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1. Introduction

It is a real pleasure and a great honor for the author to contribute, with this paper, to the festschrift

dedicated to Professor Myroslav Holovko on the occasion of his 70th birthday.Myroslav is an expert of the

collective variables (CV) method introduced by the Ukrainian school in the framework of which Wilson’s

ideas on the renormalization group (RG) [1] can be implemented with great effect [2]. Here we expose

recent post-Wilsonian advances on the RG in the framework of statistical field theory. Obviously, many

of the ideas exposed here could be easily transposed to the CV “world” by the readers of references [3, 4]

where the links between the CV method and standard statistical field theory are established.

These recent past years, Wilson’s approach to the RG [1, 5] has been the subject of a revival in both

statistical physics and quantum field theory. Since the seminal work of Wilson, two main formulations of

the non-perturbative renormalization group (NPRG) have been developed in parallel. Very similar to the

works of the Ukrainian school on the CV formalism, we have the approaches initiated independently and

in parallel by Wetterich et al. [6–9] on the one hand, and Parola et al. on the other hand [11–13]. In this

corpus of works one is interested to establish and solve the flow equations of the Gibb’s free energy by

means of non-perturbative methods. In an alternative formulation, Polchinski and his followers consider

the flow of theWilsonian action [14, 15] rather than that of the free energy, whichmakes themethodmore

abstract and less predictive than that of Wetterich, although more in accord with Wilson’s ideas. The link

between these two formulations can, however, be established, see for instance references [16, 17]. Other

non-perturbative methods based either on the CV or Monte Carlo methods are also the subject of active

studies and are discussed, for instance, in reference [18] and in references cited herein.

The NPRG has proved its capability of describing both universal and non universal quantities for var-

ious models of statistical and condensed matter physics near or even far from criticality. It has been re-

cently extended to the models defined on a lattice [19]. Successful applications to the three-dimensional

(3D) Ising, XY , Heisenberg models [20] and ©4 model [21] are noteworthy. Here we extend the study

of reference [21] on the ©4 model in three dimensions of space to the case D Æ 4; due to the recent

publication by Loh of a novel numerical method, it was made possible to compute the lattice Green’s
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functions [22, 23]. The D Æ 4 version of the ©4 model on a lattice describes the field of a Higgs boson on

the lattice in interaction with itself [24]; thus, our conclusions concerning the type of transition that it

undergoes, are of theoretical importance.

Like in our former study of the D Æ 3 version of the model, we work in the framework of the lo-

cal potential approximation [6–8, 21] but here we consider only the case of the Litim-Machado-Dupuis

infrared cut-off introduced in refs [20, 25] This regulator has been shown to give much better results

than other sharp regulators in [21]. Like in references [11, 12, 21, 26, 27], the flow equations are numer-

ically integrated out for the so-called threshold functions [7] rather than for the potential. The resulting

flow equations belong to the class of quasi-linear parabolic partial differential equations (PDE) for which

several efficient and unconditionally convergent numerical algorithms have been developed by mathe-

maticians [28]. Like in references [11, 12, 21, 26, 27] we made use of an algorithm proposed by Douglas-

Jones [28, 29] to solve our NPRG flow equations, both above and below the critical temperature; this yields

an easy and precise determination of the critical point. The critical line of the model is obtained for a

large range of parameters; unfortunately, and contrary to the case D Æ 3 [21, 30], we were unable to

find available Monte Carlo simulations to compare our data with. We stress that, in the wide range of

parameters considered in our study (see table 1), we exclude the occurrence of a first order transition.

This conclusion seems to be in agreement with a general analysis of the criticality of the model made in

references [31, 32].

Our paper is organized a follows: in section 2 we briefly review the basic definitions and results

concerning the statistical mechanics of scalar fields on a lattice. Section 3 is devoted to theoretical and

technical aspects of the NPRG on the lattice. We then present our numerical experiments and discuss the

results in section 4. We conclude in section 5

2. Prolegomena

2.1. Model

Let us consider some arbitrary field theory defined on a 4D hyper-cubic lattice

¤Æ aZ

4

Æ {rjr

¹

/a 2Z;¹Æ 1, . . . ,4} , (2.1)

where a is the lattice constant. The real, scalar field '
r

is defined on each point of the lattice. It is con-

venient to start with a finite hyper-cubic subset of points {r} ½¤ and to assume periodic boundary con-

ditions (PBC) for the '
r

before taking the infinite volume limit, although no difficulties are expected to

arise from this operation.

In the case of short-range interactions between the fields, the action of the theory can quite generally

be written as [24]
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is the Fourier transform of the field and the N momenta
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Obviously one has ²
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¹
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℄ Æ Å1, the dimension

of the fields are ['
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4

U (')℄ Æ 0, it follows that [r ℄ Æ 2 and [g ℄ Æ 0. Therefore, in the thermodynamic

limit, the physics of the model depends only upon the two dimensionless parameters r Æ ra

2 and the

dimensionless (only in D Æ 4 ) g Æ g .

Another way of writing the action (2.2), which is useful for numerical investigations, is [24, 30]
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where the 4 unit vectors e
¹

constitute an orthogonal basis set for R4. The field � and the parameters

(·,¸) are all dimensionless and they are related to the bare field ' and dimensionless parameters (r , g )

through the relations
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2.2. Thermodynamic and correlation functions

The thermodynamic and structural properties of the model are coded in the partition function [33]
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where the dimensionless functional measure is given by
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where r Æ an, the dimensionless �
n

is defined at equation (2.7a), h is an external lattice field, and the

dimensionless scalar product in (2.8) is defined as
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The order parameter is given by

Á

r

Æ



'

r

®

Æ

1

a

4

�W
[
h
℄

�h

r

, (2.11)

where the brackets h¢ ¢ ¢ i denote statistical ensemble averages and the Helmholtz free energy W
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The Legendre transform ofW
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℄
, i.e., the Gibbs free energy, will be provisionally denoted as follows:
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where the abusive notation ± ¢ ¢ ¢/±Á(r)! a
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has been used for clarity.
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3. State of the art on lattice NPRG

3.1. Lattice NPRG

An elegant procedure to implement the lattice NPRG was given by Dupuis et al. in references [19, 20];

it extends to the lattice the ideas ofWetterich [6, 7] for the continuum, i.e., the limit a! 0 of themodel; it is

very similar to the Reatto and Parola hierarchical reference theory of liquids [11–13]. We add a quadratic

term to the action (2.2)
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where the so-called average effective action ¡
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Note that the functional ¡
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is not necessarily a convex functional of the classical field Á by contrast
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which is the true Gibbs free energy of the k-system.
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imations are introduced. We have retained the Litim-Dupuis-Machado (LMD) regulator introduced by

Dupuis and Machado [19, 20] for the lattice as an extension of Litim’s regulator widely used for off-lattice

field theories [25]. Sharp cut-off regulators often yield unphysical behaviors, notably in the local potential

approximation, and should be avoided, see e. g. [21, 27]. The LMD regulator reads
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We note that for ²
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It is easy to show that the average effective action satisfies the exact flow equation [6–8, 19, 20]
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where e
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where the second line (3.8b) is valid in the thermodynamic limit (a fixed,N !1). Note that in order to es-
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which leads us to two remarks. First, the choice ¤Æ1 implies °
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ÆU since we can replace the Gaussian
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We are now in position to exemplify the initial conditions which can be used to solve the flow equa-

tion (3.8) for the local potential
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¤

(Á) ´ a

¡4

°

¤

(Á). In this case, °
¤

(Á) should be evaluated numerically

(local field theory as initial conditions). Note thatU
¤

(Á) is necessarily convex.

In our numerical experiments we retained the second term of the alternative.

3.3. The local potential approximation

3.3.1. The general case

A non-perturbative, but intuitive approximation to solve the flow equation (3.8) is to make an ansatz

on the functional form of ¡
k

[Á℄. In the local potential approximation (LPA), one neglects the renormal-

ization of the spectrum and assumes that [19, 20]

(LPA ansatz) ¡
k

£

Á

¤

Æ

1

2Na

4

X

{

q

}

Á

¡q

²

0

¡

q

¢

Á

q

Åa

4

X

{
r
}

U

k

(Á

r

) . (3.14)

For a uniform configuration of the classical field Á
r

ÆÁ and, in the thermodynamic limit, the flow equa-

tion (3.8b) becomes:

�

k

U

k

(Á)Æ

1

2

Z

q2B

�

k

e

R

k

¡

q

¢

²

0

(q)Å

e

R

k

¡

q

¢

ÅU

00

k

(Á)

, (3.15)

whereU 00

k

(Á) denotes the second-order derivation ofU
k

(Á)with respect to the order parameter Á. Equa-

tion (3.15) is a non-linear parabolic PDE. These are good pieces of news since mathematicians have

worked hard to provide us with numerical methods for solving such equations. The equation should

be supplemented by initial and boundary conditions which will be exemplified in section 4.1

3.3.2. The LMD regulator

With the LMD regulator (3.4), the loop-integral in the r.h.s. of equation (3.15) can be worked out

analytically which leaves us with a much simplified flow equation for the potential

�

t

U

k

Æ¡N (²

k

)L (!

k

) , (3.16)
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where the RG time “t” is defined by k Æ ¤e¡t , so that �
t

Æ ¡k�

k

, !
k

(Á) ´U

00

k

(Á)/²

k

is a dimensionless

renormalized inverse susceptibility,

L (x)Æ

1

1Å x

(3.17)

is the threshold function [7] which takes a very simple expression with the LMD regulator and finally

N (²)Æ

Z

q2B

£

£

²¡²

0

(q)

¤

(3.18)

denotes the (normalized) number of states (note that we set a Æ 1 to simplify the algebra). It proves

convenient to introduce also the density of states

D(²)Æ

Z

q2B

±

£

²¡²

0

(q)

¤

, (3.19)

so that

N (²)Æ

²

Z

0

d²

0

D(²

0

) . (3.20)

The two functionsD(²) andN (²) are obviously related to the lattice Green functionwhich, for a SC lattice,

reads [22, 23, 34, 35]

G(¿)Æ

1

¼

4

¼

Z

0

dq

1

. . .

¼

Z

0

dq

4

1

¿¡

P

4

¹Æ1

os(q

¹

)

. (3.21)

Note that we have, in the sense of distributions, for ´! 0Å, 1/(¿Å i´) Æ P (1/¿)Å i¼±(¿), where P is

Cauchy principal part. With this remark, the comparison of equations (3.19) and (3.21) reveals at first

glance that

D(²)Æ

1

2a

2

1

¼

ImG(¿) , (3.22)

with ¿ Æ 4¡ a

2

/2². Note that the interval of the spectrum 0 É ²

k

É ²

max

0

corresponds to the interval

¡4 É ¿ É 4 for the auxiliary variable ¿. Recently, in reference [22, 23], Loh has obtained a novel inte-

gral representation of the Green’s function of simple hyper cubic lattices. The resulting one-dimensional

integral obtained for G(¿) involves non-oscillating, well behaved functions and it can thus be computed

precisely by means of a Gauss quadrature. From the results of reference [22, 23], we obtained:

• For 0É ²É 2

N (²)Æ

1

2

Å

1

Z

0

p

02

(²,x)dx, (3.23a)

p

02

(²,x)Æ

1

4¼

I

e

(x)K

e

(x)

3

©

3exp(¡2x)¡exp[(²¡2)x℄¡2exp[¡(²Å2)x℄

ª

²

, (3.23b)

where I
e

(x)Æ I

0

(x)exp(¡x), K
e

(x)ÆK

0

(x)exp(x), I
0

(x) and K
0

(x) being the modified Bessel Func-

tions of the first and the second class, respectively.

• For 2É ²É 4

N (²)Æ1¡

1

Z

0

p

24

(²,x)dx, (3.24a)

p

24

(²,x)Æ

I

e

(x)K

e

(x)

4¼

½

I

e

(x)

2

exp((2¡²)x)¡exp(¡2x)

²

¡K

e

(x)

2

exp
[
¡(2Å²)x

℄
¡exp(¡6x)

²

¾

,

(3.24b)

while, for negative values of ², one uses N (¡j²j) Æ 1¡N (j²j) and one of the equations (3.23) or

(3.24).
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Figure 1. Density and number of states, respectively D(²) (bottom) andN (²) (top), for the simple D Æ 4

cubic lattice.

The functions N (²) and D(²) were computed from the expressions (3.23) and (3.24) and are displayed

in figure 1. The Bessel functions involved in equations (3.23) and (3.24) were evaluated with the double-

precision FORTRAN codes i0 and k0 of the specfun library of the Netlib distribution [36] while we made

use of the codeDQAGIE of the quadpack library, of the same distribution, for the numerical integrations.

3.4. Various limits

We first note that, for1È k È k

max

, one has the trivial identityN (²

k

)Æ a

¡4. Therefore, the LMD flow

equation (3.16) is identical to the exact NPRG equation (3.13) for the local potential. LMD approximation

is thus exact for local theories [21].

Secondly, we consider the scaling limit k! 0. We have

N (²)Æ

Z

q2B

£

£

²¡²

0

(q)

¤

»

Z

q2B

£(k

2

¡q

2

)» v

4

k

4

, (3.25)

where v
4

Æ 1/(32¼

2

) is a geometrical factor, then, the flow equation (3.16) reduces to

�

t

U

k

Æ¡v

4

k

4

L (!

k

) , (k! 0) , (3.26)

which is, of course, the LPA flow equation for the continuous (off-lattice) theory with Litim regulator [27,

37–39]. In the scaling limit, the lattice and off-lattice versions of the©4 model share the same fixed-points

and critical exponents, if any.

Let us briefly discuss the Gaussian fixed points solutions of equation (3.26). A general discussion, i.e.,

for arbitrary dimension D and regulator L , can be found in reference [27] while the case of a sharp

cut-off was discussed for the first time in the inspiring paper of Hasenfratz-Hazenfratz [40].

Fixed point solutions make sense only for an equation involving exclusively dimensionless functions

and variables and emerge in general in the limit k ! 0. We introduce the dimensionless field x Æ k

¡1

Á

and potential u
k

(x)Æ k

¡4

U

k

(Á). The adimensioned flow equation can thus be written

�

t

u

k

Æ 4u

k

¡ xu

0

k

¡

v

4

1Åu

00

k

, (3.27)

with u

0

k

´ du

k

/dx. A fixed point u?(x) satisfies �
t

u

?

(x) Æ 0 for all x. u00?(x) Æ 0 is obviously a special

solution. By integration it gives u0?(x) Æ 0 (Z2 symmetry) and u

?

(x) Æ v

4

/4, this is the Gaussian fixed

point. In order to study the stability of the fixed point, we linearize (3.27). Let us define

u

k

(x)Æu

?

(x)Åh

k

(x) (3.28)
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and expand equation (3.27) in powers of h, it yields

�

t

h ÆDh¡ v

4

h

002

, (3.29a)

Dh Æ 4h¡ xh

0

Å v

4

h

00

. (3.29b)

Let us start the analysis with the linearized RG equation

�

t

h ÆDh . (3.30)

We search a solution under the form h(x, t) Æ exp(¸t)H(y Æ ¯x) which yields the eigenvalue problem

(D¡¸)H Æ 0 which can be rewritten as Hermite equation:

H

00

(y)¡2y H

0

(y)Å2nH(y)Æ 0 , (3.31)

with 4¡¸ Æ n. Hermite’s equation (3.31) admits in general solutions without definite parity (Weber’s

functions). Only if n is a positive integer, do the solutions H
n

(y) have the same parity as n. Such solutions

are polynomials, namely the Hermite’s polynomials [41]. Imposing Z2 symmetry, therefore, leads to a

discretization of the spectrum 4¡¸

p

Æ 2p , where p is positive integer. The general linearized solution

of (3.30) is then

h(x, t)Æ

1

X

pÆ0



p

exp(¸

p

t)H

2p

(x/

p

2v

4

) , (3.32a)

Æ

1

X

pÆ0

b

p

exp(¸

p

t)Â

p

(x) , (3.32b)

where Â
p

(x) is a convenient redefinition of Hermite’s polynomial H
2p

such that its coefficient of degree

2p is one. We have Â
0

(x)Æ 1, Â
1

(x)Æ x

2

¡ v

4

/2, Â
2

(x)Æ x

4

¡6v

4

x

2

Å3v

2

4

, etc

Clearly for p Æ 0 we have a trivial constant solution. p Æ 1 corresponds to ¸
1

Æ 2, thus Â
1

(x) is a rele-

vant field. The case p Æ 2 corresponds to ¸
2

Æ 0 and Â
2

(x) is a marginal field. For all p Ê 3, the eigenvalue

¸

p

Ç 0 (for instance ¸
3

Æ¡2) corresponds to irrelevant solutions Â
p

(x). The stability of the marginal field

Â

2

(x) can be obtained by finding a solution of equation (3.29a) equal to Â
2

at the dominant order. An

analysis similar to that of reference [40] reveals that Â
2

is in fact irrelevant beyond the linear approxi-

mation. The picture of the scaling fields Â
p

(x) in D Æ 4 is thus consistent with the critical point [33]. The

usual analysis [33] then yields for the critical exponent º the classical value ºÆ 1/¸

1

Æ 0.5. Since Fisher’s

exponent ´Æ 0 in the LPA, all other (classical) exponents are deduced from scaling relations.

It is generally admitted, and was confirmed by the recent numerical studies of Codello [42], that there

is no other fixed point than the Gaussian fixed point in D Æ 4. We have just shown that the LPA/LMD

theory, albeit approximate, supports the existence of this fixed point.

4. Numerical experiments

4.1. A change of variables

We pointed out in section 3.4 that in the asymptotic limit k ! 0, the lattice and off-lattice LPA flow

equations bear the same form. In the ordered phase, their behaviors are both singular due to the simple

pole !Æ¡1 in the threshold functionL (!) [see equation (3.17)]. This point has been studied at length in

references [26, 27]. Specializing this discussion to the case D Æ 4 we note that in the limit k! 0, !
k

(Á)Æ

U

00

k

(Á)/²

k

! ¡1 for ¡Á
0

(k) Ç Á Ç Á

0

(k) where Á
0

(k) is a precursor of the spontaneous magnetization

Á

0

Æ lim

k!0

Á

0

(k). It follows that the threshold function L diverges in this interval as k¡2. This yields a

universal behaviorL (Á)/L (ÁÆ 0)Æ 1¡Á

2

/Á

2

0

. Moreover, as a consequence, U
k

(Á) becomes convex as

k! 0, in particular, it becomes constant for ¡Á
0

ÇÁÇÅÁ

0

.

The divergence of the threshold function makes it impossible to obtain numerical solution of the

non-linear PDE (3.16) in the ordered phase, and we really deal with stiff equations. In order to remove

43005-9



J.-M. Caillol

stiffness, one is led to make the change of variablesU
k

(M)Æ) L

k

(M)ÆL [!

k

(M)´U

00

k

(M)/²

k

℄. We then

obtain the equations

L

00

k

(Á)Æ

2²

k

N (²

k

)

·

1

L

k

(Á)

¡1

¸

Å

²

k

N (²

k

)

1

L

k

(Á)

2

�

t

L

k

(Á), (4.1)

where k Æ¤e¡t .

In contradistinctionwith equations (3.16), the quasi-linear parabolic PDE (4.1) can easily be integrated

out. As in references [11, 21, 26, 27] we made use of the fully implicit predictor-corrector algorithm of

Douglas-Jones [29]. This algorithm is unconditionally stable and convergent and introduces an error of

O [(¢t)

2

℄ÅO

£

(¢Á)

2

¤

(¢t and ¢Á discrete RG time and field steps, respectively) and can be used below

and above the critical point as well. In the ordered phase we note that [27] L
k

(Á)/ k

¡2

£

Á

0

(k)

2

¡Á

2

¤

for ¡Á
0

Ç Á Ç ÅÁ

0

which obviously does not preclude us from obtaining a numerical solution of equa-

tion (4.1).

The initial conditions on the local potential U
k

at k Æ ¤ are easily transposed to the field L

k

. It

follows from the discussion in the end of section 3.2 that the simplest choice is ¤ Æ k

max

Æ 4/a and

L

¤

ÆL [a

¡4

°

00

k

max

(Á)℄, where °
k

max

is the local Wetterich function and ÁÆ aÁ for all values of the order

parameter Á.

Of course, in practice, a cut-off must be imposed on Á, and boundary conditions must then be intro-

duced such that the PDE is solved only on the interval ¡Á
max

Ç Á Ç Á

max

for all k with some specifica-

tions on the boundaries. We made a consistent choice [21, 27] L
k

(§Á

max

)Æ a

¡4

L [a

¡4

°

00

k

(Á

max

)℄. Here,

Wetterich effective function °

k

(Á

max

) is evaluated in the first approximation of the hopping parameter

expansion (see, e.g., reference [24]) by assuming the validity of the local approximation.

4.2. Solving the flow equations

We solved equation (4.1) using the Douglas-Jones algorithm [29]. For most of our numerical experi-

ments we used ¢t Æ 10

¡4, a maximum of N
t

Æ 3 10

5 time steps, ¢Á Æ 10

¡4 and N

Á

Æ 30000 field steps

(i.e., Ámax Æ 3.). Note that the functions N (²) and D(²) can be computed once for all with the desired

precision.

0 5 10 15 20
t

-1

0

1

u
k

(2)

 g= 1000

u
k

(2)
(0) = 0

Gaussian fixed point

u
k

(2)
(0) = 0

u
k

(2)
(0) = 0

r > r
c 

r<r
c

u
k

(2)
(0) = 0u

k

(2)
(0) = 0

Ordered phase

Figure 2. The coupling constant u
(2)

k

´ [d

2

U

k

(Á Æ 0)/dÁ

2

℄/²

k

as a function of the RG time t Æ ln¤/k at

g Æ 1000. For r È r



, the flow escapes to infinity (dotted lines) while , for r Ç r


, the flow reaches the low

temperature fixed point u
(2)

k

Æ¡1 (solid lines). For t !1, the dashed line u
(2)

k

Æ 0 (Gaussian fixed point

value) separates the two regimes.
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In order to determine the critical point r


(g ), one proceeds by dichotomy, g is fixed and one varies

r . An illustration of the method is given in figure 2 in the case g Æ 1000. The renormalized coupling

constant u
(2)

k

´U

00

k

(M Æ 0)/²

k

, with ²
k

Æ a

2

k

2, discriminates the state of the system by its behavior in the

limit k! 0.

Of course, the Gaussian fixed point, characterized by u

(2)

k

Æ 0, is never reached but is approached

only asymptotically for r Æ r



(g ). As soon as r , r


(g ), the flow deviates from the fixed point due to the

relevant fields. For r Ç r


(g ), the coupling constant u(2)

k

!¡1 as t increases; this is the expected behavior

in the ordered phase. For r È r



(g ), u
(2)

k

!Å1 when k ! 0 (and thus ²
k

! 0) since the compressibility

U

00

k

(Á) remains finite for all values of the order parameter Á; the curves escape to Å1 as can be seen in

figures 2 and 3.

0 5 10 15 20
t

-1

0

1

2

u
k

(2)

 g=0.00001

u
k

(2)
(0)=0

Gaussian fixed point

Figure 3. Same as figure 2 for g Æ 0.00001.

A few dichotomies of r thus yield a very precise estimate of r


(g ). We checked that our values for

the parameters ¢t , ¢Á, etc., give at least 8 stable figures for r


(g ). We report only 7 figures in the table 1

with the last figure rounded-up. Precision could be enhanced with codes in quadruple precision, but

unfortunately no such public domain FORTRAN code exists for the calculation of Bessel functions. We

explored a wide range of values of parameters with g varying in the range g Æ 10

¡5 (the Gaussian limit)

up to g Æ 100000 (Ising model limit), see respectively figures 3 and 2.

Recent Monte Carlo simulations suggest, according to the authors of reference [43], the existence of

a weak first order transition, at low values of g , i.e., in the Gaussian limit. Since there are no other fixed

points (FP) than the Gaussian FP in D Æ 4, it would mean that the flow stops at some finite value of k and

does not reach the FP. Consequently, hysteresis phenomena should be observed in conjunction with the

abortion of critical fluctuations. This scenario is in contradiction with our findings in the LPA/LMPD the-

ory. Figure 4 displays the inverse compressibilityU 00

k

(ÁÆ 0) in the limit k! 0 for g Æ 0.00001. The fixed

point is attained and the expected linear classical behavior of U 00

k

(Á Æ 0)( (±r ) is eventually obtained.

A linear regression of the right hand part of the curve gives an exponent of °¡1 Æ 0.99985 in agreement

with the classical value of the compressibility exponent °Æ 1. A weak first order transition would yield a

discontinuity at some value of r which is never observed for g Ê 10

¡5. Numerically, it proved very diffi-

cult to consider smaller values of g smaller than 10

¡5, and a code written in quadruple precision should

be necessary to investigate further this question.
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Table 1. Critical parameters of the©4 scalar field theory on a 4D simple cubic lattice in the LPA approxi-

mation using the LMD regulator (3.4). From left to right: g , r


(g ). The data were obtained by fixing g and

determining r


(g ) by dichotomy. An uncertainty of at most §1 affects the last digit.

g r



(g ) g r



(g )

0.10 10

¡4 –0.7746694 10

¡6 0.70 10

2 –0.4200564 10

1

0.10 10

¡3 –0.7746662 10

¡5 0.75 10

2 –0.4456839 10

1

0.50 10

¡3 –0.3873318 10

¡4 0.80 10

2 –0.4709800 10

1

0.10 10

¡2 –0.7746600 10

¡4 0.85 10

2 –0.4959654 10

1

0.10 10

¡1 –0.7745977 10

¡3 0.90 10

2 –0.5206587 10

1

0.20 10

¡1 –0.1549056 10

¡2 0.95 10

2 –0.5450764 10

1

0.30 10

¡1 –0.2323377 10

¡2 0.100 10

3 –0.5692335 10

1

0.40 10

¡1 –0.3097560 10

¡2 0.110 10

3 –0.6168189 10

1

0.50 10

¡1 –0.3871605 10

¡2 0.120 10

3 –0.6635096 10

1

0.60 10

¡1 –0.4645512 10

¡2 0.130 10

3 –0.7093852 10

1

0.70 10

¡1 –0.5419282 10

¡2 0.140 10

3 –0.7545135 10

1

0.80 10

¡1 –0.6192914 10

¡2 0.150 10

3 –0.7989528 10

1

0.90 10

¡1 –0.6966409 10

¡2 0.160 10

3 –0.8427538 10

1

0.10 –0.7739766 10

¡2 0.170 10

3 –0.8859610 10

1

0.20 –0.1546584 10

¡1 0.180 10

3 –0.9286136 10

1

0.30 –0.2317839 10

¡1 0.190 10

3 –0.9707466 10

1

0.40 –0.3087757 10

¡1 0.200 10

3 –0.1012391 10

2

0.50 –0.3856355 10

¡1 0.225 10

3 –0.1114543 10

2

0.60 –0.4623647 10

¡1 0.250 10

3 –0.1214183 10

2

0.70 –0.5389649 10

¡1 0.275 10

3 –0.1311605 10

2

0.80 –0.6154375 10

¡1 0.300 10

3 –0.1407051 10

2

0.90 –0.6917840 10

¡1 0.350 10

3 –0.1592776 10

2

0.10 10

1 –0.7680056 10

¡1 0.400 10

3 –0.1772604 10

2

0.15 10

1 –0.1147289 0.450 10

3 –0.1947454 10

2

0.20 10

1 –0.1523643 0.500 10

3 –0.2118027 10

2

0.25 10

1 –0.1897212 0.550 10

3 –0.2284875 10

2

0.30 10

1 –0.2268122 0.600 10

3 –0.2448441 10

2

0.40 10

1 –0.3002422 0.650 10

3 –0.2609089 10

2

0.50 10

1 –0.3727360 0.700 10

3 –0.2767124 10

2

0.60 10

1 –0.4443624 0.750 10

3 –0.2922800 10

2

0.70 10

1 –0.5151810 0.800 10

3 –0.3076338 10

2

0.80 10

1 –0.5852432 0.850 10

3 –0.3227925 10

2

0.90 10

1 –0.6545945 0.900 10

3 –0.3377728 10

2

1.00 10

1 –0.7232751 0.950 10

3 –0.3525890 10

2

1.25 10

1 –0.8922688 0.10 10

4 –0.3672538 10

2

1.50 10

1 –0.1057756 10

1 0.12 10

4 –0.4246102 10

2

1.75 10

1 –0.1220112 10

1 0.14 10

4 –0.4802738 10

2

0.20 10

2 –0.1379637 10

1 0.16 10

4 –0.5346330 10

2

0.25 10

2 –0.1691160 10

1 0.18 10

4 –0.5879670 10

2

0.30 10

2 –0.1993908 10

1 0.20 10

4 –0.6404841 10

2

0.35 10

2 –0.2289055 10

1 0.25 10

4 –0.7691726 10

2

0.40 10

2 –0.2577512 10

1 0.30 10

4 –0.8953949 10

2

0.45 10

2 –0.2860003 10

1 0.40 10

4 –0.1144133 10

3

0.50 10

2 –0.3137118 10
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Figure 4. Inverse compressibilityU 00

k

(ÁÆ 0) in the limit k! 0 for g Æ 0.00001 as a function of ±r Æ r ¡r


.

5. Conclusion

In this paper we have computed the critical line of the ©4 one-component model on the simple cubic

lattice in four dimensions of space in the framework of the NPRGwithin the LPA approximation.Wemade

use of only the smooth LMD regulator which is expected to give the better results. The flow equations

have been solved for the threshold functions rather than for the potential. This trick allows one to obtain

numerical solutions in the ordered phase where the PDE for the potential are stiff and fail to converge. A

dichotomy process based on the generically different asymptotic behaviors of the dimensioned inverse

susceptibility U 00

k

(Á Æ 0)/k

2 in zero field, below and above the critical point, provides a very precise

determination of the critical line r


(g ). The model is trivial in the sense that all the solutions belong to

the basin of attraction of the Gaussian fixed point for all the considered values of g . We did not observe

a weak first order transition in the Gaussian limit g ! 0, at least, numerically, for g È 10

¡5. A numerical

exploration of still lower values of parameter g would require a quadruple precision code which is out

of reach for the moment.

In reference [21], we obtained an excellent agreement between our estimates of the critical line of the

3D ©

4 model on a simple three dimensional lattice and that ofMonte Carlo simulations of Hasenbush [30].

In D Æ 3, the LPA approximation does not yield exact critical exponents contrary to the case D Æ 4where

the classical exponents are found. One can thus a fortiori expect an excellent agreement for the critical

line between the theory and the simulations in 4D. Unfortunately, we were unable to find estimates of

the critical line of the 4D version of the model by means of Monte Carlo simulations in the literature.
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Критична лiнiя скалярної теорiї поля©4 на чотиривимiрнiй

кубiчнiй гратцi в наближеннi локального потенцiалу

Ж.-М. Кайоль1,2

1 Унiверситет Парi-Сюд, Лабораторiя теоретичної фiзики, UMR 8627, Орсе, Францiя

2 CNRS, Орсе, Францiя

Ми визначаємо критичну лiнiю однокомпонентної (чи Ландау-Гiнзбурга) моделi ©4 на простiй чотириви-

мiрнiй кубiчнiй ґратцi. Наше дослiдження здiйснено в рамках непертурбативної ренормалiзацiйної групи

в наближеннi локального потенцiалу з м’яким iнфрачервоним регулятором. Показано, що перехiд є дру-

гого роду навiть у гаусовiй границi, де можна було б очiкувати перший рiд вiдповiдно до деяких нещо-

давнiх теоретичних передбачень.

Ключовi слова: непертурбатина ренормалiзацiйна група, наближення локального потенцiалу, ґраткова

теорiя©4, числовi експерименти
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