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Recently, based on the method of collective variables the statistical field theory for multicomponent inhomo-

geneous systems was formulated [O. Patsahan, I. Mryglod, J.-M. Caillol, Journal of Physical Studies, 2007, 11,

133]. In this letter we establish a link between this approach and the classical density functional theory for

inhomogeneous fluids.
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The powerful tools for the study of equilibrium and non-equilibrium properties of many-particle in-

teracting systems are those based on the functional methods. In many cases the partition function of such

systems can be re-expressed as a functional integral after performing the Hubbard-Stratonovich (HS)

transformation [1, 2], a simple device proposed in the 50ies. Nearly at the same time another method, the

method of collective variables (CVs), that allows one in an explicit way to derive a functional represen-

tation for many-particle interacting systems, was developed [3, 4]. The method, proposed initially in the

1950s [3–5] for the description of the classical charged many particle systems and developed later for the

needs of the phase transition theory [6–10], was in fact one of the first successful attempts to attack the

problems of statistical physics using the functional integral representation. The CV method is based on:

(i) the concept of collective coordinates being appropriate for the physics of the system considered (see,

for instance, [11]) and (ii) the functional integral identity

exp
(
F [ρ̂]

)
=

∫
Dρ δF

[
ρ− ρ̂

]
exp

(
F [ρ]

)
(1)

valid for classical systems and permitting to derive an exact functional representation for the configura-

tional Boltzmann factor. Being applied to the fluids, the CV method uses the idea of the reference system

(RS), one of the basic ideas in the liquid state theory [12].

Recently, the rigorous scalar field KSSHE (Kac-Siegert-Stratonovich-Hubbard-Edwards) theory [13,

14], which uses the HS transformation, was developed to describe the phase equilibria in simple and

ionic fluids. As was shown [15, 16], both theories (KSSHE and CVs) are in close relation.

Another valuable theoretical approach, which has been extensively employed to study the structural

and thermodynamic properties of inhomogeneous systems is the classical density-functional theory (DFT)

(for an overview we refer to [17, 18]). The central quantity of DFT is the Helmholtz excess free energy ex-

pressed as a functional of the single-particle density. There are few systems for which this functional is

known exactly. Thus, successful application of DFT critically depends on judicious choice of an appropri-

ate Helmholtz energy functional suitable for the system under investigation [12]. The main goal of this

letter is to constitute a link between the CVs based theory and the classical DFT.

Let us consider the general case of a classical m-component system consisting of N particles among

which there exist N1 particles of species 1, N2 particles of species 2, . . . and Nm particles of species m.The
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potential energy of the system is assumed to be of the form

UN1 ...Nm =
1

2

m∑

α,β

Nα ,Nβ∑

i, j

Uαβ(ri ,r j )+
m∑

α=1

Nα∑

i=1

ψα(ri ), (2)

where Uαβ(ri ,r j ) denotes the interaction potential of two particles and the second term is the potential

energy due to external forces.

The pair interaction potential Uαβ(ri ,r j ) can be considered as the sum

Uαβ(ri ,r j ) = v0
αβ(ri ,r j )+wαβ(ri ,r j ), (3)

where v0
αβ

(ri ,r j ) is a potential of a short-range repulsion which in general describes the mutual impen-

etrability of the particles, while wαβ(ri ,r j ), on the contrary, mainly describes the behaviour at moderate

and large distances. The systemwith the interaction potential v0
αβ

(ri ,r j ) can be regarded as the reference

system (RS). The fluid of hard spheres is most frequently used as the RS in the liquid state theory since its

thermodynamic and structural properties are well known.

Introducing the microscopic density of the αth species in a given configuration

ρ̂α(r) =
Nα∑

i=1

δ(r−ri )

we can present the grand canonical partition function of the system as follows [19]:

Ξ[{να}] =
∑

N1Ê0

1

N1!

∑

N2Ê0

1

N2!
. . .

∑

NmÊ0

1

Nm !

∫
(dΓ)exp

[
−βV

RS
N1 ...Nm

−
β

2
〈ρ̂α|wαβ|ρ̂β〉+〈ν̄α|ρ̂α〉

]
(4)

with (dΓ) =
∏

α dΓNα , dΓNα = dr
α
1 dr

α
2 . . . dr

α
Nα

, being the element of the configurational space of N parti-

cles. In the right hand side of equation (4) Dirac’s brackets notations

∑

αβ

∫
drdr

′ ρ̂α(r)wαβ(r,r
′)ρ̂β(r

′) = 〈ρ̂α|wαβ|ρ̂β〉,

∑

α

∫
dr ψα(r)ρ̂α(r) = 〈ψα|ρ̂α〉

are introduced and summation over repeated indices is meant. In (4), V RS
N1 ...Nm

denotes the contribution

from a m-component RS,

να(r)= να+νS
α−βψα(r) (5)

is the local chemical potential of the αth species, να = βµα−3lnΛα, Λα is the de Broglie thermal wave-

length and νS
α is the self-energy of the αth species νS

α = βwαα(r,r)/2. For a given volume V , Ξ[{να}] is a

function of the temperature T and a log-convex functional of the local chemical potentials να(r).

Using (1) we can present the Boltzmann factor which does not include the RS interaction in the form

exp

(
1

2

〈
ρ̂α|wαβ|ρ̂β

〉)
=

∫
DρDω exp

(
1

2

〈
ρα|wαβ|ρβ

〉
+ i

〈
ωα|

{
ρα− ρ̂α

}〉)
. (6)

Here ρα(r) is the collective variable which describes the field of the number particle density of the αth

species.The functional integrals which enter the above equation can be given a precise meaning in the

case where the domain of volume V occupied by particles is a cube of side L with periodic boundary

conditions which will be implicitly assumed henceforth [15, 19]. This means that we restrict ourselves to

the fields ρα(r) and ωα(r) which can be written as Fourier series.

Inserting equation (6) in the definition (4) of the grand canonical partition function one obtains an

exact functional representation

Ξ [{να}] =

∫
DρDω exp

(
−H [{να}, {ρα,ωα}]

)
, (7)
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where the action H [{να}, {ρα,ωα}] of the CV field theory reads as

H
[
{να}, {ρα,ωα}

]
=

β

2

〈
ρα|wαβ|ρβ

〉
− i

〈
ωα|ρα

〉
− lnΞRS

[
{να− iωα}

]
. (8)

In (8) ΞRS[{να− iωα}] is the grand canonical partition function of a m-component RS defined as follows:

ΞRS[{ν∗α}] =
∑

N1Ê0

1

N1!

∑

N2Ê0

1

N2!
. . .

∑

NmÊ0

1

Nm !

∫
(dΓ)exp

(
−βV

RS
N1 ...Nm

+〈ν∗α|ρ̂α〉

)
(9)

with

ν∗α(r)= να(r )− iωα(r). (10)

Some comments are in order. It should be emphasized that the description (7)–(10) is based on the two

sets of variables {ρα} and {ωα} and valid for repulsive, attractive as well as arbitrary pair interactions.

One can distinguish the following alternative approaches to the application of equations (7)–(10):

• Let W denote the matrix of elements wαβ(r,r
′). If W is the positive-definite matrix, the integration

over {ρα} can be easily performed. As a result, one arrives at the same functional representation as

that obtained by means of the HS transformation. Thus, we stress that the HS transformation has a

narrower region of applicability compared to the CV method.

• Letmatrix W be arbitrary. In this case, one can start with integration over {ωα}. In general,ΞRS[{ν∗α}]

cannot be calculated exactly. In order to develop a perturbation theory we present the logarithm

of the grand partition function of the RS in the form of a cumulant expansion

lnΞRS [{ν∗α}] =
∑

nÊ0

(−i)n

n!

∑

α1,...,αn

∫
d1.. .

∫
dnMα1...αn (1, . . . ,n)ωα1 (1) . . .ωαn (n), (11)

where i ≡ ri and di ≡ dri . In (11) the nth cumulantMα1...αn (1, . . . ,n) is equal to the n-particle partial

truncated (connected) correlation function of RS at ν∗α(r)= να(r). Substituting (11) in (7) we obtain

Ξ [{να}] = ΞRS

[
{να}

]∫
DρDω exp

{
−
β

2

〈
ρα|wαβ|ρβ

〉

+i
〈
ωα|ρα

〉
+

∑

nÊ1

(−i)n

n!

∑

α1,...,αn

∫
d1.. .

∫
dnMα1...αn (1, . . . ,n)ωα1 (1) . . .ωαn (n)

}
. (12)

The calculation of correlation functions of RS, Mα1...αn (1, . . . ,n), is a separate task. If RS is a hard

sphere mixture, one can use the fundamental-measure theory [20] and the Percus-Yevick or Carna-

han-Starling approximations [21, 22] in the non-uniform and uniform cases, respectively.

Equation (12) can be evaluated in a systematic way using the Gaussian distribution as a basic one.

In particular, using the Gaussian averages one can develop a loop expansion of the grand partition

function as it was done recently for a one-component fluid [15].

• Another way of integrating over {ωα} is to use the steepest descent method. If RS is a mixture of

ideal gases, the integration in (9) can be performed exactly. We consider this special case in detail.

Let RS be a m-component mixture of point particles that corresponds, in turn, to the condition V
RS

N1 ...Nm
= 0

in equation (9). In this case the right hand side of (9) can be easily calculated

Ξid[{ν∗α}] =
∑

N1Ê0

1

N1!

∑

N2Ê0

1

N2!
. . .

∑

NmÊ0

1

Nm !

m∏

α=1

∫
dr

α
1 . . . dr

α
Nα

exp

(
Nα∑

i=1

ν∗α(r
α
i )

)

=

m∏

α=1

[
∑

NαÊ0

1

Nα!

(∫
dr exp(ν∗α(r)

)Nα
]

= exp

[∑

α

∫
dr exp

(
ν∗α(r)

)]
. (13)

Using (13) we can rewrite the action (8) as follows:

H
[
{να}, {ρα,ωα}

]
=

β

2

〈
ρα|wαβ|ρβ

〉
− i

〈
ωα|ρα

〉
−

∑

α

∫
dr exp

(
να(r)− iωα(r)

)
. (14)
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In (14) we take into account the equation (10). It is worth noting that in a uniform case, the action (14)

coincides with the corresponding expression obtained in [23].

In order to integrate in (7) over the CV fields ωα(r) we use the steepest descent method. In this case

the equation

δH
[
{να}, {ρα,ωα}

]

δωα

∣∣∣∣
ωα=ωα

= 0

leads to the relation

ρα(r)= exp
(
να(r)− iωα(r)

)
. (15)

Introducing the notation ρ0
α = exp(− lnΛ

3
α+νs

α) we can rewrite (15) as

− iωα(r)= ln
ρα(r)

ρ0
α

−βµα+βψα(r). (16)

Substituting (16) in equation (14) we finally get for Ξ [{να}]

Ξ [{να}]=

∫
Dρ exp

(
−H [{να}, {ρα}]

)
, (17)

where the action H [{ρα}] has the form:

H [{να}, {ρα}]=
∑

α

∫
drρα(r)

[
ln

ρα(r)

ρ0
α

−1

]
+
β

2

〈
ρα|wαβ|ρβ

〉
−

〈
ρα|βµα

〉
+

〈
ρα|βψα

〉
. (18)

It is remarkable that the contribution from quadratic fluctuations of ∆ωα =ωα−ωα vanishes in the ther-

modynamic limit [24]. Therefore, the functional representation of the grand partition functional given

by (17)–(18) is exact for the model with the interaction potential (2)–(3) under condition v0
αβ

(r ) = 0. This

contradicts the assumption made in [25] about a purely phenomenological character of functional Hamil-

tonians which are employed in the field-theoretical formalism.

For a one-component case, equations (17)–(18) coincide with the functional integral representation

obtained in [24, 26, 27].

Based on (18) one can formulate the MF theory. To this end, from the stationary-point condition

∂H [{να}, {ρα}]

∂ρα

∣∣∣∣
ρα=ρ̄α

= 0

we obtain the following set of equations for the MF density

ln ρ̄α(r )= να(r )−β
∑

β

∫
dr

′wαβ(r,r
′)ρ̄β(r

′). (19)

Then, from (17)–(18), the MF grand potential reads

lnΞMF [{να}] =
∑

α

∫
drρ̄α(r)+

β

2

〈
ρ̄α|wαβ|ρ̄β

〉
.

The Helmholtz free energy of the system defined as the Legendre transform

F
[
{ρα}

]
=

〈
ρα|µα

〉
−β−1 lnΞ [{να}] ,

has the following form in the MF approximation

FMF

[
{ρα}

]
= β−1

∑

α

∫
drρα(r)

[
ln

(
ρα(r)

ρ0
α

)
−1

]
+

1

2

〈
ρα|wαβ|ρβ

〉
+

〈
ρα|ψα

〉
.

Introducing an intrinsic free energy F [12] by the relation F = F −
〈
ρα|ψα

〉
one can present the MF

intrinsic free energy of the system as follows:

FMF

[
{ρα}

]
= β−1

∑

α

∫
drρα(r)

[
ln

(
ρα(r)

ρ0
α

)
−1

]
+

1

2

〈
ρα|wαβ|ρβ

〉
. (20)
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Note that FMF

[
{ρα}

]
is the functional of the local density ρα(r) and has no explicit dependence on the

external potential ψα(r). Functional (20) has the form of the approximate free energy functional used in

the DFT when the excess free energy functional arising from the interactions is treated at the MF level.

In this case the variational principle

δ

δρα(r)

[
F

[
{ρα}

]
−

〈
ρα|(µα−ψα)

〉]
= 0

leads to the equation (19) and, in turn, to a coincidence of the MF density ρ̄α(r) with the equilibrium local

density.

Summarizing, we have derived the exact field theoretical representation (equations (17)–(18)) for

the m-component inhomogeneous system that does not include the hard sphere interaction. Within the

framework of the MF formulation of the theory we have found the functional of the free energy which is

analogous to that used in the MF DFT.

It is worth noting that the long-range interactions within the framework of the DFT are usually treated

within the MF approximation. By contrast, the CVs based theory enables one to develop the perturbation

scheme in order to take into account the correlation effects. Moreover, the latter theory can be applied to

the systems with more complicated interactions than those considered in this work.

We have also demonstrated that the density functional integral formulation derived in [24, 26–28] can

be obtained from the exact CVs functional representation in some special case.

We note that in general the integration over {ωα} can be performed exactly in thermodynamic limit

if the RS describes noninteracting particles. When short-range interactions are included into the RS the

method of steepest descent will produce additional contributions describing the correlations between

particles in the RS. In particular, this is the case of a hard sphere RS that will be considered elsewhere.

However, even for RSs of noninteracting particles there are several models where the method devel-

oped above can be very useful. One of such examples is connected with the statistical field theory of

anisotropic fluids where the RS may be considered as the system of noninteracting rigid rotators (see, for

instance, [29]).
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Метод колективних змiнних: зв’язок з теорiєю функцiоналу

густини

О. Пацаган, I. Мриглод

Iнститут фiзики конденсованих систем НАН України, вул. Свєнцiцького, 1, 79011 м. Львiв, Україна

Недавно, використовуючи метод колективних змiнних, було сформульовано статистико-польову теорiю

для багатокомпонентних неоднорiдних систем [O. Patsahan, I. Mryglod, J.-M. Caillol, Journal of Physical Studi-

es, 2007, 11, 133]. В цьому повiдомленнi ми встановлюємо зв’язок мiж цим пiдходом i класичною теорiю

функцiоналу густини для неоднорiдних плинiв.

Ключовi слова: функцiональнi методи статистичної фiзики, метод колективних змiнних, теорiя

функцiонiлу густини, багатокомпонентна неоднорiдна система
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