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On the critical behaviour of random anisotropy magnets
Maxym Dudka, Reinhard Folk, Yurij Holovatch

Abstract. An influence of a local anisotropy of random orientation on
a ferromagnetic phase transition is studied. To this end a model of a
random anisotropy magnet is analysed by means of a field theoretical
renormalization group approach. The one-loop result of Aharony about
absence of a 2nd order phase transition for isotropic distribution of ran-
dom anisotropy axis at space dimension d < 4 is corroborated.
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1. Introduction

Even a weak structural disorder may have a crucial influence on the crit-
ical behaviour of different materials, in particular magnets. It can alter
not only non-universal thermodynamic characteristics of a magnet but
lead to a change of the universality class or modify the low-temperature
phase behaviour leading to e.g. spin-glass phase. Here, one should dis-
criminate between random site, random-field and random anisotropy
magnets. A weak quenched disorder preserves 2nd order phase transition
in three dimensional (d = 3) random site magnets [1] but can destroy
this transition in random field systems [2] for d < 4. Situation is not so
clear for the random-anisotropy magnets.

Typical examples of random-anisotropy magnets are amorphous rare-
earth — transition metal alloys [3]. Some of these systems order magneti-
cally and to describe this ordering it has been proposed [4] to consider a
regular lattice of magnetic ions, each of them being a subject to a local
anisotropy field of random orientation. The Hamiltonian of a random
anisotropy model (RAM) reads [4]:

= Jr,r/SrSr — Do Z(iRgR)2; (1)

R,R/ R

where §R is an m-component vector on a lattice site R, Jr g’ is an
exchange interaction, Dy is an anisotropy strength, and xgr is an unit
vector pointing in the local (quenched) random direction of an uniaxial
anisotropy. Note that randomness is present in the Hamiltonian (1) only
for m > 1: at m = 1 the second term equals constant and leads to a shift
in free energy of resulting regular (Ising) model.

The model was investigated by variety of techniques including mean—
field theory [5], computer simulations [6], 1/m—expansion [7], renormal-
ization group e—expansion [8-10]. Limiting case of an infinite anisotropy
was a subject of a detailed study as well [12,13]. However the question
about the nature of low—temperature phase in RAM is not completely
clear up to now. Among possible low—temperature phases there are dis-
cussed ferromagnetic ordering [5,6], spin—glass phase [6,7], quasi long—
range ordering [14].

Note that nature of ordering is connected with a distribution of a
random variables Zg in (1). For the isotropic distribution arguments
similar to those applied by Imry and Ma [15] for a random-field Ising
model bring about absence of a the ferromagnetic order for space di-
mensions d < 4 [10,11]. Whereas anisotropic distributions may lead to a
ferromagnetic order [16].
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To get a correct description of critical behaviour it is standard now to
rely on a renormalization group (RG) results. Application of Wilson RG
technique to RAM with the isotropic distribution of a local anisotropy
axis lead Aharony [8] to conjecture about possible ”runaway” solutions of
recursion equations. Such behaviour was interpreted as a smeared tran-
sition. However this result was obtained in the first order of e—expansion
and remains to be confirmed within a more refined analysis. Here, we
apply a field theoretical RG technique and study RG equations in two
loop approximation in order to check the conjecture of Aharony [8]. The
paper is organized as follows: in the Section 2 we describe the model
and obtain the RG functions within massive field theory scheme. Fixed
points and their stability are analysed in the Section 3 by means of an
e—expansion to order € and by resummation of a d = 3 series. Section
4 summarizes our results.

2. The model and the renormalization

For a given configuration of quenched random variables Zg in (1) the
partition function of RAM may be written in a form of functional integral
of a Gibbs distribution with the effective Hamiltonian:

Hiir,d) = - / d'R {% [rol82+V 92| — D1 (@)
wldl'+...}, (2)

where D1 is proportional to Dy, 79 and vy are, deﬁned by Dy and familiar
bare couplings of an m-vector model, and ¢> ¢R is a m-dimensional
vector. The case of isotropic distribution of a local anisotropy axis we
consider here corresponds to the situation when the random vector Zgr
points with equal probability in any direction of m-dimensional hyper-
space. In order to deal with quenched averaging one introduces n replicas
of the Hamiltonian (2) and ends with the following effective Hamiltonian

8):
Har = - dd{ 1+ 93] + w3 18+

a=1
wo» Y 26t e] b, (3)
a,f=11j=1

where g is bare mass and bare couplings ug > 0, v > 0, wg < 0.
Furthermore, ug, wo are related to appropriate cumulants of the random
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vector Zg distribution function and their ratio equals wg /ug = —m. Note
that the symmetry of ug and vy terms corresponds to the random site
m-vector model [17]. However the ug-term has an opposite sign.

In order to study long-distance properties of the Hamiltonian (3), we
use the field-theoretical RG approach. We apply the massive field theory
renormalization scheme [18] performing renormalization at fixed space
dimension d and zero external momenta. For the -functions in two-loop
approximation in replica limit n = 0 we get:

1
Bu = —s{u—a [8u®+2 (m+2) uv+2vw+2 (m~+1) uw+3w?] +

1 .
9 [44u3+24 (m+2) vu?+2 (3m+6) uv*+2(6m+24)uvw+
2 (12m~+12)wu*+ (3m~+45)uw?+2 (m+8) vw? +4vw+
2
(3m +9) w3] i1+ 9 [2u3+2(m+2)vu2+(m+2)uv2+

3
%’IUQU-FQ(TH-FQ)UU’LU-FQ (m+1) ugw} iz}, (4)

By —z—:v{l - % [(m-+8) v+12u~+2 (m+5) w] + %[24(m+5)uv+

2(5m+22) v +84u* +(14m+58) wo+4(9m~+33) uw+
27, .
(17m+67)w2] i+ 9 [2u2+2(m+2)uv+ (m+2)v*+

mTﬁw2+2(m+2)vw+2 (m+1) uw] iy }, (5)

1 1 .
By = —ew{l -5 [(m~+4)w+12u+4v] + 5 [84u2+ (5m~+27)w? +
4 (6m+15) uw + 2 (5m+22) vw + 4 (3m+18) uv +
2
2 (m + 6) 1)2:| 2'1+§ [(m+2)v2+2 (m+2)uv+2u’+

mT%w2+2 (m+2)vw+2 (m+1)uw] iz}- (6)

Here, u,v,w are renormalized couplings and 41,1, are two-loop integrals
[19]. For the space dimension d = 3 they equal i; = 1/6, iy = —2/27
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[20]. Zeroes of the S-functions determine the coordinates of fixed points
(FPs). The stable FP is defined as the FP where the stability matrix

8B, . . .
B;; = %;, u; = {u,v,w} possess eigenvalues with positive real parts.

3. Fixed points and their stability.

e-expansion. As it was mentioned in the introduction the only known RG
results for RAM with isotropic distribution of the local anisotropy axis
are those obtained in the first order in e [8]. They can be reproduced
from formulas (4) — (6) putting two loop contributions equal to zero.
In particular we get eight FPs with coordinates given in the Table 1
(in order to recover results of [8] we extract value of one-loop integral
~ 1/e from conventionally normalized couplings: see note [19]). In the
first order of e-expansion all FPs with v > 0,v > 0,w < 0 appear
to be unstable for € > 0 except of the "polymer” O(n = 0) FP III
which is stable for all m. However presence of a stable FP is not a
sufficient condition for the 2nd order phase transition. The FP should
be accesible from the initial values of couplings and it is not the case for
the location of FPs shown in figure 1. Indeed starting from the region
of initial conditions (denoted by cross the figure) for zero value of v one
meets a separatrix joining unstable FPs I and VI and will never reach
the stable FP III. As far as both FPs I and VI are strongly unstable
with respect to w FP III is not accesible for arbitrary positive v either.
Finally one ends up with the conclusion about absence of the 2nd order
phase transition in the model as runaway solutions of the RG equations
show.

E3

e

u* v w
I. 0 0 0
II. 0 e+ 18%52 0
ITI. Set52e? 0 0
Iv. —gg:ni";;s—i-u1vs2 ﬁs—i—vzvﬁ 0
V. ﬁeﬂruveg 0 ms+wvsz
VI. mimﬁs+u‘/162 0 ms+wv152
VIIL. m_ﬂzﬁf+1lv1152 *WE‘FUVIIEQ mg‘i’wVIIf2
VIIL m8+UVIIIE2 —m8+1)v11152 m5+wVIIIE2

Table 1. Fixed points in e-expansion. Here gy =(m—2++/(m—2)2448)/8,
yr=(m—2—2mz+\/(m—2—2mz)2+4(12—8z2))/8,2=(m+6)/(m+8). The
second order contributions u;,v;, w; are given in the Appendix.
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Second-order contributions in ¢ to the FP coordinates are displayed
in the Table 1 as well. The main question of interest here is whether
the above described picture of the runaway solution is not an artifact of
an e-expansion. To shed light on this question below we will use a more
refined analysis of FPs and their stability.

d = 3 series. Another way to analyse series for the RG functions (4)
— (6) is to consider them directly for the dimension of interest d = 3
[18]. As it is known series of this type are asymptotic at best and a re-
summation procedure is to be applied in order to obtain reliable data on
their basis. Here, we will make use of Padé—Borel resumation techniques
[21] first writing the RG functions as resovent series [22] in one auxiliary
variable and then performing resummation. Numerical values of the FPs
are given in the Table 2. Resummed two-loop results qualitatively con-
firm the picture obtained in the first order in e-expansion: stability of
the FPs does not change after resummation. This supports a conjecture
of Aharony [8] about absence of accesible stable FP for the RAM with
isotropic distribution of the local anisotropy axis.

However the applied procedure of resummation fails to give a correct
description of f—functions for large negative w. In particular in the region
of couplings in the vicinity of FP VI we get real values of the g-functions
and solution for m = 2 only. This is caused by appearance of poles in
integral representations of the resummed g-functions. To deal with the
poles one can take the principal values of corresponding integrals but
we will exclude such cases from our analysis. Studying the evolution of
FPs upon application of the resummation procedure we have found one
more FP, which is not present in the e-expansion analysis. This one we
consider as an artifact of the resummation procedure and do not display
it in the Table 2. In the other FPs we recover the two-loop results for
O(m) (FP II), polymer O(n = 0) (FP III) and diluted m-vector (FP IV)
models. FP VIII contains all three couplings but is both unstable and
non accesible from the initial values of couplings.

4. Conclusions

In this paper we applied a field theoretical RG approach to analyse crit-
ical behaviour of RAM with isotropic distribution of a local anisotropy
axis. The origin of a low temperature phase in this model is not com-
pletely clear. General arguments based on an estimate of the energy for
formation of magnetic domains [15] lead to conclusion about absence
of ferromagnetic order for d < 4 [10,11]. However these arguments do
not take into account entropy which may be important for disordered
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L [m] v [ v [ v |
I vm 0 0 0
II 2 0 0.9107 0

3 0 0.8102 0
4 0 0.7275 0
III | Vm | 1.1857 0 0
v 2 | -0.0322 | 0.9454 0
3 0.1733 | 0.6460 0
4 0.2867 | 0.4851 0
VI 2 1.4650 0 -1.6278
VIII | 2 0.7517 | 0.7072 | -0.3984
3 0.8031 | 0.5463 | -0.3305
4 0.8349 | 0.4545 | -0.2888

Table 2. Resummed values of the fixed points in two-loop approximation
for d = 3.

systems [13].

In the RG analysis absence of a ferromagnetic second order phase
transition corresponds to lack of stable FP of the RG transformation.
However in the case of RAM with isotropic distribution of a local ani-
sotropy axis the scenario differs. Our two loop calculation bring about
presence of a O(n = 0) symetric FP which is stable for any value of m.
However, this FP is not accesible for the initial values of couplings. We
checked location of the FP up to the second order in e—expansion and by
means of a fixed d = 3 technique refined by Padé—Borel resummation.
Our analysis supports conjecture of Aharony based on linear in ¢ results
about runaway soultions of RG equations for the RAM with isotropic
distribution of a local anisotropy axis.

It is worth to mention here that anisotropic distribution of a local
anisotropy axis may lead to ferromagnetism by a second order phase
transition scenario [16]. Analysis of effective and asymptotic critical be-
haviour in this case will be a subject of a separate study.

Yu. H. acknowledges helpful discussions with Mykola Shpot. This
work has been supported in part by ” Osterreichische Nationalbank Ju-
bildumsfonds” through the grant No 7694.
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Appendix

In this Appendix, we perform the e—expansion for the RAM with iso-
tropic distribution of a local anisotropy axis. A procedure allowing to
obtain the e—expansion from the RG functions written in massive scheme
for a fixed d is well known. To this end one should substitute loop in-
tegrals by their expansions in & and proceed in a common way (see e.g.
[23]). In particular, substituting integrals i1, 2 in (4)—(6) by their expan-
sions i3 ~ 1/2+¢e/4+ ..., 0y = —¢/8+ ... [24] we get the expressions
for the fixed point coordinates given in the Table 1 with the accuracy
€2. We do not display there the second order contributions u;, v;, w; as
functions of m, because they are too cumbersome. Instead in the Table
3 we list their numerical values for m = 2, 3, 4.

m ury uy Uy Uyir Uy Il vrv
2 | -3.8906 | 0.2517 0.3525 -0.0242 -0.6352 | 3.2578
3 | -0.6665 | 0.2581 -8.6484 -0.4935 -0.5566 | 0.8346
4 | -0.2292 | 0.2654 | 27165.9534 -1.0550 -0.5558 0.5
VVIT VVIIT wy wy T Wy IT WY IIT
2 | -6.4311 | 0.8791 0.1889 -0.3313 4.7905 | 1.2583
3 | -7.8255 | 0.2024 0.1441 12.3348 5.6388 | 1.2962
4 |-9.6584 | -0.1118 0.1105 -39381.2980 | 6.6343 | 1.2650

Table 3. Numerical values of coefficients at the contributions ~ &2 to the
fixed points coordinates for some m.
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Figure 1. Fixed points of the RAM with isotropic distribution of a local
anisotropy axis. The only fixed points located in the octant u > 0,v >
0,w < 0 are shown. Filled box shows the stable fixed point, cross denotes
typical initial values of couplings.
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