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Abstract. We present a statistical theory for diffusion - reaction pro-
cesses of gaseous mixture in the system “metal - adsorbate - gas”. The
theory is based on equivalent taking into account of electron - electron,
electron - atom and atom - atom interactions between adsorbed, non-
adsorbed atoms and atoms of metal surface. On metal surface the bi-
molecular reactions of the kind A + B <+ AB are possible to occur
between adsorbed atoms that is typical of catalytic processes. By means
of Zubarev nonequilibrium statistical operator there is obtained the sys-
tem of transport equations for the consistent description of electronic
kinetic and diffusion - reaction atomic processes.
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moJiekyspai peakiii A + B < AB. BacrocyBaBiiy METOJI, HEPIBHOBAXK -
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1. Introduction

Processes of adsorbtion, desorbtion, diffusion of atoms, ions, polar and
magnetic molecules or clusters on surfaces of metals, insulators, semicon-
ductors play one of central roles in the development of nanostructural
thin film technologies for micro and optoelectronics. Diffusion processes,
adsorbtion and desorbtion mechanisms are decisive also in catalytic re-
actions on active surfaces which structure and electron structure have in
these reactions a central role. Electronic processes on the metal surface,
which create local electric fields in catalysis reactions also are the pro-
moters of dissociation - association processes of gas molecules. All these
phenomena sufficiently complicate the study of mechanics of different
catalysis reactions. Besides, to understand them, a rigorous and detailed
study of electronic kinetic and diffusion - reaction atom - molecular pro-
cesses must be carried out. Such processes and phenomena are subject
for an intensive experimental and theoretical study in solid state physics.
Nowadays experimental methods of investigation such as scanning - tun-
nelling - microscopy (STM), scanning - tunnelling - spectroscopy (STS),
field - ion - microscopy (FIM), and their modifications give each time a
more detailed information about the electronic structure, diffusion pro-
cesses, structural transformations on surfaces of metals, insulators, semi-
conductors, high temperature superconductor [1-7]. A more sequential
theory of atom transport at scanning by tunnelling electrons with tak-
ing into account mechanisms of atoms heat oscillations and substrate
phonon oscillations with the use of transfer Hamiltonian “substrate -
adsorbate - tip” was presented and development in papers [8-11]. Of
course, the processes of atoms and molecules transport on surface of
a solid state, no matter whether the STM investigations are pursued or
not, critically depend on both the nature of interactions between of them,
which can be dipole or magnetic, and a state of substrate: paramagnetic,
ferromagnetic, ferrimagnetic, etc. Furthermore, for such a spatially inho-
mogeneous systems one has another topical problem: the description of
quantum transport processes on small times with taking account initial
states and non-Markovian memory effects; the description of chemical
catalitic reactions on a metal surface. One approach for the construc-
tion of quantum kinetic equations with taking account initial states and
non-Markovian memory effects was suggested recently on the basis of
the of mixed Green functions [12,13]. Processes of atoms and molecules
transport on surface of solid states can be described here on the basis of
the theory of surface diffusion [14,15], or kinetic equations [16,17].

In the present paper, we present generalized transport equations of a
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consistent description of electron kinetic and atomic diffusion - reaction
of processes in a system “metal - adsorbate - gas”. To this end we use
the nonequilibrium statistical operator (NSO) method by D.N.Zubarev
[12,18] and obtain a kinetic equation for one-electron density matrix and
connected with this relation diffusion - reaction equations for adsorbed
and nonadsorbed gas atoms on a metal surface.

2. Nonequilibrium statistical operator and transport
equations of electrons and atoms of a system
“metal - adsorbate - gas”

For the consistent description of electron kinetic of processes on a metal
surface with adsorbed gas atoms or molecules one needs to take into ac-
count many peculiarities which are connected with screening effects and
surface diffusion. We will consider the system “metal - adsorbate - gas”.
Gas molecules become polarized and can dissociate near the metal sur-
face in nonhomogeneus electric field, which is produced by conduction
electrons and localized electrons (for example d - electrons of transition
metals) as well as by metal surface ions. Finally, due to the interac-
tion, the dissociation products are adsorbed on the metal surface. This
is the dissociation mechanism of gas molecules in numerous catalitic re-
actions (especially, ammiak catalysis). Then, the dissciation products of
different molecules, which are adsorbed on metal surface, join the chem-
ical reactions with energy threshold, which is sufficiently lower, than
for reactionsin volume condition without catalizer. After that it is more
preferable energetically for the reaction products to leave the surface.
Modern catalitic reacrions of the surface are mainly bimolecular

A+ B+ AB,

though metal surface atoms actively participate in them. This is dis-
played though the electron - ion - molecular interactions.

Let us suppose that after interaction of gas atoms or molecules with
surface, some part of them is adsorbed. Let N, be the total number
of nonadsorbed atoms, whereas N; be the number of atoms adsorbed
on a metal surface, N, be the total number of electrons, and N be the
number of ions of a metal. The total Hamiltonian of such a system reads:

H=H +H" +H,+H" + Y Ualz) + Hreac, (2.1)

a=a,s,a

1<f<Na
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where H, is the Hamiltonian of a gas subsystem. It is considered to be
classical one. Hi"" is the Hamiltonian which describes interactions be-
tween gas atoms and electrons, metal surface ions and adsorbed atoms
or molecules. H/™ - is the Hamiltonian which describes the interac-
tions between adsorbed gas atoms and metal surface ions; Uy (zy) is an
inhomogeneous effective potential of a surface which is assembled by
collective effects in semilimited space, in our case in metal; H, is the
Hamiltonian of electron subsystem; H,..q. is the interaction Hamiltonian
for the chemical reaction between adsorbed atoms or molecules on a
metal surface:
Hycoe = Z ((alabl|q)reac|aab)(j;_/(j;(j&(jl}+

a,b,a’ b’
<a/, bl|q)reac|a: b)*(jjqb qa’ (Jb’)

with the amplitude (@', b'|®,cqc|@, b) = (@, b|®,cqcl@’, d') of reaction be-
tween of reagents A, B and of the reaction products AB (we shall use
the indices @ , b and a@'b’ for the states of reagents A, B (atoms or
molecules) and for the states an atoms in the reaction product AB).
Here (j;',, (j;j , G, (j;' and §a’, G, Ga, G are the atom creation and anni-
hilation operators for the states @', , @ and b of molecules AB, A and
B, correspondingly. We will study the kinetics of an electron subsystem
on a metal surface and diffusion - reaction processes of adsorbed and
nonadsorbed gas atoms or molecules. In view of this, it is convenient
to use the second quantization for electron subsystem in Hamiltonian
(2.1) accordingly to Ref. [19]. To this end one needs to chose a proper
basis of wave functions. Let us suppose that we know the solution to the
Shrodinger equation for an electron

|: h A + ‘/(-305( - Xa):| wua(r - Xa) = 5Va¢uo<(r - Xoc); (22)

2me,

in potential fields of surface atom, nonadsorbed and adsorbed gas atoms.
Here X, = (ro, Rq) are Cartesian coordinates of particles. Eigen func-
tions of equation (2.2) satisfy the conditions of orthogonality and com-
pleteness

/ R (r — Rj)u(r’ — Ry) = b,
S e - Ry (' — Ry) = b(r — 1)

for any j = 1,... Ny, {v,p,&} are quantum numbers and €,,= (E,,
Ev, Egd) are eigen - values of electron energies. Let us use the set of
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functions .o (r —Xo) = (Yu(r —Ry), pu(r—ry), cpgd(r —R;)) as a basis
for expansion of electron field operators:

Ny
Z Z Z 1,[],,(1' - Rf)XU(S)dfmr + (23)

f=1 v o=xh/2
Na

ZZ > eulr =)o () o+

r o==xh/2

=1

Z Z (pgd(r_ Rl)XU(S)é?Edaa
3

o=nh/2

where x,(s) are wave functions of an electron spin operator, o = +/2
are the electron spin projections on a quantization axis, s is a spin coordi-
o ~ ~ad ~ 4 4 Alad)+ Sl elgs
nate.‘af,,(,, Cluo, Cg, end Ufyor Cluos Clgp - AT electron annihilation and
creation operators, Ry surface atom, r; gas atom, R; adsorbed atom on
a metal surface, respectively. Then, the Hamiltonian of electron subsys-

tem taking into account (2.3) in the second quantization representation,

reads:
H _ Z 6aAa

a,V,0

Z Z taﬁ (A"‘“AB + A+[3Aa ) (2.4)
a,B o,V
SO Wl e B, B)AE AN AS, AT,

B vwoplo'
(1’ ’ﬁ/

where £} is one-electron energy in a field of corresponding atom (surface,
adsorbate, not adsorbate, tip). Operators Ate vary from the set d}ryo_,

jvo
A+ aled)+ - A ~ad
Cluos Cico , whereas operators AJW vary from the set af,q, Ciuo, Cléo and

are the electron creation and annihilation operators on R surface atom,
R, gas atom, R; adsorbed atom on a metal surface, correspondingly.

Ata fa
Z AJWTAJW

is the density operator of electrons in field of corresponding atoms.

= (£

() + vaa(r>) ve (o),
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where Vi, (r) are corresponding potentials of electrons in field of metal
ions adsorbed, nonadsorbed gas atoms or molecules.

8 —
150 /w

are matrix elements of the Hamiltonian. They describe processes of elec-
tron transitions in field of corresponding atoms and ions.

ap (r) + Ua(2))); (r)dr

2
Stasa') = 5 [ [l ) ol (w)dear

is some Coulomb repulsive integral of electrons, which are connected
with corresponding atoms in accordance with (2.3). Analysis of the total
Hamiltonian (2.4) of the electron subsystem can be made in detail in
view of the hybridization processes between electron states of a surface
and atoms as well as effects of interaction between electrons. Such an
analysis should be made on expansions on overlap integrals of orbitals of
corresponding atoms similarly to [20]. The current of electrons between
positions 1 and j in a system can be evaluated from the equation

Jij = /sp(z?,j(éf; —Gh))E,

where CA?Z;_, CA?;T are the spectral functions of time one-electron Green
functions. These functions can be rewritten in the matrix form like this:

GEY(L1) G (L)
G, (1) Gy
{gf,(l 1) ﬁg(l,l’)}
9;;(1,1) g(1,17)

where gj; are causal, g; anticausal and g,j, g; correlation Green func-
tions for electrons:

37 (1,5 t0) = (ih) ™ (T [ (1), 4 (1),
957 (1,15 t0) = (ih)~(dhu (1) (1)
351(1,'5t0) = —(ih) = (P (1)hurs (1)

where (1) = (r1,s1,t1), (1) = (r},s},#). thr (1), 17 (1') are field op-
erators of electron in Heisenberg representation

b (1) = Ulto, t)r(r1, 1)U ¢, to),

G (1,1') =
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Ult, t) = e~ ¥/M(t—to)H

T** are direct and reverse time ordering operators. gy}, 41}, 95, §;; define
retarded and advanced Green functions g;}f, g;‘j‘., by the relations g;} =
~AC Al A> ~Q ~A _ ~c AS _ aAZ ~a .

95 — 915 = 9i5 — 915> 915 = 915 — 9i5 = 915 — 915+ Functions

Gij(1,15t0) = (ih) " (Te [ (1), 97y (1],

satisfy the equation of Dyson type in Keldysh formalism [21], [12,13,22].
Tc is an operator of time ordering on a Keldysh contour C [21]. Cal-
culation of averages (---)! in Green functions is made with the help
of nonequilibrium statistical operator p(t)|¢=¢, in the initial time which
should be defined from the solution to the quantum Liouville equation
for our system “ metal-adsorbate-gas”. Problems of averaging on initial
nonequilibrium states in Green functions have been analysed in detail in
papers [21,13,22], where a mixed Green functions formalism as a gener-
alization of the Keldysh-Schwinger one is proposed. Such an approach
in our case could give a possibility to take into account an influence of
diffusion - reaction gas processes on a surface on electron processes via
averaging in corresponding Green function with the help of the nonequi-
librium statistical operator of gas subsystem in initial time. In particular,
it can be shown on the basis of [22], that the correlation Green function
g]l 5(1,1';tp) in limit ¢y — —oo and t; = ¢} is equal to one-particle density
matrix in r-representation

fij(r1,s1,71,81, 1) = —ihtog@m 951 (1, 15 t0) ey =t -

It gives the connection of gﬁ(l, 1';¢9) with the electron current.

For a consistent description of both electron kinetic and diffusion -
reaction processes of adsorbed and nonadsorbed gas atoms in a system
“metal - adsorbate - gas” we will use the method of nonequilibrium
statistical operator (NSO) by D.N.Zubarev [12]. This method is based
on Bogolubov’s ideas of a shortened description of nonequilibrium state
of a system using the set of observed parameters. Such parameters of the
shortened description can be nonequilibrium mean values of the electron
subsystem:

(At AR, =Sp (A4 Al,.p() (2.5)

is the nonequilibrium one-electron density matrix; mean densities of ad-
sorbed and nonadsorbed gas atoms or molecules on a metal surface are:

(g (R))" = Sp (127 (R)p(t)) , (i1a (r)) = Sp (Ra(r)p(t)) , (2.6)
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and
(du(®)" = Sp (du(x)p(t)) (2.7)

is the mean polarization of density of gas atoms or molecules,

Na
r) = Z d;o(r
j=1

is the microscopic polarization of density of gas atoms or molecules, d;
is dipole moment of particle j;

(G (RR) = Sp (G4 (R R)p(t)) (2.8)
is the nonequilibrium pair of the distribution function of adsorbed atoms
or molecules on the metal surface. Here 7% (R) is the density operator
of gas atoms which are adsorbed in a v- state on the metal surface;
. Ned o a - - .
nZ(R) = Zj a @/J,Z(R)@/J,,j(R), @/J‘Z(R), ¥, ;(R) are the creation and
annihilation operators in a v- state of adsorbed gas atom on a metal
surface.

is the microscopic density of gas atoms or molecules. If the chemical
bond, stimulated by the metal surface between adsorbed atoms appears,
then the coordinate L,; molecule (cluster), consisting of the two atoms
in states g and v, can be found, with the help of transition from individ-
ual reference systems for each atom 7 (R), 75 (R') to their mass center

reference system. Then <G’ZB“ (R,R’))! is a mean density of molecules,
created in the chemical reaction between adsorbed atoms on metal sur-
face. On the contrary, molecules, consisting of two atoms in states u and
v, under the influence of nonhomogeneus magnetc field, can at first be
dissociated to atoms and then be adsorbed by the metal surface. In this
case, (G;B“ (R,R/))! is the nonequilibrium quantum distribution func-
tion of atoms on metal surface. Mean values of parameters of shortened
description are calculated with the help of p(¢) -NSO of electrons and
atoms of our system. This operator satisfies the Liouville equation

= p(t) +iLnp(t) =0, (2.9)
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where iLy is the Liouville operator which corresponds to the total
Hamiltonian (2.1). One can distinguish in the structure of the opera-
tor ¢L some classical and some quantum parts:

iLy =iL% +iL%™,

=y Rl 150y o (22
N = ma or; 2 = Or; Vaa(Jrj =15 op; Opj
Na,Ng
0 0
Z s (Vap(rj,Ry) + Uq (ZJ))a
N Pj

is thr classical part that corresponds to an interacting gas. Vo(rj, Ry)
are interaction potentials of gas atoms with other atoms of a system.

~ ~ 1 ~ . .
Ly A= - [A, H.+H™ + H" + U + H]

is the quantum part of the total Liouville operator. The nonequilibrium
statistical operator of electrons, atoms of a “metal - adsorbate - gas ” is
normalized as

Spp(t) =1,

where Sp(...) = [, [ N Z7rh)3Na SPvg,o)(--+), de = drdp, Ny =
{Na, Nz, Ne, N } SP(y.¢,-) means summation on all values of spin and
other quantum numbers. To find nonequilibrium statistical operator p(t)
one needs a boundary condition. Using the NSO method by D.N.Zubarev
[12,18], we will looking for the solution to equation (2.9) in such a form,
where time dependency is included indirectly via mean values of the set
of the shortened description. To this end let us introduce into right hand
side of the Liouville equation (2.9) some infinitely small source which
destroys its symmetry on time inversion and selects needed retarded so-
lutions [12,18]. Thus, we will start further from the equation

<86t + lLN) p(t) = =& (p(t) = py()) (2.10)

where ¢ — +0 after thermodynamic limiting transition. Auxiliary
quasiequilibrium statistical operator p,(t) is defined from the condition
of extremum of information entropy of a system and conservation of nor-
malization Spp,(t) = 1 and fixed values of parameters of the shortened




9 IIpenpunT

description. In our case these parameters are defined by relations (2.5)-
(2.8). Then, going by the standard way [12,18] one obtains the expression
for quasiequilibrium statistical operator:

pu(t) = exp{~®(t) — BH ~ S b1 HNw—  (211)
Ly

ZZ/deR’ MZ(R,R'; )G (R, R))},
ab VK

where

®(t) = InSpexp{—BH — > _ b(l,I';t) Ny —
Ll

Z / driq (r;t)fa (r)—
ZZ/dRua (R; )iz (R) — Z/dre(r;t)&a(r)—

a
ZZ/deR’M"“ R,R; )G (R,R))},
ab VK
is the Massieu-Planck functional. It is defined from the normaliza-
tion condition p,(t). Parameters b(l,1';t), pa(r;t), pi(R;t), e(r;t),
M2 (R, R';t) are defined from the self - consistency conditions

(Nuw)t = (M) (Ra(r))’ = (Ra(r))], (212)
(i (R)" = (g (R))g:  (da(r))' = (da(r))g,
(G2 (R.R) = (G2 (R, R)));,
and denote, that u,(r;t) is the local chemical potential of a gas atom;
n2(R;t) is the local chemical potential of an adsorbed atom in a state
v on a metal surface; e(r;t) is the local electric field, which is made up

by electron and ion subsystem on metal surface, and is defined by the
Maxwellian equation:

Ve(R;t) = 4n(( ZZfenf (2.13)
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where 7.(R)=)_ J+(R,s)p(R,s) is the density operator of the
electron subsystem on metal surface, p.(R)=en.(R) is the den-
sity operator charge of electrons, e is the charge of electron and
ng(R)=>" @ZJ}F(R, s")Yr(R,s') is the density operator of the ion sub-
system on the metal surface, s’ is a spin coordinate and Z; is valence
of ion on metal surface. M;’B” (R,R’;t) is the local chemical potential of
an adsorbed complex atoms @, b in a states v and u on a metal surface;
8 = kBLT, kp is the Boltzmann constant, 7' is the equilibrium value of

temperature. Here Ny = A?‘Alr, 1,!' indicate the set of indices {«, jro};
((...))s =Sp(...)py(t). Using the standard NSO procedure with taking
account projection [12,18] and structure of p,(t) (2.11) one obtains from
(2.10) the expression for nonequilibrium statistical operator:

+Z/ W07t ¢) /d‘rpq

w

In (L U5 ) ph 7 (#)Bb(1, 15 ¢')dt +

Z/dr/ W= ¢! /1d7'pq (2.14)

L (5 #) s (#) Ba (3 #)dt' +

> / dR / e =0T (1, 1) /1 drp] (t')

I (R; t)p} ™" (1) By (R; )t +

t 1
Z/dr / ef(t’_t)T(t,t')/dTp;(t')
@ - 0

L (xst")py ™7 (¢') Be(r; t)dt'+

ZZ/dR/dR’/ WNT( ) /dqu

a,b vkt

I¢ (RR'; 1)k~ (1) BM* (RR; ) dt',
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where
t

T(t,t') = exp — /(1 — P, (t"))iLdt"
tl
is an evolution operator with taking account projection. P,(t) — is the

Kawasaki-Gunton projection operator. It acts on statistical operator and
has properties like this:

Py(t)p(t') = pg(t), Py(t)py(t') = py(t),
Py(t)Py(t') = Py(t).

It is connected with Mori projection operator P(t) by the relation:

<G§’;,” (R, R’))t)-

P(t) acts on operators and has properties of a projection operator:
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IN(LU;t) = (1= P() N, Lo(r5t') = (1 = P(E))ia(x),
I (R;t') = (1= P(t))ig (R), (2.15)
I3(r; ) = (1 - P(t))da(r),
1% (RR;t) = (1- P(t)Cy (R,R))
are generalized flows, Ny = L[Ny, H], o (r) = iLi,(r) = -2V

Maq
Pa(r), Pa(r) = Z;\;"l p;o(r —rj) is the microscopic momentum density

of gas atoms, ﬁ;(R) = =% (R), HJ; d,(r) = iL5d,(r); G (R R') =
%[G’;B“ (R,R/), H]. In such a way, we obtained a general expression for
nonequilibrium statistical operator p(t) of electrons and gas atoms in
a system “metal - adsorbate - gas ” for specific set of parameters of
shortened description (2.5)—(2.8). It depends on generalized flows (2.14)
which describe dissipative transport processes in a system. As far as un-
der the principle of shortened description p(t) is a functional of parame-
ters (Nu)!, (i (v))Y, (A% (R))Y, (da (1)), (G (R, )" correspondingly
to the self-consistency conditions (2.12), to have a complete description
of nonequilibrium processes one needs to construct transport equations.

To obtain them let us use the equality:

0 A N N
5B )t = (iLnBn)" = (iLnBn)g + (I6(1))",
where B, =(Nir,fa(r), 24 (R), da(r), G2/ (R, R)) and

Ip(t) = (In(L,15), La(r;t), Iy (Rs 1), I5 (r; '), I (RR;T).

Averaging the right hand parts of these equalities with the help of NSO
(2.14) one obtains generalized transport equations for one-electron den-
sity matrix and mean values of densities of adsorbed and nonadsorbed
gas atoms:

0
6_<Nll’ (Nt +Z/ onn it 1)

53" Zoo

Bb(j, 55 t")dt' +

Z/dr / D onm, (138, 8") B (x5 8 dt' + (2.16)
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Dok (U R £, 8") Bl (R ) dt' +

Y fa [ o
Z/dr'/teetl ona, (I, 1"t t) Be(r': t)dt' +

v (ll’, RIR”; ¢, t’)

zz/myav/f>%%
ab v'p'
,BMU ' (RIRII /)d /,
a ~ t) ) !
ama(r)) 0L+ Ong.N (55,55 8,1)
3d' oo

Bb(j,j';t")dt' +
/dr / WD (et ) B (' )t + (2.17)
(r,R';t, ¢ )ﬂ,ub (R';t)dt' +

=y

ZZ/dR’ /
Z/dr / W) g (x5 bt Be(r'; t')dt +
ZZ/dR’/dR”/ W, RR" 1)

a'b v'y'
BMYE (R'R";t')dt,

t

0 1/
LR = RN+ Y [ e, (Ri T

7' o

Bb(j, 5" t')dt'+

t

[ [ e 0g Rt ) '+
o0

(2.18)

14
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“Drr (R,R5t,8)BuY (R ¢)dt +

zz/m/ i
Z/dr / Do a, (r, ' t,t") Be(r; t")dt' +

t
ZZ/dR’/dR” / et

(r, R'R";t,t")

a'b v
ﬂM_”,';' (R'R";t')dt,
a t
() = +§j/e Doge N (X34, 51,1
7" o

BbG, ')+
D 0 (T, ) B (¢ ) dE + (2.19)

Z/dr /
ZZ/dR’ / e W0l (xRt 1) By (R t)dt' +
b v _

Z/dr / (W=, 4 (r,r'5t,t") Be(r; t)dt' +

ve (r, R'R; )

zz/m/w/W%%m

a'b v
ﬂMu’u’ (RIRII )dt’

(G (R, R)) = (G (R, R, +2/ (-0

3" oo

QJ|Q_~)

v N(RR' 4, 55,8 6b(4, 55t dt'+

> for [,

(RR/,r';t,t")Buy (v'; ') dt'+ (2.20)
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t
SN[ R [0 RRRY )50 (R )t +
T S
¢
Z/dr' / ee(tl_t)gogagdb, (RR/,r'; ¢, t")Be(r'; t")dt'+
b .

>y [ [ / W (RR,RVRY 1,0
a'b v
ﬂMij,;f (RIIRIII t )dtl
where YN N, Prany s Prong: PNnas Pings Pranas Padys PCndi,: AL gel-
eralized transport cores which describe dissipative processes in the sys-
tem. Transport cores are built in the generalized flows (2.15) and have

the following structure:

vpp (t,t') =Sp [ Ig(t)T(t,t) /dqu M (t)py T(t') ], (2.21)

In particular, the transport core @nn(Il',7j';t,t") describes dynami-
cal dissipative interelectron flows correlations, ¢, n, (r,r'; t,t') describes
dynamical correlations of diffusion flows of gas atoms and, as it will
be shown below, is connected with the nonuniform diffusion coefficient
Dgy(r,x';t) of gas atoms or molecules. Similarly, the transport core
orY I"B (R,R';t,t") describes dynamical dissipative correlations of diffu-
sion flows of gas atoms in states v and v’ on a metal surface and de-
fines nonuniform diffusion coefficient D2 "(R,R’;t) of adsorbed atoms
on a metal surface. Another transport core describes dynamical dissipa-
tive correlations between generalized electron flow In(l,1';t), gas atoms
I,,,(r;t) and adsorbed atoms I (R;t). In particular, transport cores
on o (RsT'5t, 1), gozlang (r;R;t,t") describe dissipative correlations be-
tween flows of gas atoms and adsorbed atoms and define nonuniform co-
efficients of mutual diffusion D:;}(r, R';t) ”gas atom - adsorbed atom”.
Study of these diffusion coefficients in adsorption processes is very im-
portant.

@dnd, (r,r';t,t') are responsible for the polarization effects in
molecules which are induced by dynamic electric field of the metal sur-
face. Transport cores ¢éigp(RR'; t,t') {p = N,n,n,d} describe dissipa-
tive correlations between flows and adsorbed atoms density, electrons,

ICMP-00-20E 16

atoms, molecular flow densities, molecules polarization, and adsorbed
atoms. @é’;géirg (RR/,R"R'";t,t') describe diffusion - reaction processes
between adsorbed atoms on the metal surface. They are higher memory
functions with respect to dynamical variables G;g . Calculation of these
transport cores consists a well - known problem of nonequilibrium sta-
tistical mechanics. Thus, we obtained generalized transport equations
(2.16)—(2.20) for one-electron density matrix, average nonequilibrium
densities of adsorbed and nonadsorbed gas atoms for the consistent study
of kinetic electron and atomic diffusion - reaction processes in a system
“metal - adsorbate - gas”. It can be seen, these equations have nonlinear
and nonuniform structure, they can describe both strongly and weakly
nonequilibrium processes. In further consideration our prime interest will
be with the weakly nonequilibrium case.

3. Weakly nonequilibrium processes

In such a case one should suppose that one-electron density matrix
(Ny)t, average nonequilibrium densities of adsorbed and nonadsorbed
gas atoms (A%(R)), (i, (r))! and (d,(r))?, (G;;;”(R, R/))* correspond-
ingly, reciprocal thermodynamic parameters b(l,1’;t), u2(R;t), pq(r;t),
e(r; ),

M (R,R';t) deviate slightly from their equilibrium values. Then one
can expand guasiequilibrium statistical operator (2.11) on deviations of
parameters b(l,I';t), us(R;t), pa(r;t), e(r;t), M ¥ (R, R';t) from their
equilibrium values by(1,1'), py(R), pa(r), MJ'(R,R') and restrict our
expansion by the liner approximation. Then from (2.16)-(2.20) one ob-
tains a transport equation in the linear approximation, using the Laplace
transformation for time ¢ > 0,

o0

(A), = z/ eFLA(t)dt, z = w + ie, (3.1)

0

20pn): = > Qv (33 2)ON 1)
7'

Z/dr'ﬂpnnb (r'; 2)(07ip (r')). — (3.2)

2.2 [ R, s (R). -
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2 / dr'Q,, a4, (r'; 2) (0, (r')) . —

Z Z/dRH / dRIlIQV u R// R/// )((5@2;{/ (RII7RIII)>Z

ab v

(0pn)'=
where 6ﬁn = (6Nl,l’ ) 6ﬁa( ) g(R), aa( )7 66;;’: (R, R’))
Here Ny =Ny — (N )o, 0niq(r)=nq(r) — (Ria(x))o,
oniy (R)=nz(R) — (7% (R))o, 0da(r) = da(r) = (da(r))o,
G H(R,R) = G(R, R’) —(G¥(R,R'))o where average values are

~—

b
calculated with the use of equilibrium statistical operator
po=2Z ‘exp{—B(H =Y bo(l,I')Ni— (3.3)

w

> [ (o)) - )3 [ Rz ()

ZZ/deR’M”“ R,R')GY/'(R,R'))},

ab VK

7 = Spexp{—B(H - > _ bo(l,I') Ny — (3.4)

1w
Xa:/drua(r)na ZZ/dRpa Y% (R))—

ZZ/deR’M”“ R,R)G/(R,R')}

ab VK
is the grand partition sum of the system “metal - adsorbate - gas”. u,(r),
#2(R) are local equilibrium values chemical potentials of nonadsorbed
and adsorbed gas atoms. (...)o = Sp(...po)- Exclusion of parameters
Bob(L, 15 1), Bopa(r; 1),
Bopy (R;t) and MZ¥(R,R') in p,(t)" with the help of self-consistency
conditions (2.12) results in appearing of corresponding orthogonal vari-

ables . .
fla(r) = > (Ao (@) Nuo®x (154, 5" ) Nije,
oy
it (R) = g (R) = (2% (R)NurYo® (1,15, 5') Njjo —
l,l/

3,3’

S
s}
~~

L]
~

I
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> [ v [ ar R ol e )

da(r) = da(r) = Y (da(@)Nur)o® (1,155, 5" Njjr —

1,

gb: / dr’ / dr" (o (0) R (£))o[@ ot (22" ]ars T () —
ZZ/dR’/dR” s R

ab v’y

(@5 (R'RY)] nl (R,

Ggg (R7 R’) = GaE (R7 R,) - <Ggg (R7 R’)Nll'>0

SN (155,53 Ny —
Z / dr’ / dr' (G (R, R ) (r'))o
[@,,, (v )]st (x'") —

» / dR / dR" (GYE(R, R, R"))o

a't vy

[

[q)fl(RHRIH)] %L (R’”)

> / ar’ / (G (R R) A ()0

[ (£'r")]arpdy (x")
Conditions of orthogonality for these variables are valid: (71, r)N Yo =
0, (Mz(R)Njjryo = 0, (a(r)iz(R))o = 0, (Fa(r)da(r))o = 0,

a

(1 (r)G%Y (R, R))o = 0. Functions
N (1L155,5"), [@nh(r, )] 1 [@51(R,R')] are inversed to corre-
sponding equilibrium correlation functions:

o(Il', jj') = (Nu Njjr Yo, (3.5)
for electron and gas subsystems

(v, 1) = (g (r)7ip (r"))o, (3.6)
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¢ (R, R) = (g (R)7g (R))o (3.7)
and defined from corresponding integral relations [19].
Qap(z) =iQap — pas(2), (3.8)

1) op are normalized static correlation functions, they read:
iQap = (AB)o®3L, (3.9)

where B, A = { N, ma(r),ma(R) }, dor ('), GZ(R,R), A = iLyA.

pap(t,t'") are normalized transport cores with the structure like this
@aB(t,t') = (IaTo(t, 1) IB)o® 4, (3.10)

La, I = { Iy (0, 1), Lo(x), I (R) I (1), I/, (RR) }
where
To(t,t") =exp{—(t' —t)(1 — Py)iLn}
is the evolution operator in the linear approximation;
In(l,U') = (1= Po)Nur,
[o(r) = (1 = Po)iia(r),
I;(R)= (1~ Po)ﬁg( )
I3 (x) = (1 - Po)da (r'),
I# (RR') = (1 - Py)Gag (R,R)

are generalized flows in the linear approximation, where Mori projection
operator Py has the following structure

Polr) = (o Yo+ 3o Nurdo® (1,13 4, 5" Ny +
INg

Z/dr/dr'(...ﬁa(I‘)>0[‘I’T_”1L(I'aI'I)]abﬁb(r’)"‘
ZZ/dR/dR’

ab v

S(R))o [0, (R, R)] 1y 7 (R)+

3|

de' [ dr'(...du(x"))o[®, 7 (r't")]apdy (") +
;/ / dd bp
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ZZZZ/dR/dR’/dR”/dR’” .G (R,R))o

ab a'b’ vv'

[@GG (R, RI, R”, RIII)]ZZaflblf Gﬂrﬂb, (R”, RIII) .

Its operator properties are as usual: PoPo = Po, Po(l — Po) = 0,
PoNur = N, Pofia(r) = fia(x), Poiis(R) = AL(R), Poda(r) = d(r)
PoGYY (R, R') = GZ7 (R, R).

The set of transport equations for weakly nonequilibrium case is lin-
ear, closed and describes kinetic electron and atomic diffusion - reaction
processes consistently. Functions iQ 45 (2.22) are static correlation func-
tions and can be expressed via the corresponding interparticle potentials
of interactions and structural equilibrium distribution functions of elec-
trons and atoms of our system. @45 (t,t') are time correlation functions
which are built on generalized flows and describe dissipative processes
in a system. In particular, pyn(1,1';7,4';t,t") describe interelectron dis-
sipative processes, @aq(r,r';t,t'), _gg’ (R,R/';t,t") describe nonuniform
diffusion processes of adsorbed and nonadsorbed gas atoms. All others
memory functions describe cross dissipative correlations of flows of elec-
trons and atoms in spatially inhomogeneous system “metal - adsorbate -
gas”. Set of transport equations (2.22) allows limiting cases. In particu-
lar, if formally one neglects of diffusion - reaction processes of adsorbed
and nonadsorbed gas atoms, then electron kinetics in a system of metal
surface is described by an equation for nonequilibrium one-electron den-
sity matrix. Using the propertis ép,, = 5]\7”/ in the (2.22), such an
equation can be represented in a form

2(0Ny). ZQNN (1,1;4,5';2)(ON; jo). = (6Nw )0, (3.11)
JJ'

where
Onn (155,75 2) =i QNN (L5 5,5") — enn (155,55 2)

is the mass operator of an electron subsystem. This set of equations
allows to define elements of one-electron density matrix (&}'Wﬁlggr)t.
Electron tunnelling current between positions f and [ on a metal sur-
face is then expressed via these elements. Another limiting case can be
obtained if one formally does not take into consideration the electron ki-
netic processes, whereas the interaction of adsorbed atoms and substrate
considers to be classical only. Then the set (2.22) transfers to a set of
nonuniform diffusion - reaction equations of adsorbed and nonadsorbed
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gas atoms:
0 s t ! e(t' —t)
E(éna(r)) = —Z dr Dgp(r,r';t,t)
b —0oQ
%@ﬁb(r’))t'dt’
/ 0
+Xb:Z/dR’ / et _t)aD;’B(r,R’;t,t’) (3.12)
O (omy () '
+ZZ/dR”/dR’” / (=) ;rKZ;‘Z; (R R 1,1

ab v

(0GR R™) dt',

%( ZZ/dR’—D”" (R,R';t,t)

9 sy
s (O (R))! dt!
- Z/dr — DY, (R,1';t,1") (3.13)
@«s o(r))! dt'+
t
2.2 / dR" / dR"" / (=) a(i{KV " (RiRY R,
a'b v'p —co
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+ZZ / R / CORYS, (RRGR L) (3.14)

a :
g (O (R))" dt
_ Z Z/ RII/ dR/" / e(t _t)KWfbVG{L,b, (R, RI; R”, RIII; t, tl)
a'b v'u
<(SG g (RII R”’)) d I’
where
n;(R) = (R) = ) / drdr’ (i (R) 7 (r))o[ @7, Jap (v, 7') g (x)

GU(R,R) = G (R, R)) - Y / dr' / dr" (G (R, R it (1)o
a'b
(@, (x'e")]arpin (r") —
3 / dR" / dR" (G (R, R')7ils (R"))o
a'b vy
B (RVR T (R

and Dy, (r,1';t,t'), Dga(r,R’;t,t ), DZ, (R, 1’5 ¢,t"),
DY (R,R/;t,t') are generalized nonuniform diffusion coefficients of non-
adsorbed and adsorbed gas atoms on metal surface. In particular, coef-

ficient Dy (r,r';¢,t") reads:
Dap(r,r';t,t') = Z/dr”((l—Pg)ia(r)Tg(t,t’)(l—Po)ibr(r”)>0 (3.15)
b!
(@0 (e, ") oo,

L(r) = —Lp,(r) is the density of a gas atoms flow. Functions
[®,L(r",1")]ap are defined from the integral equation

Z / dr" @, (r,r")[@;&(r",r')]b/b =0(r —1")0u,

where
@ab(r,r') = (ﬁa(r)ﬁb(r'))o
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is the equilibrium pair distribution of gas atoms. Then, from the integral
equation like above one can obtain the relation:

d(r—r')

(fra(r'))o
ab

(g (r"))o is unary distribution function, whereas ¢§°(r,r') is direct dis-
tribution function of gas atoms. Diffusion coefficients D;’;-L(r,R' it b,
D (R,r';t,t'), Dgg’ (R,R';t,t") have structure similar to D,, and are
a generalization of Green-Kubo formulae for diffusion in spatially inho-
mogeneous systems. Their calculations depend on processes under con-
sideration: long-time or short-time.

Transport core

[‘P;}z (rua rl)]ab = Oab — cgb (I‘, rl)a

ke, (RR T t),

K2 (iR R, 1),

11
vu,v' RN ". !
Kyl (R,RG R Rt 1)

are higher memory functions and describe duffusion - reaction processes
un the system.They have the following structure:

vp
K

abmb (R7 R’;rl;t7tl) = (316)
> / de (T4 (R, R To(t, )Ty (t"))o @} (¢ )]s,
bl

KG", (RiRL R4 ¢) = (317)

—an!
abNg

S [ AR (RROTo(t )1 (R™))ol, (R, R,

N/E/
v,uv' i D P! P4 4\
KG&BGa’B’ (R;R,R",R";t,t') = (3.18)
SN [ dRa [ dra(Te (R BT )T, (Re Ra)ho
' oee

roro0

[QalG(RAL; R5R”, RIII)]’Y:,; v,p ,

ce'a'b’

10 1
where [®,4(Rq, RsR”, R, 25" are the elements of inverse matrice

(can be found with the help of integral relations of type (2.32)) to the
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matrices, the elements of which are the equilibrium quantum correlation
functions

®77 2" (Ry, RsR", R") = (G772 (R4, R5)G% 2 (R",R"))o  (3.19)
for the adsorbed atoms in corresponding states on the metal surface.

Correlation functions (3.26)-(3.28) are expressed via the four- three-
two- and one- paricle quantum distribution functions. Problems of thier
calculation is one of the most important in equilibrium statistical me-
chanics. For our case an additional complication arises due to the com-
plexity of “metal - adsorbate - gas” system. The mentioned above corre-
lation functions can be calculated as the functional derivatives of equi-
librium Massie - Planck functional value, i.e. grand statistical sum:
® = In Z. In particular, the equilibrium correlation functions (3.26) -
(3.28), (3.40) are expressed via the equilibrium functions:

(e (0)p(®))o, (N Njjoo,

(A% (R)A (R))o, (G77 (Ra,R5)G%E (R",R™))

a ce! arB/

(Ra (D) (R0, (G2 (Ra, Rs)i (R)))o,

cc’
which are calculated for the equilibrium statistical operator py (3.24). As
it follows from its structure, the averages, given above, can be expressed
via the Massie - Planck functional:

52 S 5
Mo (0)0p(r"))o = 77 InZ — InZ InZ,
< () b( )>0 6ua(r)6ub(r1) 6,U«a(1‘) 6ub(rl)
LR! 92
g (R)g (R))o = e In Z—
R (R0 = 5 e s )
g 5
InZ InZ,
Sug(R) 7 opg (RY)
(G772 (R, Ra) G (R, R™)) =
2
! 6 7 ln 7 —
OMZ (Ry, R5)0M7 L (R, R™)
- nZ— In Z,
(5(5Mg57 (R4,R5) 6M;5 (R”7RHI)
~ ~ 62 6 6
NuNjgtdo = 5o i aba i) 2~ InZ InZ.
( g >0 6b0(lll)(5b0(jjl) n 6[)0(”,) n (Sbo(jj’) n
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Other cross equilibrium function can be obtained from In Z in the same
way. So, the In Z, or grand statistical sum (3.25) should be calculated for
the “metal - adsorbate - gas” system. This calculation depends much on
the choice of the statistical model and can be performed with the help of
collective variables method [25], which takes into account the screening
effects.

Thus, using the NSO method by D.N.Zubarev, we have obtained gen-
eralized transport equations of consistent description of kinetic electron
and diffusion- reaction atomic processes in a system “metal-adsorbate-
gas”. These equations are valid for both strongly and weakly nonequi-
librium processes. They can be used for the calculation of one-electron
density matrix and, in such a way, for electron currents and nonuni-
form diffusion and chemical reactions coefficients of adsorbed and non-
adsorbed gas atoms on a metal surface. This is very important for the
investigation of surface phenomena, in particular, in electron tunnelling
scanning and in catalysis processes. It is important to take into consid-
eration phonon oscillations of substrate atoms and study their affection
on electron tunnelling processes and diffusion - reaction processes of ad-
sorbed atoms.

It is important to role of local magnetic field, or, more generally,
of electromagnetic field of electron - ion metal surface subsystem. Such
magnetic feilds effect on ion, electron spin subsystems, and thus can in-
duce local magnetization phenomenon, which together with polarization
phenomenon cause the reconstruction of surface, increasing its catalytic
activity. Certainly, these electromagnetic processes should be taken into
account in catalytic syntesis on nanostructure.

A consideration of these problems in our approach will be the subject
of our future work.

Financial support of this work by INTAS project UA 95-0186 is
greatly acknowledged.
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