

τ

τ
∫

0

t v(t)dt

and the path integrals in (26) will then reduce to the usual quadratures. As a result, the price
option formula will take the form:

C(t, S(t)) =
2
√
3

ξ2τ
e−τ2(µ−ξ2/2)/2

∫

dv1dv2
2π

eS
∗

0

[

S(t)eτ∆r∗N(d∗+)− e−τrKN(d∗−)
]

, (42)

where the corresponding quantities are defined by the expressions:

S∗

0 =− 1

ξ2τ

(

2v21 + 6v22 − 6v1v2 − τv1
[

µ− ξ2/2
])

− λτ

ξ2
e−y+v2(µ− ξ2/2)−

− λ2τ

2ξ2
e−2(y−v2) +

λ

ξ2
e−y(1 − ev1) +

λτ

2
e−y+v2 ,

d∗± =
ln [S(t)/K] + τ

(

r∗ ± σ∗2/2
)

σ∗
√
τ

,

σ∗ =
(

1− ρ2
)

ey−v2 ,

r∗ = r − 1

2
ρ2ey−v2 + ρ

(

ξ

4
− µ

ξ

)

e(y−v2)/2 − 2ρ

ξ
ey/2(1− e−v1),

∆r∗ = r∗ − r.

Our next step is to take the series corrections into account, if we expand the quantities S± into
series with respect to suitable deviations ∆y(t):

ỹ(t) = ym +∆y(t) .

Certainly, the approaches mentioned above need a special investigation.

4. Conclusions

Using the Gaussian path integral, a representation of the evolution operator kernel for the
Merton-Garman model was obtained. Also, some shortcomings that occurred in the cited sources [6,
7] were explained and corrected. A generalization of the well-known Black-Scholes formula for
the rational price of European call option was also presented. Approximate approaches to the
calculation of path integrals were also described.

Note also that the Black-Scholes formula (55) is widely used in practice in analyzing the op-
tions [9]. It is known that the analyzed model gives rise to quite good results in the case of well
developed markets. However, shortcomings occur when a stock market is in an uncertainty state
and the price dynamics swings [20]. At the same time, the Merton-Garman model should be consid-
ered as more realistic generalization of the Black-Scholes model taking into account the arbitrary
volatility nature (formulas (7), (8)). That is why the analysis of the obtained (26) and (39) formulas
presents a considerable interest which will be the subject of our next investigations.
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A. The Black-Scholes model

A.1. The Black-Scholes equation

The Black-Scholes equation [6, 14] describes the C(t) option price dynamics:

∂C(t)

∂t
= HBSC(t), (43)

where HBS denotes the following Black-Scholes Hamiltonian:

HBS = −σ2

2

∂2

∂x2
+

(

σ2

2
− r

)

∂

∂x
+ r. (44)

Equation (43) visually resembles a Schrodinger equation, written with respect to imaginary time,
or a diffusion equation. Quantities r and σ are considered to be constant. The general solution of
equation (43) is represented in the form:

C(t) = etHBSC(0), (45)

where C(t) is the value in time t, C(0) is an initial condition. When using equation (43) in order
to evaluate the option prices it is convenient to study the dynamics backward in time. For a given
value of C(T ) at the final moment of time T we need to evaluate C(t) at t < T . It follows from
the solution of equation (45) that

C(t) = e−(T−t)HBSC(T ) = e−τHBSC(T ), (46)

where we denoted τ = T − t. Making use of the kernel g(τ, x− x0), for expression (46) one obtains
that:

C(t, x) =

∞
∫

−∞

g(τ, x− x0)C(T, x0)dx0 . (47)

Based on (46) and (47) one finds the relationship:

g(τ, x− x0) = e−τHBSδ(x− x0). (48)

Since Hamiltonian (44) coefficients are constants, it is convenient to proceed to Fourier transform
by the formula:

f(t, x) =
1√
2π

∞
∫

−∞

f̃(t, k)eikxdk.

In equation (43) it is convenient to proceed to Fourier transform, receiving the following result:

∂C̃(t, k)

∂t
= H̃BS(k)C̃(t, k), (49)

where C̃(t, k) denotes Fourier transform of proper function and Fourier transform of Hamilto-
nian (44):

H̃BS(k) =
σ2

2
k2 + i

(

σ2

2
− r

)

k + r . (50)

An equation (49) for a Fourier transform will be of the form:

C̃(t, k) = e−τH̃BS(k)C̃(T, k) . (51)
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Respectively for the kernel Fourier image g(τ, x− x0) one has:

g̃(τ, k) = e−τH̃BS(k).

Similarly, for the kernel of the evolution operator (49), applying inverse Fourier transform, we
receive the following expression:

g(τ, x− x0) =
e−τr

√
2π

∞
∫

−∞

g̃(τ, k)eik(x−x0)dk =

=
e−τr

√
2π

∞
∫

−∞

exp

(

−1

2
τσ2k2 − iτk

[

σ2/2− r
]

)

eik(x−x0)dk =

=
e−τr

√
2πτσ2

exp

(

−1

2

(

x− x0 + τ
[

r − σ2/2
])2

τσ2

)

. (52)

A.2. A Black-Scholes formula

Let us recall a classical example of evaluation for the rational price of the European call op-
tion [6, 14]. A boundary condition (a payoff function) is defined in the form:

C(T, S) = (S −K)+ =

{

S −K, S > K,
0, S 6 K,

(53)

where K is strike price, S is a market price at a moment T (time to maturity). The payoff func-
tion (53) has a sufficiently obvious meaning – option transaction realizes if the stock market price
is greater than the strike price. Option price at time t < T is evaluated making use of the formula:

C(t, S(t)) =

∞
∫

−∞

g (ln [S(t)]− x0) (e
x0 −K)+ dx0 =

=
e−rτ

√
2πσ2

∞
∫

ln(K)

exp

[

−1

2

(

ln[S(t)]− x0 + τ [r − σ2/2]
)2

τσ2

]

(ex0 −K)dx0 , (54)

where S(t) denotes stock price at time t.
Having completed the necessary computations we receive, for option price [8], the well known

Black-Scholes formula:

C(t, S(t)) = S(t)N(d+)−Ke−rτN(d−). (55)

We have here denoted:

N(x) =
1

2π

x
∫

−∞

e−z2/2dz, d± =
ln[S(t)/K] + τ

(

r ± σ2/2
)

σ
√
τ

.

B. Gaussian path integrals

The Gaussian path integral is used for the degree linearization in an T -exponential and looks
as follows:

T exp





τ
∫

0

1

2
A2(t)dt+

τ
∫

0

B(t)dt



 =

=N (τ)

∫

Dv exp



−1

2

τ
∫

0

v2(t)dt



T exp



−
τ
∫

0

v(t)A(t)dt +

τ
∫

0

B(t)dt



 . (56)
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In this work A(t) and B(t) – differential operators (in general not commutative), “the constant”
N (τ) is determined from the condition:

N (τ)

∫

Dv exp



−1

2

τ
∫

0

v2(t)dt



 = 1, Dv =
∏

06t6τ

dv(t) .

The Gaussian path integral (56) was used in [11] in constructing the path integral Green function
representation for some quantum mechanical Hamiltonians.

It is evident that the field of application of the formula (56) is wide enough. The path in-
tegral (56) is interpreted as an operator identity. In particular, one can “disentangle” the factor
T exp

(∫ τ

0
B(t)dt

)

in (56) in accordance with (63), and obtain the equivalent equality:

T exp





1

2

τ
∫

0

Ã2(t)dt



 = N (τ)

∫

Dv exp



−1

2

τ
∫

0

v2(t)dt



T exp



−
τ
∫

0

v(t)Ã(t)dt



 , (57)

where

Ã(t) =



T exp





t
∫

0

B(t′)dt′









−1

A(t)T exp





t
∫

0

B(t′)dt′



 .

The integration in (57) is realized with respect to the Gaussian probability measure, since:

N (τ)

∫

Dv exp



−1

2

τ
∫

0

v2(t)dt



T exp



−
τ
∫

0

v(t)Ã(t)dt



 =

∫

dµ(v)T exp



−
τ
∫

0

v(t)Ã(t)dt



 ,

where dµ(v) = N (τ)Dv exp
(

− 1
2

∫ τ

0 v2(t)dt
)

.

To check the identity (57), we expand the left and right hand sides in degree series. In particular,
T -exponent on the left hand side (57) is represented as the degree series

T exp





1

2

τ
∫

0

Ã2(t)dt



 =

∞
∑

n=0

1

n!
T





1

2

τ
∫

0

Ã2(t)dt





n

. (58)

Expanding the right hand side (57) T exp
(

−
∫ τ

0 v(t)Ã(t)dt
)

in series and using the Gauss measure

properties, one can derive expression (58). Really, for the left hand side of equality (57) one has:

∫

dµ(v)T exp



−
τ
∫

0

v(t)Ã(t)dt



 =

∞
∑

n=0

τ
∫

0

dt1 . . .

τ
∫

0

dtn
(−1)n

n!
µnT

[

Ã(t1) . . . Ã(tn)
]

, (59)

where µn is the n-th Gauss measure correlation moment. As is well known, all uneven moments
vanish, and the even ones are expressed by means of the second correlation moment:

µ2 =

∫

dµ(v)v(t1)v(t2) = δ(t1 − t2).

The moment of 2n-th order is expressed by means of the moment µ2 as the relationship:

µ2n =

∫

dµ(v)v(t1) . . . v(t2n) =
∑

P

µ1
2 . . . µ

n
2 . (60)
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A summand in (60) is taken over all possible different smashes of 2n elements by two-element
subsets (see, for instance, [21]). The amount of summands in (60) equals

(2n)!

2nn!
.

Making use of symmetry properties (the permutations of operators under the T -product sign)
it is not hard to demonstrate that all these summands give rise to the same result, thereby the
formula (59) reduces to (58).

Based on (56) and the operator identity:

2A(t)B(t) =
1

2
(A(t) +B(t))2 − 1

2
(A(t)−B(t))2 + [A(t), B(t)]− ,

let us linearize the product of operators A(t)B(t):

T exp





τ
∫

0

[2A(t)B(t) +D(t)] dt



 = N (τ)2
∫

DvDu exp



−1

2

τ
∫

0

v2(t)dt− 1

2

τ
∫

0

u2(t)dt



×

× T exp



−
τ
∫

0

{

[v(t) + iu(t)]A(t) + [v(t)− iu(t)]B(t)− [A(t), B(t)]− −D(t)
}

dt



 . (61)

Here we have used the following notation of the operator commutator [A(t), B(t)]− = A(t)B(t) −
B(t)A(t). Using the shift v(t) → v(t) + iu(t) the right hand side of equation (61) can be written
in the form:

N (τ)2
∫

DvDu exp



−1

2

τ
∫

0

v2(t)dt− i

τ
∫

0

v(t)u(t)dt



×

× T exp



−
τ
∫

0

{

[v(t) + 2 iu(t)]A(t) + v(t)B(t) − [A(t), B(t)]− −D(t)
}

dt



 . (62)

In the case of differential operators, the relationship (61) makes it possible to decrease its differen-
tial order. Note also that the path integral representation (61) is equivalent to the Stratonovich-
Hubbard identity [22] for the density matrix in quantum statistics problems.

Jointly with the introduced formulas, the following expression is used to extract T -exponent
operators [13]:

T exp





τ
∫

0

[A(t) +B(t)]dt



 = T exp





τ
∫

0

A(t)dt



T exp





τ
∫

0

B̃(t)dt



 , (63)

where

B̃(t) =



T exp





t
∫

0

A(t′)dt′









−1

B(t)T exp





t
∫

0

A(t′)dt′



 .

C. A connection between path integral approaches

Consider the case for parameter values α = 1, λ = 0. Based on (25) one can write down the
kernel expression as:

g(τ, x− x0 , y, y0) =

y
∫

y0

D′yeS0
e−τr

√
2πτσ̃2

exp

(

−1

2

(

x− x0 + τ
[

r̃ − σ̃2/2
])2

τσ̃2

)

. (64)
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The measure of integration in (64) satisfies the condition:

y
∫

y0

D′y exp



− 1

2ξ2

τ
∫

0

ẏ(t)2dt





τ→0

→ δ(y − y0),

at the boundary values y(0) = y0 , y(τ) = y. Moreover, in the above expressions (24) one should
make the following substitutions:

ỹ → y(t), v(t) → ẏ(t).

Thereby, we obtain:

g̃(τ, x− x0 , y) =

∞
∫

−∞

dy0

y
∫

y0

D′yeS0
e−τr

√
2πτσ̃2

exp

(

−1

2

(

x− x0 + τ
[

r̃ − σ̃2/2
])2

τσ̃2

)

, (65)

where

S0 = − 1

2ξ2

τ
∫

0

[

ẏ(t) + µ− ξ2/2
]2

dt,

σ̃2 = (1− ρ2)
1

τ

τ
∫

0

ey(t)dt,

r̃ = r − 1

2
ρ2

1

τ

τ
∫

0

ey(t)dt+ ρ

(

ξ

4
− µ

ξ

)

1

τ

τ
∫

0

ey(t)/2dt− 2ρ

ξ

1

τ

(

ey(τ)/2 − ey(0)/2
)

. (66)
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Континуальне представлення ядра оператора еволюцiї в

моделi Мертона-Кармана

Л.Ф. Блажиєвський1, В.С. Янiшевський2

1 Кафедра теоретичної фiзики, Львiвський Нацiональний унiверситет iменi Iвана Франка,
вул. Драгоманова, 12, 79005 Львiв, Україна

2 Кафедра економiчної кiбернетики та iнноватики, Дрогобицький державний педагогiчний

унiверситет iменi Iвана Франка, вул. Лесi Українки, 82100 Дрогобич, Україна

В методi континуального iнтегрування побудовано ядро оператора еволюцiї для гамiльтонiану

Мертона-Кармана. На основi ядра отримана формула для цiни опцiону, що узагальнює вiдому фор-
мулу Блека-Шоулса. Вказано також на можливi способи наближеного обчислення континуальних

iнтегралiв.

Ключовi слова: континуальне iнтегрування, ядро оператора еволюцiї, цiноутворення опцiонiв,
формула Блека-Шоулса, модель Мертона-Кармана.
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