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In this paper, phase transitions in the Mitsui model without longitudinal field but with a transverse one are
investigated in the mean field approximation. The one-to-one correspondence has been established between
this model and the two-sublattice Ising-type model with longitudinal and transverse fields. Phase diagrams and
diagrams of existence of the ferroelectric phase are constructed. In the case Ω = 0 (Ω is the transverse field),
a simple analytical expression for the tricritical temperature and the condition of existence of the tricritical point
are obtained. For Ω 6= 0, systems of equations for the tricritical point and for the condition of its existence are
written.
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1. IntroductionThe Mitsui model was proposed in 1958 [1℄ to theoretially explain the ferroeletri properties ofthe Rohelle salt. In 1971, �ek², Shukla, and Blin [2℄ formulated this model in terms of pseudospinsand just in this form it is known at the present time.For better quantitative desription of the Rohelle salt the onventional Mitsui model wasmodi�ed in many ways. For instane, in referene [3℄ an additional piezoeletri interation wasinluded in the Hamiltonian of the model and in referenes [4℄ and [5℄ a transverse �eld (or tun-neling) was inluded as well. To take into aount a realisti struture of Rohelle salt rystal,the four-sublattie Mitsui model was onsidered [6℄. Besides the Rohelle salt, the Mitsui modelwith transverse �eld was used for theoretial desription of some other ferroeletri ompounds,notably, RbHSO4 [7, 8℄ and NH4HSO4 [8℄ rystals.In referene [9℄ the e�et of hydrostati pressure on thermodynami properties of the Rohellesalt was studied. Hydrostati pressure makes it possible to hange the parameters of the model.It turns out that the Mitsui model overs not only the ferroeletris of the order-disordertype but also other physial objets with two-minimum asymmetri potential. For instane, inreferenes [10℄ and [11℄ pseudospin-eletron models based on the Mitsui model were onsidered.Despite a rather wide use of the Mitsui model, there is no detailed analysis of its phase behavior.In referene [12℄ the diagram of existene of the ferroeletri phase was alulated. However, thisdiagram is far from being omplete. More detailed though still inomplete diagram was obtainedin referene [13℄.In the present paper, a rigorous and original mathematial investigation of phase transitions inthe Mitsui model is proposed. We managed to onstrut a omplete phase diagram of the Mitsuimodel in the mean �eld approximation, �rst without tunneling (or transverse �eld) and then withnonzero tunneling. For all urves (surfaes) of the diagram the analytial expressions, equations orsystems of equations are given.© Yu.I. Dublenych, 2011 23603-1
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2. Hamiltonian of the Mitsui model in the mean field approxima tionThe Hamiltonian of the Mitsui model without external �eld reads
H = −1

2

∑

ij

Jij
(

SzA
i SzA

j + SzB
i SzB

j

)

−
∑

ij

KijS
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j −∆
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i

)

−Ω
∑

i

(

SxA
i + SxB

i

)

.(2.1)Here subsripts A and B denote two sublatties, SαA
i is α-omponent of the pseudospin on ith siteof sublattie A; Jij and Kij are the interations between pseudospins of the same sublattie and ofdi�erent sublatties, respetively, ∆ is the asymmetry of the anharmoni potential; transverse �eld

Ω desribes the tunneling between two wells of the two-minimum potential. The model onsideredis a lattie one. However, sine we use the mean �eld approximation, we do not need to speify thetype of the lattie.The transformations SzB
i → −SzB

i , Kij → −Kij transform Hamiltonian (2.1) into the Hamil-tonian of the two-sublattie model with longitudinal �eld ∆ (the same for both sublatties) andtransverse �eld Ω. Therefore, the two Hamiltonians are equivalent.In the mean-�eld approximation, Hamiltonian (2.1) reads
H =

N
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+
∑

i

(

HA
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, (2.2)where the following notations are introdued:
HA

i = − (∆ +Kη
B
+ Jη

A
)SzA

i − ΩSxA
i , (2.3)

HB
i = − (−∆+Kη

A
+ Jη

B
)SzB

i − ΩSxB
i , (2.4)

K =
∑

i

Kij =
∑

j

Kij , J =
∑

i

Jij =
∑

j

Jij , (2.5)
ηA = 〈SzA

i 〉 and ηB = 〈SzB
i 〉 are the average values of pseudospin on sublatties A and B, respe-tively, N is the total number of pseudospins.

3. Ω = 0 case

3.1. Free energy, thermodynamic equilibrium conditions an d order parametersLet us �rst onsider the Ω = 0 ase. In this ase the eigenvalues of Hamiltonians HA
i and HB

iare as follows:
λ

A
= −1

2
(∆ +Kη

B
+ Jη

A
) , −λ

A
;

λ
B
= −1

2
(−∆+Kη

A
+ Jη

B
) , −λ

B
.

(3.1)The partition funtion for one unit ell reads
Zi =

(

e−βλ
A + eβλA

) (

e−βλ
B + eβλB

)

e−β[Kη
A
η
B
+ J

2 (η
2

A
+η2

B
)] . (3.2)The free energy per one unit ell is as follows:

F = −θ lnZi ,

F = Kη
A
η
B
+

J

2

(

η2
A
+ η2

B

)

− θ ln
(

e−βλ
A + eβλA

)

− θ ln
(

e−βλ
B + eβλB

)

, (3.3)where θ = 1/β is thermodynami temperature. From thermodynami equilibrium onditions
(

∂F

∂η
A

)

T,∆

= 0,
(

∂F

∂η
B

)

T,∆

= 0
(3.4)
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Phase transitions in the Mitsui modelwe obtain the following equations for η
A
and η

B
:

2η
A
= tanh (−βλ

A
),

2η
B
= tanh (−βλ

B
).

(3.5)Taking into aount equations (3.5), we an rewrite the expression for free energy in the followingform:
F = Kη

A
η
B
+

J

2

(

η2
A
+ η2

B

)

+
θ

2
ln

[(

1

4
− η2

A

)(

1

4
− η2

B

)]

. (3.6)The system of equations (3.5) has the solutions of two kinds: for the �rst ones η
A

= −η
B(then the system is redued to one equation only), they exist for arbitrary ∆; for the seond ones

η
A
6= −η

B
, they exist in a bounded region of values of ∆ and orrespond to the ferroeletri phase.Let us divide the (K, J) plane into eight segments as shown in �gure 1. The plots of the freeenergy as a funtion of ∆ at zero temperature in the enters of the unit-irle ars for every segmentare shown in �gure 2. (It is easy to obtain these plots from equations (3.5) and (3.6) setting θ → 0or β → +∞.) As one an see from �gure 2, in segments 4 and 5 there are no phase transitions,in segments 6, 7, and 8 there are phase transitions at ∆ = 0 only. In segment 3 there are onlyseond-order phase transitions that are easy to investigate. The most ompliated and interestingpiture of phase transitions is observed for segments 1 and 2, therefore we onsider only the region

K > 0, J > 0.

Figure 1. Division of the (K, J) plane into eight segments, whih orrespond to di�erent relationsbetween parameters K and J .Let us introdue new variables: ferroeletri order parameter ξ = η
A
+ η

B
and antiferroeletriorder parameter σ = η

A
− η

B
. Let us also divide all energeti values by K + J and introdue thefollowing notations:

a =
K − J

K + J
, γ =

∆

K + J
, t =

θ

K + J
, f =

F

K + J
. (3.7)Now equations (3.5) an be rewritten in the following form:

eξ/t =
(1 + ξ)2 − σ2

(1− ξ)2 − σ2
,

e−aσ/t = e−2γ/t (1 + σ)2 − ξ2

(1 − σ)2 − ξ2
.

(3.8)If ξ = 0 (�rst type solutions, both sublatties are equivalent up to a sign of η) then the �rstequation beomes an identity and the system (3.8) is redued to a single equation. If ξ 6= 0 (seond
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Figure 2. Free energy as a funtion of ∆ at zero temperature. Numbers over �gures orrespondto the unit-irle points indiated in �gure 1.type solutions) then equations (3.8) an be rewritten in a simpler form:
σ = ±

√

1 + ξ2 + 2ξ
1 + eξ/t

1− eξ/t
,

γ =
a

2
σ +

ξ

2
+ t ln

1 + σ − ξ

1− σ + ξ
.

(3.9)In view of the symmetry we onsider only σ > 0, ξ > 0 and γ > 0.
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Phase transitions in the Mitsui modelThe expression for the free energy per unit ell in terms of new variables reads
f =

1

4

(

ξ2 − aσ2
)

+
t

2
ln
{[

1− (ξ + σ)2
] [

1− (ξ − σ)2
])

− 2t ln 2. (3.10)
3.2. Second-order phase transitionsThe seond-order ferroeletri phase transition orresponds to the branhpoint of the urve
σ(γ) (a and t being �xed) or of the urve σ(t) (a and γ being �xed) where a solution of the �rsttype turns into a solution of the seond type. We denote the value of σ in this point by σ̃. It is asfollows:

σ̃ = lim
ξ→0

σ =
√
1− 4t . (3.11)One an see from this expression that the seond-order phase transitions exist up to the temperature

tmax =
1

4
. (3.12)Substituting ξ = 0 and σ from equation (3.11) in equation (3.9), we obtain the equation for theurve γ(t) of the seond-order phase transitions:

γ =
a

2
σ̃ + t ln

1 + σ̃

1− σ̃
. (3.13)Now let us �nd the minimal temperature for the existene of the seond-order phase transitionsat �xed a. If a = 1, then only seond-order phase transitions exist. If −1 < a < 1, then there arephase transitions of both seond and �rst orders. The latter exist from t = 0 to a ertain value ofthe temperature. As one an see from �gure 3, the triritial point, i.e. the point where the orderof phase transition hanges, an be determine from the following ondition:

lim
ξ→0

dγ

dσ
= 0. (3.14)

Figure 3. Antiferroeletri order parameter asa funtion of γ for several values of temper-ature (numbers over the urves). a = 0.0875.Thermodynamially stable states are depitedby heavy lines. At t = 0.03 and t = 0.1 there are�rst-order phase transitions and at t = 0.1507and t = 0.2 there are seond-order ones.
Figure 4. Antiferroeletri order parameter asa funtion of γ for several values of parame-ter a (numbers near the urves). The valuesof the temperature are alulated using expres-sion (3.15). At a = −0.1 and a = 0.25 there areseond-order phase transitions and at a = 0.35and a = 0.45 there are �rst-order ones.
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Yu.I. DublenychWe obtain for the triritial temperature:
ttc =

1

3
+

1

6(a− 1)
. (3.15)The triritial point exists if, at the temperature determined by equation (3.15), the followingondition is satis�ed:

lim
ξ→0

d2γ

dσ2
6 0 (γ > 0). (3.16)This is lear from �gure 4 where urves σ(γ)/2 for several values of parameter a and orrespondingvalues of the temperature [see equation (3.15)℄ are depited. The existene of the region where thedependene σ(γ) for ξ 6= 0 is two-valued indiates that there is a �rst-order phase transition. Thistwo-valuedness disappears with dereasing a and the order of the phase transition hanges. Fromequations (3.15) and (3.16) one obtains:
a 6

1

4
. (3.17)Let us �nd the maximum of urve γ(t) at �xed a. The extremum ondition dγ/dt = 0 andequation (3.13) yield:

ln
1 + σ̃

1− σ̃
=

a+ 1

σ̃
, γ =

1

4

(

a+ 1

σ̃
+ (a− 1)σ̃

)

. (3.18)Exluding σ̃, we obtain the equation for γ:
(

2γ +
√

(2γ)2 − a2 + 1
)

tanh
2γ +

√

(2γ)2 − a2 + 1

2
= a+ 1. (3.19)

3.3. First-order phase transitionsUp to here we analyzed the seond-order phase transitions and found the expression for thesurfae γ = γ(t, a) of these transitions as well as the triritial point and the ondition for itsexistene. Now let us onsider the �rst-order phase transitions.A �rst-order phase transition orresponds to a point of self-intersetion of the urve for thefree energy f(ξ, σ) as a funtion of γ at �xed a and t (or as a funtion of t at �xed a and γ). Butonly this point of self-intersetion gives the �rst-order phase transition in whih the multivaluedfuntion for the free energy takes the minimal value from all possible values at �xed γ.If −1 6 a 6 1/4, then the �rst-order phase transitions exists for 0 6 t < ttc [see equation(3.15)℄. The urve for them in the (γ, t)-plain (i.e, the intersetion points of the branhes ξ = 0and ξ 6= 0 of the free energy) an be found from the following system of equations:
σ =

√

1 + ξ2 + 2ξ
1 + eξ/t

1− eξ/t
,

γ =
a

2
σ +

ξ

2
+ t ln

1 + σ − ξ

1− σ + ξ
,

γ =
a

2
σ1 + t ln

1 + σ1

1− σ1
,

f(ξ, σ) = f(0, σ1).

(3.20)
If t = 0, then the �rst-order phase transition ours at

γ = ±1

4
(a+ 1). (3.21)In the t 6= 0 ase the system of equations (3.20) an be solved only numerially.
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Phase transitions in the Mitsui modelThe phase oexistene urves for several values of parameter a are shown in �gure 5. Theregion of ferroeletri phase is bounded by suh a urve and by the oordinate axes. The urve oftriritial points [more exatly, its projetion on the plane (γ, t)℄ is also shown in �gure 5 (heavyline). From this urve another two urves branh o�: the urve of minima of funtion γ(t) for allpossible values of a and the urve of maxima for the seond-order phase transitions. The urve oftriritial points furates into the urve of branhpoints and the urve of ritial points (dashedline). If a & 0.1793293 (four urves on the right), then there is a region with two seond-order phasetransitions (see also �gure 6). At this value of a the maximum of the urve γ(t) of the seond-orderphase transitions oinides with the triritial point.

Figure 5. Coexistene urves in the (γ, t)-plane for several values of parameter a (numbers nearthe urves). The urve of triritial points (heavy line), the urve of minima for the �rst-orderphase transitions, the urve of maxima for the seond-order phase transitions, the urve ofbranhpoints and the urve of ritial points (dashed line) are indiated.If a > 1/4, then the upper part of the urve of the �rst-order phase transitions orresponds tothe phase transitions within the ferroeletri phase. The temperature of these transitions (at �xed
a and γ), i.e. the temperature for the self-intersetion points of the free energy urve, an be foundfrom the following system of equations (the solutions of the type ξ = ξ1 should be rejeted):

σ =

√

1 + ξ2 + 2ξ
1 + eξ/t

1− eξ/t
,

γ =
a

2
σ +

ξ

2
+ t ln

1 + σ − ξ

1− σ + ξ
,

σ1 =

√

1 + ξ21 + 2ξ1
1 + eξ1/t

1− eξ1/t
,

γ =
a

2
σ1 +

ξ1
2

+ t ln
1 + σ1 − ξ1
1− σ1 + ξ1

,

f(ξ, σ) = f(ξ1 , σ1).

(3.22)
In �gures 6(b) and () some fragments of phase diagrams in oordinates (γ, t) for a > 1/4are shown. The upper part of the urve of the �rst-order phase transitions orresponds to thetransitions within the ferroeletri phase.If a > 1/4, then the ritial temperature an be determined from the following system of
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Figure 6. Fragments of the phase oexistene urves for a) a = 0.25 (the triritial point isshown), b) a = 0.46 and ) a = 0.7 (see �gure 5).equations:
dγ

dσ
= 0,

d2γ

dσ2
= 0,

σ =

√

1 + ξ2 + 2ξ
1 + eξ/t

1− eξ/t
,

γ =
a

2
σ +

ξ

2
+ t ln

1 + σ − ξ

1− σ + ξ
.

(3.23)
This system of equations an be rewritten in the form:

σ2 = 1 + ξ2 − 2t+
2

a

(

t−
√

a2ξ2 + 2atξ2(1− a) + t2(1 + a)2
)

,

σ2 = 1 + aξ2 − 3t+
1

a

(

t−
√

[aξ2(1− a) + t(1 + a)]2 − 4a2ξ2(2at− 2t− a)

)

,

σ2 = 1 + ξ2 + 2ξ
1 + eξ/t

1− eξ/t
,

γ =
a

2
σ +

ξ

2
+ t ln

1 + σ − ξ

1− σ + ξ
,

(3.24)
whene it follows

ξ2 =
−q − [(3a− 1)t− a]

√

q − 2(a+ 1)t [(a− 1)2t− a2]

2a(a− 1)[2(a− 1)t− a]
, (3.25)
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Phase transitions in the Mitsui modelwhere q = (a−1)(3a2−14a−1)t2−2a(2a2−5a+1)t+a2(a−1), and hene the system of equationsis redued to a single transendental equation.As one an see from �gure 6, the urve γ(t) of the �rst-order phase transitions has a minimumif a is big enough. To �nd it, let us di�erentiate the last equation of system (3.20) with respet to
t and then substitute dγ/dt = 0. After simple transformations we obtain the following equation:

ξ2 − aσ2 + 4γσ = −aσ2
1 + 4γσ1 , (3.26)whih together with equations (3.20) gives the point of minimum. At zero temperature the solutionsof equations (3.20) also satisfy it:

lim
t→0

dγ

dt
= 0. (3.27)The branhpoint of the urve (at �xed a > 1/4) an be found from equations (3.20), substituting

t =
1− σ2

1

4
. (3.28)

3.4. Regions of existence of the ferroelectric phaseTo onlude, we obtained expliit expressions or system of equations for all speial points ofthe phase urve at �xed a. This makes it possible to onstrut a diagram of the regions where theferroeletri phase exists. There are seven regions in the (γ, a) plane (�gures 7 and 8). They arebounded by the following urves:(1) the urve of minima for the �rst-order phase transitions [equation (3.26)℄;(2) the urve of triritial points [equations (3.11), (3.13), and (3.15)℄;(3) the urve of branhpoints [equations (3.20), and (3.28)℄;(4) the urve of ritial points [equation (3.24)℄;(5) the urve of maxima for the seond-order phase transitions [equation (3.19)℄;(6) the straight line of the �rst-order phase transitions at zero temperature [equation (3.21)℄.In the point (a ≈ 0.179329, γ = 0.283995) the urve of minima for the �rst-order phasetransitions and the urve of maxima for the seond-order phase transitions branh o� from the

Figure 7. Regions of existene of the ferroele-tri phase (see also �gures 9 and 10). Dashedline (prolongation of the line whih bounds re-gion V) is shown only for omparison with thediagram from [12℄. Figure 8. Regions of existene of the ferroele-tri phase (fragment). The �lled irle is thebranhpoint.
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Yu.I. Dublenychurve of triritial points and in the point (a = 0.25, γ = 0.307041) the urve of ritial pointsbranhes out into the urve of branhpoints and the urve of ritial points. All urves exept forthe urve of maxima for the seond-order phase transitions onverge at a = 1.

Figure 9. Parameters of ferroeletri and antiferroeletri ordering for di�erent regions wherethe ferroeletri phase exists. Only thermodynamially stable states are depited. a = 0.36.From top to bottom: I) γ = 0.337; II) γ = 0.3375; III) γ = 0.338; and IV) γ = 0.339. For regionIII the phase transition within the ferroeletri phase is indiated by �lled irles.In �gures 9 and 10, the behavior of parameters σ and ξ is shown for every region. In regionI (�gures 7 and 8) only one high-temperature seond-order phase transition exists. In region II,in addition to the mentioned one, there are two �rst-order phase transitions. In narrow region IIIthere are four phase transition: two of the �rst and two of the seond order; one �rst-order phasetransition is within the ferroeletri phase. In region IV there are three phase transitions, one ofthem being the �rst-order transition. In region V there are two seond-order phase transitions justlike for the Rohelle salt. In region VI there is only one phase transition (of the �rst order) and in
23603-10
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Figure 10. (Continuation of �gure 9.) V) a = 0.36, γ = 0.34; VI) a = −0.4, γ = 0.14;VII) a = 0.36, γ = 0.35.region VII there are no phase transitions at all.
4. Ω 6= 0 case

4.1. Free energy and conditions for thermodynamic equilibr iumNow let us onsider the ase of nonzero tunneling. The eigenvalues of one-site Hamiltonians(2.3) and (2.4) are as follows:
λ

A
= −1

2

√

∆2
A
+Ω2 , −λ

A
, ∆

A
= ∆+Kη

B
+ Jη

A
;

λ
B
= −1

2

√

∆2
B
+Ω2 , −λ

B
, ∆

B
= −∆+Kη

A
+ Jη

B
;

(4.1)and the free energy per one unit ell reads
F = Kη

A
η
B
+

J

2

(

η2
A
+ η2

B

)

− 1

2

(√

∆2
A
+Ω2 +

√

∆2
B
+Ω2

)

−

− θ ln
(

1 + e−β
√

∆2

A
+Ω2

)

− θ ln
(

1 + e−β
√

∆2

B
+Ω2

)

. (4.2)
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Yu.I. DublenychThe onditions of thermodynami equilibrium (3.4) yield the following equations:
2η

A
=

∆
A

√

∆2
A
+Ω2

tanh (−βλ
A
),

2η
B
=

∆
B

√

∆2
B
+Ω2

tanh (−βλ
B
).

(4.3)Like in the Ω = 0 ase, let us pass to dimensionless values, introduing one more notation:
ω =

Ω

K + J
. (4.4)Let us also introdue new variables:

x =
∆

A
+∆

B

2(K + J)
=

η
A
+ η

B

2
=

ξ

2
,

y =
∆

A
−∆

B

2(K + J)
= γ − a

η
A
− η

B

2
= γ − a

σ

2
.

(4.5)Then the system of equations (4.3) beomes:
2x = A(x + y)−A(−x+ y),

2(γ − y)

a
= A(x+ y) +A(−x+ y),

(4.6)where
A(z) =

z

2
√
z2 + ω2

tanh

(√
z2 + ω2

2t

)

, (4.7)and the expression for free energy takes the form:
f = x2 − (γ − y)2

a
− 1

2

(

√

(x+ y)2 + ω2 +
√

(x− y)2 + ω2
)

−

− t ln
(

1 + e−
√

(x+y)2+ω2/t
)

− t ln
(

1 + e−
√

(x−y)2+ω2/t
)

. (4.8)
4.2. Second-order phase transitionsLike in the Ω = 0 ase, the system of equations (4.6) has solutions of two types: 1) x = 0; thenthe �rst equation beomes an identity; and 2) x 6= 0, whih orresponds to the ferroeletri phase.Letting x tend to zero, we obtain from (4.6) the system of equations for hypersurfae γ = γ(ω, a, t)of the seond-order phase transitions:

B(ỹ)− 1 = 0,

γ = ỹ + aA(ỹ),
(4.9)where B(z) = dA(z)/dz, ỹ = lim

x→0
y. Having determined B(z), we an write the system in the form:

s2 − 2tω2s

ỹ2
√

ỹ2 + ω2
+

4t
(

ỹ2 + ω2
)

ỹ2
− 1 = 0,

γ = ỹ +
asỹ

2
√

ỹ2 + ω2
,

(4.10)where the following notation is introdued:
s = tanh

(

√

ỹ2 + ω2

2t

)

.
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Phase transitions in the Mitsui modelSetting γ equal to zero in equation (4.10), we obtain the expression for maximal temperature atwhih the phase transitions exist:
tmax =

ω

ln
1 + 2ω

1− 2ω

. (4.11)The logarithm in the latter expression makes sense if ω 6 1/2. Hene,
ωmax =

1

2
. (4.12)Di�erentiating equations (4.10) with respet to t, setting dγ/dt equal to zero, and eliminating

dỹ/dt, we obtain after simple transformations:
2(1 + a)

(

ỹ2 + ω2
)

(

ỹ2s
√

ỹ2 + ω2 − t
(

ỹ2 + ω2
)

)

= a
(

3tω2s
√

ỹ2 + ω2 − 2ỹ2s
√

ỹ2 + ω2 + 6tω2
(

ỹ2 + ω2
)

− ω2ỹ2s2
)

. (4.13)This equation together with equations (4.10) determines the point of maximum for the urve γ(t)of the seond-order phase transitions (at �xed ω and a).The equation for triritial point is similar to that in the Ω = 0 ase:
lim
x→0

dγ

dy
= 0. (4.14)From this equation we obtain:

(a+ 1)D (ỹ)− 3a [C (ỹ)]2 = 0, (4.15)where the following notations are introdued:
C(z) =

d2A(z)

dz2
, D(z) =

d3A(z)

dz3
. (4.16)The triritial point exists if both equation (4.14) and the following ondition are satis�ed:

lim
x→0

d2γ

dy2
6 0 (γ > 0). (4.17)This yields the equation

8 [D (ỹ)]
3 − 9C (ỹ)D (ỹ)E (ỹ) +

9

5
[C (ỹ)]

2
F (ỹ) = 0, (4.18)where

E(z) =
d4A(z)

dz4
, F (z) =

d5A(z)

dz5
. (4.19)If the seond-order phase transitions exist until t = 0, then it follows from equations (4.10),that for this zero-temperature transition γ is the following:

γ = (2ω)−2/3
(

a+ (2ω)2/3
)

ỹ, (4.20)where
ỹ =

1

2
(2ω)2/3

(

1− (2ω)2/3
)1/2

. (4.21)Rewriting equation (4.15) for zero temperature we obtain:
a =

5(2ω)2/3 − 4

4(2ω)2/3 − 5
. (4.22)If a is bigger than this value (at �xed ω), then the seond-order phase transitions begin at zerotemperature. It follows from equation (4.18) that equation (4.22) is satis�ed under ondition

ω > 2−5/2 ≈ 0.1768; (4.23)then a 6 1/2.
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4.3. First-order phase transitionsThe points of the �rst-order ferroeletri phase transitions an be alulated from the followingsystem of equations:
2x = A(x+ y)−A(−x+ y),

2(γ − y)

a
= A(x+ y) +A(−x+ y),

γ − y1
a

= A(y1),

f(x, y) = f(0, y1).

(4.24)Di�erentiating the last equation with respet to t and eliminating the derivatives, we obtain thefollowing equation:
x2 − (γ − y)2

a
−
(

x+
γ − y

a

)

(x+ y)2 + ω2

x+ y

−
(

x− γ − y

a

)

(x− y)2 + ω2

x− y
= − (γ − y1)

2

a
− 2(γ − y1)

a

y21 + ω2

y1
, (4.25)whih, together with the system of equations (4.24), yields the extremum of the urve γ(t) of the�rst-order phase transitions (at �xed ω). If t = 0, then the solutions of the system of equations (4.24)satisfy equation (4.25) as well. Hene, for the urve γ(t) of the �rst-order phase transitions we have

lim
t→0

dγ

dt
= 0. (4.26)Like in the Ω = 0 ase, we an obtain the system of equations for the triritial point setting

dγ/dy and d2γ/dy2 equal to zero:
a =

2−B− −B+

2B−B+ −B− −B+
,

C+ (1−B−)
3
+ C− (1−B+)

3
= 0,

2x = A+ −A− ,

2(γ − y)

a
= A+ +A− ,

(4.27)where A± = A(±x+ y), B± = B(±x+ y), and C± = C(±x+ y).Rewriting the system of equations (4.27) for zero temperature, we obtain:
z+

(

2
(

z2− + ω2
)3/2 − ω2

)3

(

z2− + ω2
)2 +

z−

(

2
(

z2+ + ω2
)3/2 − ω2

)3

(

z2+ + ω2
)2 = 0,

z+

2
√

z2+ + ω2
− z−

2
√

z2− + ω2
− z+ + z− = 0,

a =
4
(

z2+ + ω2
)

3

2

(

z2− + ω2
)

3

2 − ω4

ω2
(

ω2 −
(

z2+ + ω2
)

3

2 −
(

z2− + ω2
)

3

2

) + 1,

γ =
a

4





z+
√

z2+ + ω2
+

z−
√

z2− + ω2



+
1

2
(z+ + z−) ,

(4.28)
where z± = ±x + y. The nontrivial solution of this system at �xed ω 6 2−5/2 orresponds to thepoint where the urve of the �rst-order zero temperature phase transitions and the urve of theritial points end.
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Figure 11. Phase oexistene urves in (γ, t)-plane for several values of a (number near urves),urve of triritial points (hard line), urve of extrema for the �rst-order phase transitions (nothole), urve of maxima for the seond-order phase transitions, urve of branhpoints and urveof ritial points (dashed line). ω = 0.1.The phase oexistene urves in the (γ, t)-plane for several values of a as well as the urves oftriritial, ritial, and branhpoints at ω = 0.1 are depited in �gure 11. The latter two urvesdo not onverge at zero temperature and, hene, there is an interval of values of a where thephase diagrams look as shown in �gure 12 (b), i.e., they are omposed of the urve of seond-orderphase transitions and of the urve of �rst order phase transitions within ferroeletri phase. At
ω = 2−5/2 the urves of ritial points and branh- points onverge again at zero temperature, andif 2−5/2 < ω < 0.196815 these urves onverge at nonzero temperatures and pass into the urve

Figure 12. Fragments of the phase oexistene urves at ω = 0.1 (see �gure 11). a) a = 0.34 (ir-les are the extremum points), b) a = 0.662 (dashed line on the left is the urve of branhpointsand the line on the right is the urve of ritial points).
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Yu.I. Dublenychof triritial points (�gure 13). The latter is many-valued in low-temperature region. This leads tothe existene of a new type of phase diagram with two triritial points (�gure 14). If ω is biggerthan ≈ 0.196815, only the urve of triritial points remains.

Figure 13. Phase oexistene urves in (γ, t)-plane for several values of a (number near urves).
ω = 0.18. The heavy line is the line of triritial points. The urve of triritial points and theurve of branhpoints are indistinguishable on this sale.

Figure 14. Fragment of the phase oexistene urve at a = 0.4941, ω = 0.18 (see �gure 13).Dashed line is the urve of triritial points.
4.4. Regions of existence of the ferroelectric phaseIn �gures 15�20, the diagram of the regions where the ferroeletri phase exists is shown for
ω = 0.1. The diagram is omposed of the same urves as in the Ω = 0 ase as well as of thestraight line of seond-order zero-temperature phase transitions (4.20) and the urve of maximafor the �rst-order phase transitions (4.25) whih passes very losely to the urve of �rst-orderzero-temperature phase transitions.Like in the ω = 0 ase, two urves branh o� (in the same point) from the urve of triritialpoints: the urve of minima for the �rst-order phase transitions and the urve of maxima for theseond-order phase transitions. If ω < 0.196815, then the urve of triritial points bifurates inthe urve of ritial point and the urve of branhpoints whih, if ω > 2−5/2, on�ow again into theurve of triritial points. The urve of �rst-order zero-temperature phase transitions is omposedof two parts. The �rst one orresponds to the transitions from (or into) the ferroeletri phase.It begins at the origin of oordinates and ends at an extremity of the urve of the branhpoints(ω 6 2−5/2) or of the triritial points (ω > 2−5/2) (this extremity is an end point of the urve forthe seond-order zero-temperature phase transitions). The seond part exists only at ω < 2−5/2,orresponds to the phase transitions within the ferroeletri phase and ends at an extremity ofthe urve of the ritial points (see �gure 16). In the ω > 2−5/2 ase, the point where the urve
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Figure 15. Regions of existene of the ferroele-tri phase. ω = 0.1. Figure 16. Regions of existene of the ferro-eletri phase (fragment). ω = 0.1. (See also�gure 21).of triritial points and the urve of the �rst-order zero-temperature phase transitions meet isdetermined by equation (4.22); in this point the latter urve smoothly turns into the urve of theseond-order zero-temperature phase transitions.At nonzero ω new regions our. For instane, in region VIII there are one low-temperature�rst-order phase transition into the ferroeletri phase and one seond-order phase transition. Inregion IX three phase transitions exist: �rst-order one and two seond-order ones (the �rst-orderphase transition ours within the ferroeletri phase). In region X there are one �rst-order phasetransition within the ferroeletri phase and one seond-order phase transition.The urves of minima and maxima for the �rst-order phase transitions onverge in region VIII

Figure 17. Regions of existene of the ferroele-tri phase (fragment). ω = 0.1. The �lled irleindiates the point where the urve of tririti-al points forks into the urve of ritial pointsand the urve of branhpoints. Figure 18. Regions of existene of the ferroele-tri phase (fragment). ω = 0.1.
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Figure 19. Regions of existene of the ferroele-tri phase. ω = 0.18. Figure 20. Regions of existene of the ferroele-tri phase (fragment). ω = 0.18. Dotted line isthe upper part of the urve of triritial points.(a ≈ 0.3433, γ ≈ 0.3255, t ≈ 0.0484) utting o� a long spit from it (�gure 18). This is region XIwith two low-temperature �rst-order phase transitions and one seond-order phase transition.Further, the urve of maxima for the �rst-order phase transitions uts o� narrow strips fromregions IX, V, and VII. These strips are regions XII, XIII, and XIV, respetively, where, in addition,two lose low-temperature �rst-order phase transitions appear. In �gure 17 these regions are notseen beause they are too narrow.As one an see, at a su�iently small value of ω the diagram is riher than at ω = 0 but ifthe value of ω exeeds some number, the regions of the diagram disappear one after another andthe diagram beomes poorer. Region III disappears �rstly. In �gure 17 it looks like a short urvesegment at the beginning in the branhpoint. It is region XII that disappears the next, and, at
ω = 2−5/2, region X beomes a point.
5. ConclusionsHene, we performed a omplete analysis of phase transitions in the Mitsui model (withoutand with transverse �eld Ω) in the mean �eld approximation. Some results onerning the phasediagram of the Mitsui model were obtained earlier [5, 12, 13℄ but they were inomplete (for the
Ω = 0 ase) or partial (for the Ω 6= 0 ase).In the Ω = 0 ase, we derived an analytial expression for triritial temperature and theondition of its existene. In this ase, there are seven regions in the plane (a, γ) that orrespondto seven di�erent types of behavior of order parameters. At su�iently small but nonzero Ω theirnumber doubles. With Ω inreasing these regions hange their form and shift in the (a, γ)-plane.Starting with ertain value of Ω the number of regions derease and at ω > 1/2 only the regionwithout phase transitions remains.At nonzero Ω, seond-order phase transitions are possible at zero temperature, whih is notpossible at Ω = 0. The maximal number of phase transitions is four and �ve at Ω = 0 and at
Ω 6= 0, respetively.
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Figure 21. Ferroeletri and antiferroeletri order parameters for the regions of existene offerroeletri phase. ω = 0.1. Only thermodynamially stable states are depited. From top tobottom: VIII) a = 0.65, γ = 0.4035; IX) a = 0.66, γ = 0.4065; X) a = 0.667, γ = 0.4085; andXIV) a = 0.2, γ = 0.2912765. The �rst-order phase transition within the ferroeletri phase isshown by �lled irles.
AcknowledgementsThe author is grateful to Prof. I. Stasyuk, Prof. R. Levitskii, Dr. T. Verkholyak and Dr. O. Danylivfor useful disussions.

23603-19



Yu.I. Dublenych

References1. Mitsui T., Phys. Rev., 1958, 111, 1529; doi:10.1103/PhysRev.111.1259.2. �ek² B., Shukla G.G., Blin R., Phys. Rev. B, 1971, 3, 2306; doi:10.1103/PhysRevB.3.2306.3. Levitskii R.R., Zahek I.R., Verkholyak T.M., and Moina A.P., Phys. Rev. B, 2003, 67, 174112;doi:10.1103/PhysRevB.67.174112.4. Levitskii R.R., Andrusyk A.Ya., Zahek I.R., Condens. Matter Phys., 2010, 13, 13705.5. Levitskii R.R., Zahek I.R., Andrusyk A.Ya., J. Phys. Stud., 2010, 14, 3701.6. Stasyuk I.V., Velyhko O.V., Ferroeletris, 2005, 316, 51l; doi:10.1080/00150190590963138.7. Levitskii R.R., Andrusyk A.Ya., Preprint of the Institute for Condensed Matter Physis, ICMP�11�03U, Lviv, 2011 (in Ukrainian).8. Levitskii R.R., Andrusyk A.Ya., Preprint of the Institute for Condensed Matter Physis, ICMP�05�13U, Lviv, 2005 (in Ukrainian).9. Levitskii R.R., Moina A.P., Andrusyk A.Ya., Slivka A.G., Kedyulih V.M., J. Phys. Stud., 2008, 12,2603.10. Danyliv O.D., Physia C, 1998, 309, 303; doi:10.1016/S0921-4534(98)00597-8.11. Dublenyh Yu.I., Preprint of the Institute for Condensed Matter Physis, ICMP�01�01U, Lviv, 2001(in Ukrainian).12. Vaks V.G., Introdution to the Mirosopi Theory of Ferroeletris. Nauka, Mosow, 1973 (in Rus-sian).13. Levitskii R.R., Verkholyak T.M., Kutnii I.V., Hil I.G., Preprint of the Institute for Condensed MatterPhysis, ICMP�01�11U, Lviv, 2001 (in Ukrainian); Preprint arXiv:ond-mat/0106351, 2001.
Фазовi переходи в моделi Мiцуi

Ю.I. Дубленич

Iнститут фiзики конденсованих систем НАН України, вул. I. Свєнцiцького, 1, 79011 Львiв, Україна

В роботi в наближеннi середнього поля дослiджено фазовi переходи в моделi Мiцуi без поздовжньо-
го поля, проте з поперечним полем. Встановлено взаємооднозначну залежнiсть мiж такою модел-
лю та двопiдґратковою моделлю типу Iзiнга з поздовжнiм i поперечним полями. Побудовано фазовi
дiаграми та дiаграми областей iснування сегнетофази. Для випадку Ω = 0 (Ω – поперечне поле)
одержано простий аналiтичний вираз для трикритичної температури й умову iснування трикрити-
чної точки. Для Ω 6= 0 записано системи рiвнянь для трикритичної точки й умови її iснування.

Ключовi слова: фазовий перехiд, сегнетофаза, модель Мiцуi, трикритична точка
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