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Abstract: A renormalization scheme which relies on energy-momentum and angular

momentum balance equations is applied to the derivation of effective equation of motion

for a massless point-like charge. Unlike the massive case, the rates of radiated energy-

momentum and angular momentum tend to infinity whenever the source is accelerated. The

external electromagnetic fields which do not change the velocity of the particle admit only

its presence within the interaction area. The effective equation of motion is the equation on

eigenvalues and eigenvectors of the electromagnetic tensor. The massless charges move along

base line determined by the eigenvectors when the effective equation of motion possesses uniform

solutions. It is interesting that the same solution arises in Rylov’s model of magnetosphere of

a rapidly rotating neutron star (pulsar).
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1. Introduction

In the paper [1] massless charged particles of spin one or larger are excluded in quantum

electrodynamics by the argument that masslessness, Lorentz invariance, and electromag-

netic coupling, are mutually incompatible. Roughly speaking, the interaction with an

external electromagnetic field drastically changes incoming massless particle state, so

that outgoing state does not describe a particle without rest mass. Further [2] the ex-

istence of massless charges is forbidden in general by the condition that the energy of

such particles in the electromagnetic field has no lower bound. In the present paper we

consider the problem of reality of a massless charge within the realm of classical field
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theory.

A recent paper by Kazinski and Sharapov [3] considers the problem of effective equa-

tions of motions for a massless charged particle under the influence of its own electro-

magnetic field as well as an external one. The authors apply regularization procedure

developed in their previous paper [4] where the problem of radiation back reaction in

classical electrodynamics of a point massive charge arbitrarily moving in flat space-time

of any dimensions is studied. The 5-th order differential equation is derived [3, eq.(32)]

which governs the dynamics of the photon-like charge in four dimensions. The reduction

procedure is developed which allows to select the solutions of true physical meaning.

Since the concept of a ”zero-mass interacting particle” is quite different in quantum

and classical theories, it would be more appropriate to obtain the equation of motion as

a limiting case of the well-known Lorentz-Dirac equation [5]. (It defines the motion of

point-like charge with rest mass m under the influence of an external force as well as

its own electromagnetic field, for a modern review see [6, 7, 8].) In [9] the motion of

massive charged particles in a very strong electromagnetic field is studied. The guiding

center approximation [10] is used in the Lorentz-Dirac equation. In this approximation

the particle motion is described as a combination of forward and oscillatory motions (the

field changes are small during a gyration period). If the gradient of the field potential is

much larger than the rest mass of the particle, the strong radiation damping suppresses

the particle gyration. It is shown [9] that the particle velocity is directed along one of the

eigenvectors of the (external) electromagnetic tensor if m → 0 in the rewritten Lorentz-

Dirac equation. The equation on eigenvalues and eigenvectors of the electromagnetic

tensor governs the motion of charges in the massless approximation.

According to [9], the effective equation of motion for this charge does not contain

derivatives higher than 1. This conclusion is in contradiction with that of Ref.[3] where

the radiation back reaction is finite and the 5-th order differential equation determines

the evolution of photon-like charge.

In general, the regularization procedure can be performed in two quite different ways:

(i) one when Green’s functions are used in variational equations of motion; (ii) the other

when wave solutions are substituted for field variables in Noether conservation laws (e.g.,

in energy-momentum carried by electromagnetic field). In [3, 4] the first way is realized

which is a combination of some heuristic assumptions and calculations by methods of

functional analysis. The second way is the integration of the Maxwell energy-momentum

density over a space-like surface in Minkowski space.

Teitelboim in [11] classifies the terms which arise due to integration (see figure 1).

Within regularization procedure the bound terms are coupled with energy-momentum

and angular momentum of ”bare” sources, so that already renormalized characteristics

Gα
part of charged particles are proclaimed to be finite. Noether quantities which are

properly conserved become:

Gα = Gα
part +Gα

rad. (1)

Particle’s equations of motion arise from analysis of differential consequences of the con-

served quantities (1). i.e. from the balance equations Ġα = 0.
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Fig. 1 The bound term Gα
bnd and the radiative term Gα

rad constitute Noether quantity Gα
em

carried by electromagnetic field. The former diverges while the latter is finite. Bound component
depends on instant characteristics of charged particles while the radiative one is accumulated
with time. The form of the bound term heavily depends on choosing of an integration surface
Σ while the radiative term does not depend on Σ.

In the present paper we apply the regularization procedure based on Noether conser-

vation laws to the problem of radiation reaction for a massless charge in response to the

electromagnetic field.

The paper is organized as follows. In Section 2 we state our notation. In Section 3

we discuss some peculiarities of electromagnetic field generated by a photon-like charge.

Contrary to the massive case, the field strengths contain the far terms only (these scaled

as r−1 where r is the retarded distance [6, 7]). The term which is scaled as r−2 ex-

hausts corresponding radiative stress-energy tensor. Volume integration of the Maxwell

energy-momentum tensor density gives the flux of radiative momentum (see Section 4).

In Section 5 we present our main result — the effective equations of motion for a massless

charged particle under the influence of an external force. Since the radiation back reac-

tion diverges when the particle is accelerated, the external device should not change its

velocity. Few electromagnetic fields are briefly described in Appendix A which admit the

photon-like charges within the interaction area. Finally, in Section 6 a short comment is

made about their possible presence in the magnetosphere of a pulsar [12, 13].

2. General Setting

Let M 4 be Minkowski space with coordinates xμ and metric tensor ημν = diag(−1, 1, 1, 1).
We use Heaviside-Lorentz system of units with the velocity of light c = 1. Summation

over repeated indices is understood throughout the paper; Greek indices run from 0 to 3,

and Latin indices from 1 to 3.

We consider a massless point-like particle which carries an electric charge q and moves

on a lightlike world line γ : R → M 4 described by functions zμ(τ), in which τ is an

arbitrary parameter. A tangent vector to each point zμ(τ) ∈ γ lies on the future light

cone with vertex at this point:

ż2 = 0. (2)

(We use an overdot on z to indicate differentiation with respect to the evolution parameter

τ .) We let uα(τ) = dzα/dτ be the 4-velocity, and aα(τ) = duα/dτ is the 4-acceleration.
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Initially we take the world line to be arbitrary; our main goal is to find the particle’s

equation of motion.

Following [3], we deal with an obvious generalization of the standard variational prin-

ciple for massive charge

I = Iparticle + Iint + Ifield , (3)

with

Ifield = − 1

16π

∫
d4xfμνfμν Iint =

∫
d4xAμj

μ. (4)

The particle part of variational principle should be consistent with the field and the

interaction terms. So, if we require that the renormalized mass be zero, a nonzero bare

mass is necessary to absorb a divergent self-energy. Hence the world line of the bare

particle should be assumed time-like rather than lightlike. We may also require that

the world line be lightlike before renormalization as well as after this procedure. To

solve the dilemma we establish the structure of the bound and radiative terms (see figure

1) of energy-momentum and angular momentum carried by electromagnetic field of the

photon-like charge.

Having variated (4) with respect to potential Aμ, we obtain the Maxwell field equa-

tions [3, eq.(14)]

�Aμ(x) = −4πjμ(x) (5)

where current density is zero everywhere, except at the particle’s position where it is

infinite

jμ(x) = q

∫
dτuμ(τ)δ[x− z(τ)] (6)

and � := ηαβ∂α∂β is the wave operator.

The components of the momentum 4-vector carried by the electromagnetic field are

[6, 7]

pνem(τ) =

∫
Σ

dσμT
μν (7)

where dσμ is the outward-directed surface element on an arbitrary space-like hypersurface

Σ. The angular momentum tensor of the electromagnetic field is written as [6]

Mμν
em(τ) =

∫
Σ

dσα (x
μT αν − xνT αμ) (8)

where

T μν =
1

4π

(
fμλf ν

λ − 1/4ημνfκλfκλ
)

(9)

is the electromagnetic field’s stress-energy tensor.

3. Electromagnetic Field of a Photon-like Charge

Let the past light cone with vertex at an observation point x is punctured by the particle’s

world line γ at point z(s). The retarded Green function associated with the d’Alembert
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operator � and the charge-current density (6) is valuable only. The components of the

Liénard-Wiechert potential Â = Aαdx
α are

Aα = q
uα(s)

r
(10)

where r = −(R · u) is the retarded distance [6, 7]; Rμ = xμ − zμ(s) is the null vector

pointing from z(s) ∈ γ to x. The 4-potential is not defined at points on the ray in the

direction of momentary 4-velocity u(s) by reason of the isotropy condition (2).

Straightforward computation reveals that �A = 0 everywhere, except at the particle’s

position. Indeed, suppose that the observation point P with coordinates x is moved to

P ′(x + δx). This induces a change in the intersection point z(s). The new intersection

point is then z(s+ δs); points P ′(x+ δx) and z(s+ δs) are still related by null 4-vector

Rμ = xμ + δxμ − zμ(s + δs). Expanding the relation R2 = 0 to the first order in the

displacements, we obtain the differentiation rule

∂s

∂xα
= −kα kα =

xα − zα(s)

r
. (11)

Differentiation of the retarded distance gives

∂r

∂xα
= −uα + rakkα (12)

where ak := (a · k) is the component of the acceleration a(s) in the direction of k. We

also need the equality

∂kα
∂xβ

= r−1 (uαkβ + uβkα + ηαβ)− akkαkβ. (13)

Finally we act on (10) by the wave operator

� = ηαβ
∂

∂xα

∂

∂xβ
(14)

Using (11), (12) and (13), after some algebra we obtain zero.

Because of isotropy condition (u · u) = 0 the rules (12) and (13) are different from

their counterparts [7, eqs.(4.7),(4.9)] for massive particle.

Unlike the massive case, the photon-like charge generates the far electromagnetic field

f̂ = dÂ:

f̂ = q
a ∧ k + aku ∧ k

r
(15)

Here the dot means the scalar product of two 4-vectors and the symbol ∧ denotes the

wedge product. Because of isotropy condition the retarded distance vanishes on the ray

in the direction of particle’s 4-velocity taken at the instant of emission. The field diverges

at all the points of this ray with vertex at the point of emission.

To calculate the stress-energy tensor of the electromagnetic field we substitute the

components (15) into expression (9). Contrary to the massive case [7, eqs.(5.3)-(5.5)],
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the ”photon-like” Maxwell energy-momentum density contains the radiative component

only:

4πT αβ =
q2

r2
a2kαkβ. (16)

Hence the divergent self-energy which is due to volume integration of the bound part of

the electromagnetic field’s stress-energy tensor [11] does not arise. Unlike the massive

case, the photon-like charge does not possess an electromagnetic ”cloud” permanently

attached to it. The renormalization procedure is not necessary because the photon-like

source is not ”dressed”.

As a consequence, the Brink-Di Vecchia-Howe action term [14, eq.(2)]:

Iparticle =
1

2

∫
dτe(τ)ż2 (17)

is consistent with the field an interaction terms (4). Variation of (17) with respect to

Lagrange multiplier e(τ) �= 0 yields the isotropy condition (2). The particle part (17) of

the total action (3) describes already renormalized massless charge.

The action integral (3) being the sum of (4) and (17) is invariant under arbitrary time

and space translations as well as space and mixed spacetime rotations. The Poincaré

invariance of (3) assures us, via Noether’s theorem, of ten conservation laws, i.e. those

quantities which do not change with time.

Action integral (3) with Ipart in form of (17) is conformally invariant. This symmetry

property is analyzed in Appendix B. It is worth noting that the conformal invariance yields

conservation laws, which are functions of energy-momentum and angular momentum

conserved quantities.

4. Energy-momentum and Angular Momentum Carried by the

Electromagnetic Field

Volume integration of the radiative energy-momentum density (16) over a hyperplane

Σt = {x ∈M 4 : x
0 = t} gives the amount of radiated energy-momentum at fixed instant

t. An appropriate coordinate system is a very important for the integration. We introduce

the set of curvilinear coordinates for flat space-time M 4 involving the observation time t

and the retarded time s:

xα = zα(s) + (t− s)Ωα
α′nα′

. (18)

The null vector n := (1,n) has the components (1, cosϕ sinϑ, sinϕ sinϑ, cosϑ); ϑ and ϕ

are two polar angles. Matrix space-time components are Ω0μ = Ωμ0 = δμ0; its space com-

ponents Ωij constitute the orthogonal matrix which rotates space axes of the laboratory

Lorentz frame until new z-axis is directed along three-vector v. (Particle’s 4-velocity has

the form (1, vi), |v| = 1, if parametrization of the world line γ is provided by a disjoint
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Fig. 2 In the particle’s momentarily comoving frame the massless charge is placed at the
coordinate origin; its 4-velocity is (1, 0, 0, 1). The point C ∈ S(0, t − s) is linked to the
coordinate origin by a null ray characterized by the angles (ϕ, ϑ). (The null vector n =
(1, cosϕ sinϑ, sinϕ sinϑ, cosϑ) defines this direction.) For a given point C with coordinates

xα′
= (t− s)nα′

the retarded distance is x0′ − x3′ = (t− s)(1− cosϑ).

union of hyperplanes Σt.) Orthogonal matrix

ω =

⎛
⎜⎜⎜⎜⎝

cosϕv − sinϕv 0

sinϕv cosϕv 0

0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

cosϑv 0 sinϑv

0 1 0

− sinϑv 0 cosϑv

⎞
⎟⎟⎟⎟⎠ (19)

where vi = (cosϕv sinϑv, sinϕv sinϑv, cosϑv) determines the rotation. In terms of curvi-

linear coordinates (t, s, ϑ, ϕ) the retarded distance is as follows:

r = (t− s)(1− cosϑ). (20)

The situation is pictured in figure 2.

So, we construct the global coordinate system centred on the world line of the massless

particle. Minkowski space M 4 becomes a disjoint union of hyperplanes Σt = {x ∈ M 4 :

x0 = t}. A surface Σt is a disjoint union of spherical wave fronts

S(z(s), t− s) = {x ∈M 4 : (x
0 − s)2 =

∑
i

(xi − zi(s))2, x0 = t} (21)

which are the intersections of the future light cones with vertices at points z(s) ∈ γ and

hyperplane Σt. The point C ∈ S(z(s), t− s) is linked to the point z(s) ∈ γ by a null ray

characterized by the angles (ϕ, ϑ) specifying its direction on the cone.

Now we calculate the electromagnetic field momentum

pμem =

∫
Σt

dσ0T
0μ (22)
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where an integration hypersurface Σt = {x ∈M 4 : x
0 = t} is a surface of constant t.

The surface element is given by dσ0 =
√−gdsdϑdφ where

√−g = (t− s)2 sinϑ(1− cosϑ) (23)

is the determinant of metric tensor of Minkowski space viewed in curvilinear coordinates

(18). In these coordinates the components of the electromagnetic field’s stress-energy

tensor (16) have the form:

4πT 00 = q2
a2(s)

(t− s)2(1− cosϑ)4
(24)

4πT 0i = q2
a2(s)ωii′n

i′

(t− s)2(1− cosϑ)4
. (25)

The angular integration results the radiated energy-momentum:

p0em =
q2

2
I0

t∫
−∞

dsa2(s) piem =
q2

2
I1

t∫
−∞

dsa2(s)vi(s) (26)

where factors In diverge:

I0 :=

π∫
0

dϑ
sinϑ

(1− cosϑ)3
= −1

8
+ lim

ϑ→0

1

2(1− cosϑ)2
(27)

I1 :=

π∫
0

dϑ
sinϑ cosϑ

(1− cosϑ)3
=

3

8
− lim

ϑ→0

[
1

1− cosϑ
− 1

2(1− cosϑ)2

]
. (28)

Similarly, the computation of the electromagnetic field angular momentum which

flows across the hyperplane Σt gives rise to the divergent quantities:

M0i
em =

q2

2
I1

t∫
−∞

dsa2(s)svi(s)− q2

2
I0

t∫
−∞

dsa2(s)zi(s) (29)

M ij
em =

q2

2
I1

t∫
−∞

dsa2(s)
[
zi(s)vj(s)− zj(s)vi(s)

]
. (30)

The energy-momentum (26) and the angular momentum (29) and (30) of electromag-

netic field generated by the accelerated photon-like charge tend to infinity in the direction

of particle’s velocity at the instant of emission. The divergent terms are not bound terms

which should be absorbed by corresponding particle characteristics within the renormal-

ization procedure. Indeed, they do not depend on the distance from the particle’s world

line. Secondly, the energy-momentum and the angular momentum accumulate with time

at the observation hyperplane Σt (see figure 3). Hence the divergent Noether quantities

cannot be referred to an electromagnetic ”cloud” which is permanently attached to the

charge and is carried along with it.
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Fig. 3 The bold circle pictures the trajectory of a photon-like charge. The others are spher-
ical wave fronts (21) viewed in the observation hyperplane Σt = {x ∈ M 4 : x0 = t}. The
circling photon-like charge radiates infinite rates of energy-momentum and angular momentum
in the direction of its velocity v at the instant of emission. The energy-momentum and angular
momentum carried by electromagnetic field of accelerated charge tend to infinity on the spiral
curve.

Changes in energy-momentum and angular momentum radiated by accelerated charge

should be balanced by changes in already renormalized 4-momentum and angular mo-

mentum of the particle2. But the accelerated photon-like charge emits infinite amounts

of radiation (see figure 3). To change the velocity of the massless charge the energy is

necessary which is too large to be observed. Does it mean that there is no photon-like

charges within an interaction area? In the Appendix A we sketch several electromagnetic

fields which do not change the velocity of the massless charge.

5. Massless Charge within an Interaction Area

According to expression (15), non-accelerated photon-like charge does not generate the

electromagnetic field. The evolution of the particle beyond an interaction area is deter-

mined by the Brink-Di Vecchia-Howe Lagrangian [14]

L =
1

2
e(τ)ż2. (31)

The particle’s 4-momentum pμpart = e(τ)żμ does not change with time:

ṗμpart = ė(τ)żμ (32)

= 0.

2 If the massive charge coupled with electromagnetic field is considered [15, 16], the balance equations

yield the Lorentz-Dirac equation.
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Since żμ �= 0, the Lagrange multiplier e does not depend on τ . We deal with a photon-

like particle moving in the ż-direction with frequency ω0 = e0ż
0, such that its energy-

momentum 4-vector can be written pμpart = (ω0, ω0k), |k| = 1.

Further in this paper we shall use a disjoint union of hyperplanes Σt = {x ∈M 4 : x
0 =

t} for parametrization of the particle world line γ. We define vα(t) = dzα(t)/dt as the

4-velocity; 4-acceleration aα(t) = dvα(t)/dt looks as (0, v̇i) in this parametrization. Since

γ is degenerate (the condition a2 = 0 at all points z ∈ γ is fulfilled), the 4-acceleration

vanishes.

When considering the system under the influence of an external device the change in

particle’s 4-momentum is balanced by an external force Fext:

ṗμpart(t) = ė(t)vμ (33)

= Fext.

(The 4-vector Fext should be orthogonal to the 4-velocity.) This effective equation of

motion is supplemented with the condition of absence of radiative damping. In other

words, the external device admits a massless charge if and only if the components of null

vector of 4-velocity do not change with time despite the influence of the external field.

The conclusion is similar to that of Refs.[1, 2].

When the photon-like charged particle moves in the external electromagnetic field F̂ ,

the Lorentz force balances the change in its 4-momentum:

ėvμ = qF μ
νv

ν . (34)

It is convenient to decompose F̂ into an electric field E and a magnetic field B. Equation

(34) is then rewritten as

ė = q(E · v) (35)

ėv = qE+ q[v ×B]. (36)

We have the following 4-th order algebraic equation on eigenvalues ė [10]:

ė4 + ė2q2
(
B2 − E2

)− q4(B · E)2 = 0. (37)

In general, it possesses two real solutions [9, 10]

ė± = ±q
√

(E2 −B2 + μ) /2 μ =

√
(B2 − E2)2 + 4(B · E)2. (38)

The field admits a photon-like charge if and only if corresponding eigenvectors

v± =
[E×B]± (λE+ κνB)

σ
κ = sgn[(B · E)] (39)

are of constant values. Here

λ =
√

(E2 −B2 + μ) /2 ν =
√
(B2 − E2 + μ) /2 σ =

(
E2 +B2 + μ

)
/2. (40)
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The expression (39) is obtained in [13, eq.(2.3)] where the model of magnetosphere

of a rapidly rotating neutron star (pulsar) is elaborated. It defines the velocity of the

massless charged particles which constitute the so-called ”dynamical phase” of the gas of

ultrarelativistic electrons and positrons moving in a very strong electromagnetic field of

the pulsar. In Rylov’s model [12, 13] the massless charges as a limiting case of massive

ones are considered. The reason is that the gradient of star’s potential is much larger

than the particle’s rest energy mec
2.

6. Conclusions

Our consideration is founded on the Maxwell equations with point-like source which

governs the propagation of the electromagnetic field produced by a photon-like charge.

Unlike the massive case, it generates the far electromagnetic field which does not yield to

divergent Coulomb-like self-energy. Hence the world line is null before renormalization

as well as after this procedure. We choose Brink-Di Vecchia-Howe action [14] for a bare

particle moving on the world line which is proclaimed then to be lightlike.

A surprising feature of the study of the radiation back reaction in dynamics of the

photon-like charge is that the Larmor term diverges whenever the charge is accelerated.

Since the emitted radiation detaches itself from the charge and leads an independent

existence, it cannot be absorbed within a renormalization procedure.

Inspection of the energy-momentum and angular momentum carried by the electro-

magnetic field of a photon-like charge reveals the reason why it is not yet detected (if it

exists). Noninteracting massless charges do manifest themselves in no way. Any exter-

nal electromagnetic field (including that generated by a detecting device) will attempt

to change the velocity of the charged particle. Whenever the effort will be successful,

the radiation reaction will increase extremely. In general, this circumstance forbids the

presence of the photon-like charges within the interaction area.

Nevertheless, there exists the electromagnetic fields which do not change the velocities

of the massless charged particles. For example, superposition of plane waves propagating

along some base line admits the massless charges moving analogously. (But any distur-

bance annuls such a ”loyalty”.) It is worth noting that the quantum mechanical results

[1, 2] are in favour the conception that the external field distinguishes the directions of

non-accelerating motions of photon-like charges (if they exist).

To survive photon-like charges need an extremely strong field of specific configura-

tion, as that of the rotating neutron star (pulsar). In [12, 13] the model of the pulsar

magnetosphere is elaborated. It involves the so-called dynamical phase which consists of

the massless charged particles moving with speed of light along some base line determined

by the electromagnetic field of the star3. It is worth noting that the expression for

the particles’ velocity [13, eq.(2.2)] coincides with the solution (39) of the ”massless”

equations of motion derived in the present paper.

3 The massless approximation is meant where the gradient of star’s potential is much larger than elec-

tron’s rest energy.
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Equation (34) on eigenvalues and eigenvectors of the electromagnetic tensor governs

the motion of charges in zero-mass approximation. This conclusion is in contradiction

with that of Ref.[3] where the radiation back reaction is finite and the 5-th order dif-

ferential equation determines the evolution of photon-like charge. The reason is that

regularization approach to the radiation back reaction (smoothing the behaviour of the

Lorentz force in the immediate vicinity of the particle’s world line), employed by Kazinski

and Sharapov, is not valid in the case of the photon-like charged particle and its field.

Indeed, the field diverges not only at point of world line but at all points of the ray in

the direction of particle’s 4-velocity taken at the instant of emission. The ray singular-

ity is stronger that δ-like singularity of Green’s function involved in [3] in the self-force

expression. Hence integration over world line does not yield a finite part of the self force.

Conformal invariance of our particle plus (external) field system reinforce our con-

viction that the back-reaction force vanishes. Indeed, the appropriate renormalization

procedure should preserve this symmetry property while the Brink-Di Vecchia-Howe ac-

tion term does not contain a parameter to be renormalized. Therefore, the photon-like

charge must not radiate.
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Appendix A

Plane wave

In case of a plane wave moving in the positive z−direction, the electric and magnetic

fields are related to each other as follows:

Ex = By Ey = −Bx Ez = Bz = 0. (A.1)

Since B2 − E2 as well as (B · E) vanish, the eigenvalues’ equation (37) get simplified:

ė4 = 0. (A.2)

The eigenvector corresponding to the fourthly degenerate eigenvalue ė = 0 is defined by

[9]

v =
[E×B]

B2
= nz. (A.3)

Hence the plane wave admits massless charges moving along z-line in the positive direc-

tion. Their frequencies do not change with time.

Uniform static electric field

When B = 0 the equation (37) becomes

ė4 − ė2q2E2 = 0. (A.4)
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If ė = 0 then E vanishes (see equations (35) and (36)) and the charge’s velocity is

completely arbitrary (free particle).

The others are ė+ = q|E| and ė− = −q|E|. The photon-like charge moves in the

direction nE = E/|E| or in the opposite one. Its 4-momentum

p0part = ω0 ± q|E|t pipart = ±ω0n
i
E + qEit (A.5)

heavily depends on the time.

Constant magnetic field

When considering the magnetic field of constant value, the equation (37) looks as

follows

ė4 + ė2q2B2 = 0. (A.6)

The only real solution is the doubly degenerate trivial eigenvalue. Since [v × B] = 0,

massless charges move along the base line determined by B. The magnetic field does not

change their 4-momenta.

Orthogonal constant electric and magnetic fields

Since (B · E) = 0, the basic equation (37) becomes

ė4 + ė2q2
(
B2 − E2

)
= 0. (A.7)

Two unit three-vectors v which satisfy the force-free approximation [13, eq.(1.5)]

E+ [v ×B] = 0 (A.8)

correspond to the doubly degenerate eigenvalue ė = 0. After some algebra we arrive at

v± =
[E×B]±B

√
B2 − E2

B2
. (A.9)

The condition (B · E) = 0 supplemented with the inequality |E| < |B| defines the

capture surface in Rylov’s model of pulsar magnetosphere [13]. Massive particles (elec-

trons and positrons) are captured in the immediate vicinity of this surface. Their kinetic

energies vanish; they constitute the so-called statical phase. Nevertheless, the photon-like

charges move across the capture surface with the velocity (A.9). The region of pulsar

magnetosphere where there are the dynamical phase and the statical phase is called leaky

capture region in Refs.[12, 13].

If |E| > |B|, then two eigenvalues ė = ±√E2 −B2 are valuable. Corresponding

eigenvectors are

v± =
[E×B]± E

√
E2 −B2

E2
. (A.10)

Having integrated ė over time variable, we are sure that the 4-momenta of photon-like

charges moving with the velocities (A.10) depend on time t:

pμpart =
[
ω0 ±

√
E2 −B2t

]
v±. (A.11)
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Appendix B. Conformal invariance of the effective equation of motion

According to [17, 18], conformal group C(1, 3) consists of Poincaré transformations (time

and space translations, space and mixed space-time rotations), dilatations

x
′μ = eθxμ (B.1)

and conformal transformations

x
′μ =

xμ − bμ(x · x)
D

, D = 1− 2(x · b) + (x · x)(b · b). (B.2)

(The scalar θ and 4-vector b are group parameters.)

The components of electromagnetic field are transformed as follows:

Fαβ = e2θF ′αβ, Fαβ = F ′μνΩ
μ
αΩ

ν
β (B.3)

where matrix

Ωμ
α :=

∂x
′μ

∂xα
= D−1λμ

β(x
′′)λβ

α(x), x′′ =
x

(x · x) − b, λβ
α(x) = δβα − 2xβxα

(x · x) (B.4)

satisfies the condition

ημνΩ
μ
αΩ

ν
β = D−2ηαβ. (B.5)

Since

ż
′μ = eθżμ ż

′μ = Ωμ
αż

α (B.6)

the Lagrange multiplier e(τ) involved in the Brink-Di Vecchia-Howe action term (17)

transforms as

e(τ) = e2θe′(τ), e(τ) = D−2e′(τ). (B.7)

Direct calculation shows, that the effective equation of motion (34) is invariant with

respect to dilatation (B.1) and conformal transformation (B.2).
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