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As an approach to the motion of particles in an anisotropic liquid, we analytically study the Stokes drag of

spherical particles in a nematic liquid crystal. The Stokes drag of spherical particles for a general anisotropic

case is derived in terms of multipoles. In the case of weak anchoring, we use the well-known distribution of

the elastic director field around the spherical particle. In the case of strong anchoring, the multipole expansion

may be also used by modifying the size of a particle to the size of the deformation coating. For the case of zero

anchoring (uniform director field) we found that the viscosities along the director´
Ò

and perpendicular direction

´

?

are almost the same, which is quite reasonable because in this case the liquid behaves as isotropic. In the

case of non-zero anchoring, the general ratio ´
Ò

/´

?

is about 2 which is satisfied by experimental observations.
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1. Introduction

Colloidal particles in liquid crystals (LC) have attracted a great research interest during the recent

years. Anisotropic properties of the host fluid-liquid crystal give rise to a new class of colloidal anisotropic

interactions that never occur in isotropic hosts. Liquid crystal colloidal systems have shown much re-

cent interest as the models for diverse phenomena in condense matter physics. Particles suspended in

a fluid are under the effect of the hits from the surrounding particles and perform Brownian motion.

They perform random walk whose diffusion constant obeys the famous Stokes-Einstein relation. A sim-

ple Langevine approach predicts that the velocity autocorrelation function of random walkers decays

exponentially [1]. The drag force can be derived from the Navier-Stokes equations with an additional

assumption on the character of the random force. The Navier-Stokes equations, which describe the hy-

drodynamic behavior of fluids, assume that molecules are point particles or smooth spheres and, as a

consequence, do not exert a torque on one another. These equations originate from the conservation

of mass, linear momentum and energy during the collision processes. If the particles in a fluid are of

non-spherical shape, they can induce rotation to each other during the collisions and the energy can be

transferred from the translational motion to the rotational motion. During these collisions, the total angu-

lar momentum of colliding particles should be conserved. The requirement that the angular momentum

should be conserved together with the Navier-Stokes equations leads to a complete hydrodynamic de-

scription of the fluid. Such a complete hydrodynamic description was applied to the fluid composed of

finite-sized spherical particles with internal rotational degrees of freedom and it is shown that the friction

force becomes memory dependent even for this simple liquid [2].

In anisotropic liquids, the rod-like organic molecules align, on average, along a common direction

indicated by a unit vector ~n called director. For this case, to find the drag force we need to solve the

dynamic equations of a nematic liquid crystal LC, i.e., the Ericksen-Leslie equations. In these equations,

the independent variables — the director and the fluid velocity — are coupled and this fact causes the
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complexity of these equations. Thus, only a few examples with analytical solution exist, e.g., the flow

between two parallel plates which defines the different Miesowicz viscosities [3], the Couette flow [4, 5],

the Poiseuille flow [6] which was first measured by Cladis et al. [7], or back flow [8]. It is expected that the

knowledge of the more or less general solutions of these equations will shed light upon some effects. The

solutions of the Ericksen-Leslie equations are also of technological interest since they are indispensable

for determining the switching times of liquid-crystal displays.

Every particle immersed in a liquid crystal produces a deformation director field around the particle

if the LC molecules are specifically anchored to the closed surface. In the case of a weak anchoring, the

area of deformation of the director field around the particle is small and every deformation of the director

field can be presented as a small deformation of the ground state, which represents the orientation of all

the molecules in one direction.

In the case of a strong anchoring, we have a distortion director field around the immersed particle,

which can be called a dipole or quadrupole configuration [9] (figure 1). This configuration directly de-

pends on the strength of coupling with the surface and on the size of particles. In this case, it is necessary

to describe the possible configurations and to note that in the long-range distance we have a configuration

which shows the same behavior as in the case of week anchoring represented by a multiple expansion.

There exist two approaches to describe the distribution of the director field at a short and long distance

from the immersed particle. The first theoretical approach was developed in [9] combining the ansatz

functions for the director and the use of the multiple expansion in the far field area. The authors investi-

gated spherical particles with hyperbolic hedgehog and found dipole and quadruple elastic interactions

between such particles. Another approach [10] made it possible to find approximate solutions in terms

of the geometrical shape of particles for the case of small anchoring strength and has provided the way

to connect the type of the interaction potential with the local symmetry of the director field around the

particles [11]. The concept of coating has been introduced that contains all the topological defects located

inside and carries the symmetry of the director, and enables us to qualitatively determine the type of

the interaction potential. However, the coating is not quantitatively exactly defined. The configuration of

director distribution plays a crucial role when the particle moves through a liquid crystal.

Figure 1. (Color online) The distortion of the molecules around the spherical particle in the case of the

strong anchoring. We can see that the change of the distortion of the director near the particle is very

strong. The form of the distortion of the director field in the case of the strong anchoring was theoretically

obtained in article [31].

The hydrodynamic solution for the flow of a nematic liquid crystal around a particle at rest, which

is equivalent to the problem of a moving particle, still requires its full result. The experiment with the

inverted nematic emulsion [12, 13] and investigations by Ruhwandl and Terentjev [14] urged Stark and

Ventzki [15–17] to perform Stokes drag calculations for a particle in a nematic environment, especially

for the particle-defect dipole. They concentrated on the low Eriksen numbers, where the director field

is not affected by the velocity field. The authors presented streamline patterns, interpreted them, calcu-

lated Stokes drags for motions parallel and perpendicular to the overall symmetry axis, and compared

the results to the Saturn-ring configuration and a uniform director-field. Heuer et al. presented analyti-

cal and numerical solutions for both the velocity field and the Stokes drag where the director field was

kept uniform [18, 19]. They were the first to investigate a cylinder of infinite length [20]. Diogo [21] put
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the velocity field to be the same as the one for an isotropic fluid and calculated the drag force for sim-

ple director configurations. He investigated the case where the viscous forces largely exceed the elastic

forces from director distortions, i.e., Ericksen numbers much larger than one, as it was explained in the

[15]. Roman and Terentjev, have focused on the opposite case. They obtained an analytical solution for

the flow velocity in a spatially uniform director field by an expansion in the anisotropy of the viscosities

[22]. Chono and Tsuji performed a numerical solution of the Ericksen-Leslie equations around a cylinder

determining both the velocity and director field [23]. They found that the director field strongly depends

on the Eriksen number, but for homeotropic anchoring their director fields did not exhibit any topolog-

ical defects required by the boundary conditions signaling about some shortcomings in the exploration.

Billeter and Pelcovits used molecular-dynamic simulations to determine the Stokes drag of very small

particles [24]. They observed that the Saturn ring is strongly deformed due to the motion of the particles.

Ruhwandl and Terentjev have investigated a nonuniform but fixed director configuration, and numeri-

cally calculated the velocity field and Stokes drag of a cylinder [25] or spherical particle [14]. The particle

was surrounded by the Saturn-ring configuration, and the cylinder was accompanied by two disclination

lines. It is known when a particle is surrounded by a disclination ring, the Stokes drag strongly depends

on the presence of line defects. There are a few studies that determine both experimentally [26] and

theoretically [27–29] the drag force of a moving disclination.

We cannot fully describe all the effects associated with the possible configurations of the director field

around the immersed particle, but we attempt to find a general motive of the change dissipation energy

of the moving particle in a liquid crystal. First of all, we focus on increasing the effective mass of the

immersed colloidal particle and analytically calculate the Stokes drag for colloidal particles in a nematic

liquid crystal.

2. Theory and details of calculations

The essence of this paper is the calculation of the Stokes drag of a spherical particle in a nematic liquid

crystal when the angle between the director and particle velocity is arbitrary. In other words, we have

calculated the Stokes drag of the spherical particle in a nematic liquid crystal for the fully anisotropic

case. The drag force is caused by the interaction of the particles of the fluid and a foreign body immersed

in it. As we mentioned in the introduction, every particle immersed in a liquid crystal is dressed in a

deformation coating with the region of deformation of the director field at the distance of the correlation

length. The efficacy of the coating was investigated in [30]. To describe this phenomena we can also use

the results on the inertial characteristic and viscosity, which present a different approach to the motion

of the immersed particles. The inertial characteristic is the effective mass which is an analogue of the hy-

drodynamical mass in the usual hydrodynamics. Every moving particle immersed in a liquid crystal has

two principal different characteristics. One is an inertial characteristic as an effective mass and another

characteristic determines the dissipative part. When the particle moves, the region of deformation— i.e.,

coating, moves too. This causes an increase of its inertia mass. Under these conditions, the effective mass

becomes the anisotropic value and can be expressed via formulas [30]:
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where I is density of the moment inertia of the liquid crystal. To determine the inertial characteristic, we

can use the distribution of the elastic director around the particles. As was shown in [31], in the case of

a weak anchoring, when only small deviations of the director for homeotropic boundary conditions on

the surface of a particle are expected, the problem can be linearized, and to describe the director field

one can use the two principal angles of a spherical coordinate system n

z

Æ os¯(
~
r ),n

x

Æ sin¯(
~
r )osÁ,

and n

y

Æ sin¯(
~
r )sinÁ, where Á is the azimuthal angle, thus respecting an obvious azimuthal symmetry
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of the problem. At a small anchoring ¯¿ 1, the director rotation angle takes the form

¯Æ

WR

4K

µ

R

r

¶

3

sin2µ. (2.3)

If we substitute the known director field distribution for weak anchoring, we get the value of the

inertial effective mass:

m
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3

, (2.4)

which can be by an order higher than the mass of the immersed particle [30]. It is analogue of the hydro-

dynamic mass for the moving particle in an ordinary liquid.

The friction force for a spherical region of a radius R/" with a centered particle within is expressed

via formula [15].

The same arguments relate to the viscosity coefficient. The theoretical calculations [16, 17] revealed

that the viscosity coefficient depends on the configuration of the director distribution and is much big-

ger than in an ordinary viscose liquid. The essence of this phenomena can be understood from simple

considerations. Every particle that moves in the viscose environment undergoes the action of the addi-

tional friction force, which is described by Stokes formula f Æ 6¼´R, where ´ is the friction coefficient,

which is associated with a diffusion coefficient of the Brownian particle via the relationD Æ (kT )/(6¼´R).

The friction force for the spherical region of radius R/" with a centered particle within is expressed via

formula [15]
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From this formula it is easy to see that the friction force increases if the particle is inside the shell.

It can be a solvate shell and in the case of the liquid crystal this is the region of a strong change of a

director deformation. If we now take into account the configuration of the director distribution around

the spherical inclusion, then the diffusion of this inclusion will depend on the direction of the motion

with regard to equilibrium director distribution. This leads to the anisotropy of the diffusion coefficient

and to a dependence of these coefficients on the conditions of anchoring on the surface of the inclusion.

The results of numerical calculations of these phenomena can be found in [16, 17].

To determine the character and the value of the Stokes drag of the spherical particle in a nematic

liquid crystal, we can use different distributions of elastic director field around it. The stress tensor ¾
ik

is used to calculate the Stokes drag force [32]. From the known stress tensor ¾
ik

, the drag force can be

calculated by the following formula [2]:

F

i

Æ

Z
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. (2.6)

The expression for the stress tensor ¾
ik

in a nematic environment is well known and can be found in the

literature [32]
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Here, p is macroscopic pressure, ¾
(r )
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is “reactive” part of stress tensor and ¾

0
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is a dissipative part of

stress tensor. The expressions for “reactive” and dissipative parts of stress tensor can be found in [32]
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To find the stress tensor we need to know the solution of the Eriksen-Leslie equations that link the

director field and the fluid velocity. The general solution of these equations is a challenge to a theorist.
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Here we suggest an approach for finding the stress tensor. As the first step we use the director struc-

ture around a colloid particle suspended in a nematic liquid crystal, found in [31]. We assume here the

situation when a spherical particle moves slowly and the nematic liquid crystal environment has enough

time to relax to the equilibrium state during themotion of a spherical particle.We consider a smooth hard

sphere which moves through the fluid with the velocity ~u(t) Æ u(t)
~
e

z

. The fact that it is smooth means

that no torques and no force directed tangent to its surface can be exerted on it. Under these conditions,

only the component ¾
r r

of the stress tensor contributes to the drag force. Since we use the director field

for equilibrium state, the “reactive” part of stress tensor will not contribute to the drag force, but only a

dissipative part. It is obvious that the drag force ~F has the same direction as the velocity of a spherical

particle ~u, and formula (2.6) will reduce to the following:

F Æ

Z

¾

0

r r

osµds. (2.10)

Substituting the components of director field from [31] and the components for velocity field which

are the same as the one for an isotropic fluid [33] in the stress tensor and keeping terms up to the first

order of small parameter ¯, we have obtained the Stokes drag of spherical particle in a nematic environ-

ment at weak anchoring
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The presented director field structure contains configurations of the director field at a small anchor-

ing. We would like to determine the Stokes drag in the case of strong anchoring. The task of finding a

director distribution around a spherical particle consists in minimizing the Frank free-energy functional

with boundary conditions provided by it and by the surface energy. Generally, this class of problems is

not solvable analytically due to its nonlinearity brought in by the unit-vector constraint j~n(~r )j2 Æ 1. In

[34], in particular, the director distribution was obtained in the one-constant approximation in terms

of the multipole expansion. However, the expansion coefficients were not associated with the physical

and geometrical parameters of macroparticles. In [10], the director distribution is derived for the general

case of different elastic Frank constants and, moreover, the multipole expansion parameters are found in

terms of geometric and physical characteristics of macroparticles. Thus, both the behavior and the value

of the pair interaction energy are described with no additional restrictions. However, only in [9] there

was proposed a theoretical approach combining the ansatz functions for the director field and the use

of the multiple expansion in the far field area that was a satisfactory solution to many problems. Thus,

the use of the director field in terms of the multipole expansion becomes particularly relevant. In the

framework of this approach we have
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where the vector ~p is the dipole moment of the droplet-defect configuration and the parameter c is the

amplitude of the quadrupole moment tensor c
i j

of the particle-defect configuration. Assuming that, at

small anchoring, the director deviates from its uniform orientation ~n
0

k
~
e

z

by only a small amount, we

can consider n
x

and n

y

as small parameters. Repeating all the steps as in the first approach, except that

now the small parameters are n
x

and n

y

, we obtain the Stokes drag of a spherical particle in a nematic

environment at a weak anchoring in the framework of the present approach
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Table 1. The viscosities for zero and planar anchoring. The middle column is obtained from equa-

tions (2.14) and (2.15) with the Leslie coefficients of 5CB and MBBA [38, 39]; the last one is derived from

Stark’s numerical calculations [36].

Uniform director Present work Numerically exact

5CB ´

Ò

0.27 0.38

´

?

0.24 0.75

MBBA ´

Ò

0.28 0.38

´

?

0.27 0.68

Planar anchoring

5CB ´

Ò

0.16 ¡

´

?

0.34 ¡

MBBA ´

Ò

0.18 ¡

´

?

0.36 ¡

Here,  is the angle between the director ~n
0

and the velocity of a spherical particle ~u. This is a general

expression for the drag force which includes anisotropy.We can note that it is a very good approximation

for a spherical particle with the coating size R. Outside this region, there are only small deformations

and we should take into account the multiple explanation. If we assume that the director field is equal

to zero we see that expressions (2.11) and (2.13) become the same, which confirms the rightness of our

calculations. In practice, only two directions are measured i.e., along and perpendicular to the director

direction. We rewrite the expression (2.13) for these two directions
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Alternative investigation was recently conducted by [35]. In [35] the authors have developed a pertur-

bative approach to the Leslie-Ericksen equations and related the diffusion coefficients to the Miesovicz

viscosity parameters ´
i

. We present our results in the same order as in [35] in table 1. The value of

quadrupole moment is used as in [9]. Two cases are considered, i.e., uniform director field and planar

anchoring.

3. Conclusion

For uniform director field, our results differ from the results in [35, 36], but we believe that our results

are reasonable. Our arguments are as follows: in case of a uniform director field, the field of the director

is the same in space. The difference in the description of the dynamics of the usual liquid and the liquid

crystal is in the expression of the free energy [32]. The expression for the free energy for the liquid crystal

contains, in comparisonwith the expression for the free energy for an ordinary liquid, an additional term,

i.e., deformation free energy which depends only on the derivatives of the director regarding the position

[32]. In the case of a uniform director field, this term becomes zero and the liquid crystal behaves as an

ordinary liquid. Thus, the viscosities along the director ´
Ò

and perpendicular direction ´
?

should be the

same. Our results confirm this fact in contradiction to the results of [35, 36]. The possible explanation of

this discrepancy might be in the fact that the director evolution depends on the molecular field and the

gradient of the velocities [32]. A situation is possible when the molecular field is zero but the gradient
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of velocities is big enough (the particle moves quickly) and, consequently, the deviation of the director is

not as small as in our approach. If the anchoring is not zero, we find that for both kinds of liquid crystals

the ratio ´
Ò

/´

?

is about 2 which agrees well with the general tendency [35]. The approach used by us

is valid for a weak anchoring when n

x

and n

y

are small parameters. However, it may be applied to the

case of strong anchoring as well. As was shown in [11, 30, 37], under strong anchoring, the effective mass

of an ion increases due to the formation of a polarization coating, moving together with the ion. Thus,

we can consider the particle with the coating to be a new single moving particle. The anchoring for this

“new particle” is weak [11, 30, 37] and the above approach can be applicable too. It should be noted that

while extracting the viscosity, the size of the polarization coating should be taken into account. We can

conclude that our approach works well for the two limiting cases, i.e., weak and strong anchoring, and it

does not include the case of the “middle” anchoring. In [35] there wasmeasured the ratioD
Ò

/D

?

¼ 4. This

might be the case of the “middle” anchoring. We cannot claim a complete theory of motion of immersed

particles in a nematic liquid crystal, but we suggest the approach which makes the analytical calculation

of the diffusion process of a particle in this viscose media possible. This process should take into account

the change as an inertial effect and the Stokes drag of a particle in a liquid crystal which are linked with

the deformation of the elastic director field.
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Аналiтичний розрахунок сили Стокса для сферичної

частинки в нематичному рiдкому кристалi

М.В. Козачок1,2, Б.I. Лев1

1 Iнститут теоретичної фiзики iм. М.М. Боголюбова НАН України, Україна, Київ, вул. Метрологiчна, 14-б
2 Вiдкритий мiжнародний унiверситет розвитку людини “Україна”, Україна, Київ, вул. Львiвська, 23

Як одне з наближень до опису явища руху частинки в анiзотропнiй рiдинi, ми аналiтично рахуємо силу

Стокса для сферичних частинок в нематичному рiдкому кристалi. Сила Стокса для сферичної частинки

порахована для загального анiзотропiчного випадку в термiнах мультипольного розкладу. Для випадку

слабкого зчеплення ми використовуємо добре вiдомий розподiл поля директора навколо сферичної час-

тинки. Для випадку сильного зчеплення мультипольний розклад також можна використовувати, якщо

модифiкувати розмiр частинки до розмiру шуби. При нульовому зчепленнi (однорiдне поле директора)

ми знайшли, що вязкiсть вздовж та перпендикулярно до директора є однаковою. Цей результат є прав-

доподiбним, оскiльки в цьому випадку рiдкий кристал веде себе як iзоторопна рiдина. Для випадку не-

нульового зчеплення загальне спiввiдношення ´

Ò

/´

?

є близько 2, що задовiльняє експериментальнi

результати.

Ключовi слова: сила Стокса, рiдки кристали, дифузiя, вязкiсть
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