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Фазова рiвновага полiдисперсної багатоюкавiвської рiдини твер-

дих сфер. Високотемпературне наближення

Ю. В. Калюжний, С. П. Глушак

Анотацiя. Фазовi властивостi полiдисперсної багатоюкавiвської сумiшi
твердих сфер вивчалися в рамках високотемпературного наближення. По-
казано, що дослiджуванi моделi у високотемпературному наближеннi на-
лежать до класу моделей iз “заокругленою” вiльною енергiєю, тобто моде-
лей, термодинамiчнi властивостi яких визначаються скiнченною кiлькiстю
моментiв. Використовуючи цю властивiсть, пораховано повну фазову дiа-
граму та функцiї розподiлу спiвiснуючих фаз для кiлькох моделей полi-
дисперсних рiдин. Зокрема, полiдисперсну одноюкавiвську сумiш твердих
сфер та рiдину з взаємодiєю Леннарда-Джонса з полiдисперснiстю енергiй
взаємодiї та розмiрiв, або тiльки з полiдисперснiстю за розмiрами.

Phase coexistence in polydisperse multi-Yukawa hard-sphere fluid.

High temperature approximation

Yu. V. Kalyuzhnyi, S. P. Hlushak

Abstract. High temperature approximation (HTA) is used to describe the
phase behavior of the polydisperse multi-Yukawa hard-sphere fluid mixture. It
is demonstrated that in the frames of the HTA the model belongs to the class
of “truncatable free energy models”, i.e. the models with thermodynamical
properties (Helmholtz free energy, chemical potential and pressure) defined
by the finite number of generalized moments. Using this property we were
able to calculate complete phase diagram (i.e., cloud and shadow curves as
well as binodals) and distribution functions of the coexisting phases of several
different models of polydisperse fluids. In particular, we consider polydisperse
one-Yukawa hard-sphere mixture with factorizable Yukawa coefficients and
polydisperse Lennard-Jones (LJ) mixture with interaction energy parameter
and/or size polydispersity. To validate the accuracy of the HTA we compare
theoretical results with previously published results of more advanced mean
spherical approximation (MSA) for the one-Yukawa model and with Monte
Carlo (MC) computer simulation results of Wilding et al. We find that overall
predictions of the HTA are in reasonable agreement with predictions of the
MSA and MC.
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1. Introduction

Understanding of the effects of polydispersity on the phase behavior,
phase boundaries and fractionation of colloidal and polymeric fluids are
of both fundamental and practical importance. Most of industrially im-
portant colloidal and polymeric materials are intrinsically polydisperse,
i.e. each particle in the system is unique in size, charge, shape, chain
length, etc. Usually in theoretical descriptions such systems are viewed
as a mixture with infinite number of components, which offer very rich
phase behavior with possibly new phases and new phase transitions. The
main obstacle in theoretical studies of the phase behavior in polydisperse
systems is due to the fact that now one have to deal with the infinite
number of equations for coexisting phases. To deal with this problem
several methods have been proposed [1,2] and used recently [1,3–5] to
study phase behavior of the number of model polydisperse systems. How-
ever none of these studies goes in their sophistication beyond the van der
Waals (vdW) [1,3] or the Onsager [5] level of description. In spite of the
fact that a basic formalism for polydisperse systems has been developed
already some time ago [6], only recently several studies, which account
correlations on the level of the mean spherical approximation (MSA),
have been published. These include polydisperse hard-sphere mixtures
with one-Yukawa [7], Coulomb [8–10], and sticky [11] interactions outside
the hard core. In the case of Yukawa and sticky potentials application
of the MSA is restricted to the systems with factorized version of inter-
action, i.e. the matrix of the coefficients describing the strength of the
corresponding interaction is factorized into the product of two vectors.
The models, studied in these publications in the frames of the MSA be-
long to the family of so-called ’truncatable’ free energy models [2]. These
are the models with Helmholtz free energy being completely defined by a
finite number of generalized moments of the corresponding distribution
function. This feature allows one to map the infinite set of equations for
the phase equilibria onto a finite set of equations for the moments.

In this paper we propose hight temperature approximation (HTA)
for polydisperse multi-Yukawa hard-sphere fluid. We demonstrate that
within HTA this system belongs to the family of truncatable free ener-
gy models. Unlike MSA HTA includes correlations on the level of the
hard-sphere system, however it is not restricted to the case of factorized
one-Yukawa potential only. The latter feature gives us more flexibility in
choosing the systems to be studied. To verify the accuracy of the the-
ory we calculate the full phase diagram (including binodals, cloud and
shadow curves, distribution functions of the coexisting phases) for poly-
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disperse one-Yukawa hard-sphere fluid and polydisperse Lennard-Jones
fluid and compare our results with corresponding results of the MSA [7]
and Monte Carlo (MC) method [4,12]. The paper is organized as follows:

2. Phase equilibrium conditions

In dealing with polydisperse fluids it is convenient to start with the
version of the system with arbitrary but finite number of components
and on the final step switch all the expressions to polydisperse case.

2.1. Multicomponent case

We consider p-component system with q coexisting phases. Each phase

consists of N
(α)
i particles of species i and occupies the volume V (α),

where the upper index α denote the phase. It is assumed that the total

number of the particles N
(0)
i of species i and total volume V (0) of the

system are held constant, i.e.

V (0) =

q∑

α=1

V (α) (1)

N
(0)
i =

q∑

α=1

N
(α)
i , i = 1, . . . , p. (2)

Hereafter the value of the upper index α = 0 denotes the properties of
the parent phase, which under certain conditions can be separated into
q coexisting phases. Helmholtz free energy A of such system is

A =

q∑

α=1

A(α)
(
T, V (α),

{
N

(α)
i

})
(3)

where A(α)(. . .) is Helmholtz free energy of the phase α and
{
N

(α)
i

}

denotes the set N
(α)
1 , N

(α)
2 , ..., N

(α)
p . At equilibrium the free energy (3)

has its minimum value provided that conditions (1) and (2) are satis-
fied. Using Lagrange multiplier method we recover well known phase
equilibrium conditions for multicomponent system

µ
(1)
i

(
T, V (1),

{
N

(1)
i

})
= . . . = µ

(q)
i

(
T, V (q),

{
N

(q)
i

})
, (4)

i = 1, . . . , p,
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and

P (1)
(
T, V (1),

{
N

(1)
i

})
= . . . = P (q)

(
T, V (q),

{
N

(q)
i

})
. (5)

where µ
(α)
i is the chemical potential of the particles of species i in the

phase α and P (α) is the pressure of the phase α. Solution of this set
of (p + 1)(q − 1) equations together with the set of p + 1 additional

conditions (1) and (2) will give us (p + 1)q unknowns N
(α)
i , V (α), i =

1, . . . , p, α = 1, . . . , q,. Note, that each phase will differ not only by its
volume, but also by its distribution of the particles of different species.

2.2. Polydisperse case

To extend the phase equilibrium conditions (5) and (5) to the case of
polydisperse system it is more convenient to use instead of the set of

variables V (α) and N
(α)
i the set, which includes the density of the phase

α, ρ(α) = N (α)/V (α), and two types of the fractions, i.e.

x
(α)
i = N

(α)
i /N (α) (6)

x(α) = N (α)/N (0), (7)

where

N (α) =

n∑

i=1

N
(α)
i . (8)

Now the set of equilibrium conditions (5) and (5) together with ad-
ditional constrains (1) and (2) can be recast in the following form

µ
(1)
i

(
T, ρ(1),

{
x

(1)
i

})
= . . . = µ

(q)
i

(
T, ρ(q),

{
x

(q)
i

})
, (9)

P (1)
(
T, ρ(1),

{
x

(1)
i

})
= . . . = P (q)

(
T, ρ(q),

{
x

(q)
i

})
, (10)

v(0) =

q∑

α=1

v(α)x(α), (11)

x
(0)
i =

q∑

α=1

x
(α)
i x(α), (12)

with the fractions x
(α)
i satisfying the following normalizing condition
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n∑

i=1

x
(α)
i = 1, (13)

where v(0) = 1/ρ(0) and v(α) = 1/ρ(α).
Now extension of the phase equilibrium conditions to the case of

polydisperse system is straightforward and can be achieved by switching
from discrete species index i to its continuous counterpart ξ via the
following substitution rule [18]

xi → F (ξ) dξ, (14)

with F (ξ) being a positive distribution function normalized to 1. It
should be pointed out that ξ can be multidimensional. Due to this sub-
stitution, summations over i in (9)-(13) become integrations over ξ and
thermodynamic properties become functionals of the distribution func-
tion F (ξ), which we will indicate by the square brackets. We have

µ(1)
(
ξ, T, ρ(1),

[
F (1) (ξ)

])
= . . . = µ(q)

(
ξ, T, ρ(q),

[
F (q) (ξ)

])
(15)

P (1)
(
T, ρ(1),

[
F (1) (ξ)

])
= . . . = P (q)

(
T, ρ(q),

[
F (q) (ξ)

])
. (16)

v(0) =

q∑

α=1

v(α)x(α), (17)

F (0) (ξ) =

q∑

α=1

F (α) (ξ)x(α), (18)

∫
F (α) (ξ) dξ = 1. (19)

Formally the set of relations (15)-(19) form a closed set of equations
for the unknowns ρ(α), x(α) and F (α) (ξ), which can be solved as soon
as expressions for the thermodynamical properties of the corresponding
polydisperse system at hand will be available.

At present this problem seems to be solvable only for the so-called
truncatable free energy models, i.e. these models, for which thermody-
namic properties can be represented by a finite number of (generalized)
moments of the distribution function F (ξ).
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2.3. Two-phase equilibrium conditions for the free energy trun-

catable models

In this section we will consider two-phase equilibrium conditions special-
ized to the case of truncatable free energy models. In our consideration
we will follow the general scheme developed by Bellier-Castella et al. [1].
We assume that thermodynamical properties of the model depends on
K + 1 generalized moments m0, m1, ..., mK , which are defined as follows

mk = ρ

∫
dξ mk(ξ), k 6= 0 (20)

and m0 = ρ.
Now the set of the conditions (15)- (19) takes the following form

µ(1)
(
ξ, T,

{
m

(1)
k

})
= µ(2)

(
ξ, T,

{
m

(2)
k

})
, (21)

P (1)
(
T,
{
m

(1)
k

})
= P (2)

(
T,
{
m

(2)
k

})
. (22)

ρ(2)F (2)(ξ) =
ρ(1) − ρ(2)

ρ(1) − ρ(0)
ρ(0)F (0)(ξ) +

ρ(2) − ρ(0)

ρ(1) − ρ(0)
ρ(1)F (1)(ξ), (23)

∫
F (α) (ξ) dξ = 1. (24)

where
{
m

(α)
k

}
denotes the set m

(α)
0 , m

(α)
1 , ..., m

(α)
K .

Condition on the equality of the chemical potentials in two phases
(21) can be written in terms of the excess values of the chemical poten-

tials µ
(α)
ex

ln

(
F (1) (ξ) ρ(1)

F (2) (ξ) ρ(2)

)
= ∆µex

(
ξ, T,

{
m(1)

}
,
{
m(2)

})
, (25)

where

∆µex

(
ξ, T,

{
m(1)

}
,
{
m(2)

})

= µ(2)
ex

(
ξ, T,

{
m(2)

})
− µ(1)

ex

(
ξ, T,

{
m(1)

})
. (26)

This allows us to relate distribution functions F (α)(ξ) in the two different
phases

F (1) (ξ) = F (2) (ξ)A12

(
ξ, T,

{
m(1)

}{
m(2)

})
, (27)
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where

A12

(
ξ, T,

{
m(1)

}{
m(2)

})

=
ρ(2)

ρ(1)
exp

[
∆µex

(
ξ, T,

{
m(1)

}{
m(2)

})]
, (28)

Taking into account (23), (27) and definition (20) we get

F (1) (ξ) = F (0) (ξ)H
(
ξ, T, m

(2)
0 ,
{
m(1)

}{
m(0)

})
, (29)

m
(2)
k =

ρ(1) − ρ(2)

ρ(1) − ρ(0)
m

(0)
k +

ρ(2) − ρ(0)

ρ(1) − ρ(0)
m

(1)
k , (30)

where

H

(
ξ, T, m

(2)
0 ,
{
m

(1)
}{

m
(0)
})

=

=

(
ρ(1) − ρ(2)

)
A12

(
ξ, T, m

(2)
0 ,
{
m(1)

}{
m(0)

})

(
ρ(2)ρ(1)

ρ(0) − ρ(2)

)
+

(
ρ(1) − ρ(2)ρ(1)

ρ(0)

)
A12

(
ξ, T, m

(2)
0 , {m(1)} {m(0)}

) . (31)

Note that H and A12 depend on the all moments of the phases 0 and
1 and only on the zero moment (density) of the phase 2, since all the
rest of the moments of the second phase are connected to the moments
of the phases 0 and 1 via relation (30)

Now the set of equations (21) and (22) can be solved in terms of
the moments of coexisting phases. The corresponding set of equations
follows from the definition (20)

m
(1)
k = m

(1)
0

∫
dξm

(1)
k (ξ)F (0) (ξ) H

(
ξ, T, m

(2)
0 ,
{
m(1)

}{
m(0)

})
(32)

where k = 1, 2, ..., K. Equation (32) together with the equation for the
equality of the pressure in both phases

P (1)
(
ξ, T,

{
m(1)

}{
m(0)

})
= P (2)

(
ξ, T, m

(2)
0 ,
{
m(1)

}{
m(0)

})
(33)

and normalizing condition (24) for either α = 1 or α = 2 form a closed set

of equations for K+2 unknowns
{
m(1)

}
, m

(2)
0 . Thus solution of the set of

equations (24), (32), (33) for a given temperature T , density of the parent
phase ρ(0), and parent distribution function F (0)(ξ) gives the coexisting
densities ρ(α) of the two daughter phases and corresponding distribution
functions F (α)(ξ), α = 1, 2. The coexistence densities for different tem-
peratures fix binodals, which are terminated at a temperature for which
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the density of one of the phases is equal to the density ρ(0) of the par-
ent phase; these termination points form the so-called cloud and shadow
curves which thus represent an envelope for the binodals. Cloud and
shadow curves intersect at the critical point, which is characterized by
the critical temperature Tcr and critical density ρcr = ρ(1) = ρ(2) = ρ(0).
Thus only for ρ(0) = ρcr the two branches of the binodal meet at the
critical point.

By definition, states located on the cloud curve are characterized
that they coexist with a state (localized on the shadow curve) where an
infinitely small amount of the other phase emerges. Thus the cloud and
shadow curves can be obtained as special solutions of the general phase
coexistence problem, when the properties of one phase are equal to the
properties of the parent phase: assuming, e.g., the second phase to be the
cloud phase, i.e. ρ(2) = ρ(0), and following the scheme presented above
we will end up with the same set of equations, (24), (32), (33), but with
ρ(2) and F (2)(ξ) substituted by ρ(0) and F (0)(ξ), respectively. Note that
F (2)(ξ) = F (0)(ξ) is now known, but ρ(0) is unknown; it is obtained from
the solution of the appropriately modified set of equations (24), (32),
(33).

3. Thermodynamical properties of the multi-Yukawa

hard-sphere fluid

We consider the fluid with interparticle pair potential represented by the
multi-Yukawa hard-sphere potential

Vij (r) =






∞, for r ≤ σij ,

− ε0
r

∑NY

n

∑M
m

(−1)m−1

zn
A

(nm)
i A

(nm)
j e−zn(r−σij)

for r > σij ,

(34)

where σij = (σi + σj)/2 and σi is the hard-sphere diameter of the
particle of species i.

The form suggested for the potential (34) is very flexible and can be
used to model a large variety of the realistic potentials by appropriate
choice for the coefficients Anm

i and zn [16,17].

3.1. High temperature approximation

The high temperature approximation (HTA), applied in this study, will
be obtained using Gibbs-Bogoliubov inequality [19]

A − A0 ≤ 〈(H − H0)〉0 . (35)



8 Препринт

where A0 is the Helmholtz free energy of the reference system.
Choosing the hard-sphere system to be a reference system and using

the upper limit of this inequality we recover HTA

βA

V
=

βAHS

V
+ 2πβ

∑

i

∑

j

ρiρj

∫
∞

0

drr2Vij (r) gHS
ij (r). (36)

where gHS
ij (r) is the hard-sphere radial distribution function. Substitut-

ing into (36) expression for the pair potential (34) we have

βA

V
=

βAHS

V
(37)

−2πβε0
∑

i

∑

j

ρiρj

NY∑

n

M∑

m

(−1)m−1

zn

A
(nm)
i A

(nm)
j G̃HS

ij (zn) .

where G̃HS
ij (zn) is the Laplace transform of hard-sphere radial distribu-

tion function

G̃
(HS)
ij (zn) = eznσij

∫
∞

0

drre−znrg
(HS)
ij (r). (38)

We will be using here Percus-Yewick approximation for hard-sphere radi-
al distribution function, since analytical expression for its Laplace trans-
form is known [20,21]

G̃
(HS)
ij (zn) =!!!![1] =

∆

z2
nD̃

(n)
0

{
zn

[
σij + σiσj

π

4∆
m2

]
+ 1 +

π

2∆
m3

+
πzn

2∆

(
m

(n)
2 − 2σijm

(n)
1 + σiσjm

(n)
0

)}
, (39)

where

D̃
(n)
0 = ∆2 − 2π

zn

(
1 +

1

2
πm3

)(
m

(n)
0 +

1

2
m2

)

−2π

{
∆m

(n)
1 +

1

4
π

[
m

(n)
2

(
m2 + 2m

(n)
0

)
−
(
m

(n)
1

)2
]}

, (40)

ml =
∑

k

ρkml(k); ml(k) = σl
k, (41)

m
(n)
l =

∑

k

ρkm
(n)
l (k); m

(n)
l (k) = σl

kϕ (zn, σk) , (42)

∆ = 1 − πm3/6, (43)
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ϕ (zn, σ) =
1

z2
n

(
1 − znσ − e−znσ

)
(44)

To extend the expressions for thermodynamical properties for poly-
disperse case it is convenient to represent expression for Helmholtz free
energy (38) in terms of the moments. Introducing in addition to already

existing moments ml and m
(n)
l one more

m
(nm)
l =

∑

k

ρkm
(nm)
l (k); m

(nm)
l (k) = σl

kA
(nm)
k , (45)

we have

βA

V
=

βAHS

V
− 2πβε0

NY∑

n

M∑

m

(−1)m−1Q
(nm)
0

z3
nD̃

(n)
0

(46)

where

Q
(nm)
0 =

[
∆ + π

(
m3 +

1

2
znm

(n)
2

)][(
m

(nm)
0

)2

+
(
m

(nm)
1

)2
]

+ zn

(
∆ − πm

(n)
1

)
m

(nm)
0 m

(nm)
1 . (47)

Differentiating expression for Helmholtz free energy (46) with respect
to the density we will have the following expression for the chemical
potential

βµk =
∂

∂ρk

(
βA

V

)
= βµ

(HS)
k − 2πβε0

NY∑

n

M∑

m

(−1)m−1

z3
nD̃

(n)
0

(
∂Q

(nm)
0

∂ρk

− Q
(nm)
0

z2
nD̃

(n)
0

∂D̃
(n)
0

∂ρk

)
, (48)

where

∂Q
(nm)
0

∂ρk

=
1

2
π

(
5

3
m3(k) + znm

(n)
2 (k)

)[(
m

(nm)
0

)2

+
(
m

(nm)
1

)2
]

+2
[
m

(nm)
0 m

(nm)
0 (k) + m

(nm)
1 m

(nm)
1 (k)

] [
∆ + π

(
m3 +

1

2
znm

(n)
2

)]

−πzn

(
1

6
m3(k) + m

(n)
1 (k)

)
m

(nm)
0 m

(nm)
1

+zn

(
∆ − πm

(n)
1

) [
m

(nm)
1 m

(nm)
0 (k) + m

(nm)
0 m

(nm)
1 (k)

]
, (49)
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1

2π

∂D̃
(n)
0

∂ρk

=
1

3
πm3(k)

[
1

2
m

(n)
1 − 1

zn

(
m

(n)
0 +

1

2
m2

)]

− ∆

(
1

6
m3(k) + m

(n)
1 (k)

)
(50)

−
(

1

2
m2(k) + m

(n)
0 (k)

)[
1

zn

(
∆ +

1

2
πm3

)
+

1

2
πm

(n)
2

]

− 1

4
πm

(n)
2 (k)

(
m2 + 2m

(n)
0

)
− 2m

(n)
1 m

(n)
1 (k).

The pressure P of the system can be calculated invoking the following
general relation

βP = β
∑

k

ρkµk − βA

V
(51)

Here µHS,k and PHS are the hard-sphere chemical potential and
pressure, which in this study is represented by the Mansoori-Carnahan-
Starling-Leland approximation [22]

µHS,k = µid,k + µex
HS,k, (52)

where

βµex
HS,k =

βAex
cs

N
+

(
m2

m3

)2 [
3σ2

k − m2

m0m3

(
m3 + 2m0σ

3
k

)]
ln ∆

−πσk

2∆

[
1

3

(
m3

2

m0m2
3

− 1

)
σ2

km0 − m2 − σkm1

]

− πm2

2m0∆2

[
m1

(
∆ − π

6
σ3

k

)
− σ2

km2

m3

]
(53)

+
πm3

2

6m2
3m0∆

[
∆
(
σ3

km0 + m3

)
− π

3
m3m0σ

3
k

]

and

βAex
cs

N
=

(
m3

2

m0m2
3

− 1

)
ln ∆ +

π

2∆

m2

m0

(
m1 +

1

3

m2
2

m3∆

)
. (54)

βPHS =
1

∆

[
m0 +

π

2∆
m1m2 +

π2

12∆2
m3

2 −
π3

216∆2
m3

2m3

]
(55)

Expressions for thermodynamical properties (46)-(55) are written in
terms of the moments (41)-(45) and their extension to the polydisperse
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case is straightforward. This goal can be achieved by substituting all
the sums with respect to the discrete species index k by integration
with respect to the multidimensional species index ξ = (σ, {Anm}). Here{
A(nm)

}
represent the set of all coefficients of the Yukawa potential (34).

Now for the moments (41)-(45) and for the pressure expression (57) we
have

ml = ρ

∫
dξ ml(ξ)F (ξ),

m
(n)
l = ρ

∫
dξ m

(n)
l (ξ)F (ξ),

m
(nm)
l = ρ

∫
dξ m

(nm)
l (ξ)F (ξ) (56)

and

P = ρ

∫
dξ µ(ξ)F (ξ) − A

V
, (57)

where
ml(ξ) = σl

m
(n)
l (ξ) = σlϕ1(zn, σ)

m
(nm)
l (ξ) = σlA(nm) (58)

One can see, that our multi-Yukawa hard-sphere system treated in
the HTA belongs to the class of truncatable free energy models with
thermodynamic properties defined by 2MNY +3NY +4 generalized mo-
ments. Thus the formalism developed in the previous section can be used
to predict the phase diagrams of the polydisperse version of the model.

4. Results and discussion

To illustrate the theory developed above and to verify its accuracy we
consider two versions of polydisperse fluid. The first one is represented by
polydisperse one-Yukawa hard-sphere mixture with factorizable Yukawa
potential and the second one by polydisperse mixture of Lennard-Jones
(LJ) particles. Both system were studied resently using mean spherical
approximation (MSA) in the case of one-Yukawa model [15] and using
Monte-Carlo simulation method in the case of LJ model [4,12].
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4.1. One-Yukawa hard-sphere model

In the one-Yukawa case all the coefficients A
(nm)
i are equal zero, except

A
(11)
i , i.e. A

(11)
i = Zi/

√
znσ0. We will be using here HTA approximation

and compare their results with results of more advanced MSA.
For the sake of simplicity we have chosen the distribution F (σ, Z),

which strongly correlate the size σ and the ’charge’ parameter Z of the
particles

F (σ, Z) = f(σ)δ

(
Z − Z0

σ2

〈σ2〉

)
. (59)

This choice states that the charge is proportional to the surface of the
particles. For f(σ) we have chosen the Beta-distribution, given by

f(σ) = σ−1
m B−1(α, β)

(
σ

σm

)α−1(
1 − σ

σm

)β−1

Θ(σm − σ)Θ(σ) (60)

Here B(α, β) is the beta function [23], α and β are related to the first
(σ0 = 〈σ〉) and the second (〈σ2〉) moments of f(σ) by

α =
σm − σ0 (1 + Dσ)

σmDσ

; β =

(
σm − σ0

σ0

)
α (61)

with Dσ = 〈σ2〉/σ2
0 − 1.

We present results for the phase diagram of a system, which is charac-
terized by a parent distribution function f0(σ) represented by the Beta-
distribution (60) with Dσ = 0.02 and σm = 2σ0. The screening length
of the Yukawa potential was chosen to be zσ0 = 1.8. In what follows the
temperature T and density ρ of the system will be represented by the
dimensionless quantities T ∗ = kT/(ε0Z

2
0 ) and ρ∗ = ρσ3

0 , respectively.
In Figure 1 we show the phase diagram of the one-Yukawa system

in the (T ∗, ρ∗)-plane obtained using MSA and HTA theories, which in-
cludes cloud- and shadow-curves, and critical binodals. For the critical
point MSA gives T ∗

cr,MSA = 1.343 and ρ∗cr,MSA = 0.356. Parameters of
the critical point, which follow from the HTA are T ∗

cr,HTA = 1.405 and
ρ∗cr,HTA = 0.388. For the reference we have added the phase coexistence
curve for a one component system, treated as well in the MSA and HTA,
characterized by a diameter σoc = σ0 and a ’charge’ parameter Zoc = Z0.

Both theories provide with quantitatively close predictions for the
phase behavior of the model. Polydispersity do not change much the
relation between MSA and HTA phase diagrams, i.e. in both monodis-
perse and polydisperse cases HTA shifts the MSA critical temperature
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towards ≈ 4.5% higher values and MSA critical density towards ≈ 4%
lower values. Information about the composition of the coexisting phases
and fractionation effects can be extracted from the distribution functions
of the two daughter phases. For the two selected pairs of points on the
phase coexistence curves (C1, C2 and E1, E2) at T ∗ = 0.9 (Figure 1)
the daughter distribution functions, f1(σ) and f2(σ), together with the
parent distribution function, f0(σ), are shown in Figures 2 and 3, re-
spectively. For the points C1 and C2, which are located on the critical
binodal (ρ∗(0) = ρ∗cr) the gas phase on average has smaller size particles,
than the liquid phase. Points E1 and E2 are located on the cloud- and
on the shadow-curve: by definition f1(σ) = f0(σ) and one can see a sub-
stantial shift of the maximum of f2(σ) towards larger particles. In both
cases results of the HTA and MSA almost coincide. In Figures 4 and 5
we show the evolution of the mean size of the particles 〈σ〉i and degree
of polydispersity Dσ;i

〈σn〉i =

∫
∞

0

dσfi(σ)σn, Dσ;i =
〈σ2〉i
σ2

0

− 1, (62)

along the shadow curve. Here n = 1, 2; n = 1, 2. Both theories predict
the same qualitative behavior with a certain quantitative difference due
to the difference in predicting the critical temperature. With the temper-
ature decrease one can see a strong increase in the mean size of the fluid
phase particles and a slight decrease in the mean size of the gas phase
particles (Figure 4). The width of both daughter distribution functions
is smaller than that of the parent distribution function. One can see a
strong decrease of the width of the liquid phase distribution function
due to the temperature decrease. At the same time the width of the gas
phase distribution function remains close to that of the parent phase.

4.2. LJ model

We will follow the previous studies [4,12] and consider polydisperse mix-
ture of the LJ particles with the following pair potential

VLJ(r; σ1, σ2) = 4ε(σ1, σ2)

[(σ12

r

)12

−
(σ12

r

)6
]

, (63)

where σ12 = (σ1 + σ2)/2 and in the computer simulation studies this
potential was terminated at r > r(c)(σ1, σ2) = 2.5σ12. LJ diameter σ was
chosen to be distributed according to the gamma (Schultz) distribution
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[24]

f(σ) =

(
γ + 1

σ0

)γ+1
σγ

Γ(γ + 1)
exp

[
−γ + 1

σ0
σ

]
, (64)

where σ0 is the average particle diameter, Γ(z) is the gamma function
and γ is related to the distribution function width Dσ, i.e. γ = 1/Dσ−1.

Two versions of polydisperse LJ mixture have been studied earli-
er by the MC simulation method. In the first version the LJ energy
parameter was assumed to be independent of the sizes of the parti-
cles [4], i.e. ε(σ1, σ2) = ε0. In the second version [12] ε(σ1, σ2) was cho-
sen to have the following functional dependence: ε(σ1, σ2) = σ1σ2. In
both cases LJ potential (63) was substituted by the multi-Yukawa po-
tential (34) with the hard-sphere sizes equal to the LJ particles sizes.
Yukawa coefficients, which in polydisperse case become a functions of

σ, i.e. A
(nm)
i → A(nm)(σ), were calculated via the fitting procedure,

described in the Appendix A.
To account for the truncation of the LJ potential Yukawa potential

(34) was terminated at r
(c)
ij = 3σij . The key integral of the HTA approach

(36) was calculated using the following approximation

∫
∞

0

drr2θ(r
(c)
ij − r)Vij (r) gHS

ij (r) =

=

∫
∞

0

drr2Vij (r) gHS
ij (r) −

∫
∞

r
(c)

ij

drr2Vij (r). (65)

where θ(. . .) is the Heaviside step function.
As a result additional terms, which contain 3MNY new generalized

moments, appear in the expressions for the chemical potential (48) and
pressure (51). The final expressions for the chemical potential µ(tr) and
pressure P (tr) of the system with truncated Yukawa potential are

βµ
(tr)
k = βµk + β∆µ

(tr)
k , P (tr) = P + ∆P (tr), (66)

where µk and P follows from expressions (48) and (51), respectively, and
expressions for ∆µk and ∆P are presented in the Appendix B.

Our choice for the distance of the Yukawa potential truncation is

due to the simplicity reasons, since the other choices for r
(c)
ij will more

substantially increase the number of the moments in the expressions for
the chemical potential and pressure (66).
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4.2.1. Polydisperse LJ mixture with size polydispersity only

Polydisperse LJ mixture in question was studied using multi-Yukawa pair
potential (34) with NY = 8, M = 2 and exponents σ0zn = z0k

(n−1),
where z0 = 0.896 and k = 2.072. All calculations were carried out
with the parent distribution function represented by Schultz distribu-
tion (64) with γ = 5 (Dσ = 0.1(6)). Similar as in the MC simulation
studies [4] distribution function was terminated at σc = 3σ0 and nor-
malized appropriately. As a results LJ potential (63) was fitted by the
eight-Yukawa potential (34) for the values of the diameter σ from the
interval 0.2σ0 < σ < 3σ0. Yukawa potential coefficients A(nm)(σ), which
follow from the fitting procedure are collected in the Appendix A. The
quality of the fitting procedure can be seen in Figure 6, where we com-
pare original LJ potential and corresponding eight-Yukawa potential for
several different values of σ.

In Figure 7 we compare HTA results against MC simulation results [4]
for the phase diagram of the LJ model at hand in the (T ∗, ρ∗)-plane,
where T ∗ = kbT/ε and ρ∗ = ρσ3

0 . For the reference on the same figure
we include results of the two methods for the phase diagram of the cor-
responding monodisperse system. Both MC and HTA predict increase
of the critical temperature and slight decrease of the critical density due
to polydispersity. For the critical point MC gives T ∗

cr,MC = 1, 28 and
ρ?
cr,MC = 0.21. The corresponding values predicted by the HTA for the

critical temperature is about 5% larger (T ∗

cr,HTA = 1.344) and for the
critical density is about 8.6% smaller (ρ∗cr,HTA = 0.192). For the cloud-
and shadow-curve one can see reasonable agreement between HTA and
MC results with less accurate agreement for the liquid branch of the
shadow curve. In particular both methods predict location of the shad-
ow curve between the two branches of the cloud curve. In accord with
MC simulation predictions cloud- and shadow-curve obtained from HTA
almost coincide on the temperature-packing fraction plane (T ∗, η), where
η =

∫
∞

0
dσσ3f(σ) (Figure 8). Comparison of the theoretical and comput-

er simulation data for the daughter distribution functions of the liquid
and gas shadow curves (Figure 9) shows their close agreement. Reason-
able agreement was also find for the evolution of the mean size of the par-
ticles 〈σ〉 and degree of polydispersity γ along the shadow curve (Figures
10 and 11, respectively). Finally Figure 12 shows position of the critical
point on the temperature-packing fraction plane (T ∗, ηcr) at different
values of polydispersity parameter γ. Here HTA reproduces qualitative
behavior demonstrated by the MC simulation method with reasonable
semi-quantitative agreement between computer simulation and theoreti-
cal data. The difference in critical temperature is about 5% and in critical
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packing fraction is about 8%.

4.2.2. Polydisperse LJ mixture with size and interaction energy

polydispersity

LJ potential (63) with polydispersity in size and interaction energy was
fitted by the multi-Yukawa potential (34) with NY = 8, M = 2 and
exponents σ0zn = z0k

(n−1) for the values of σ from the interval 0.5σ0 ≤
σ ≤ 3.5σ0. All calculations were carried out for the parent distribution
function represented by Schultz distribution (64) with γ = 50 (Dσ =
0.0196). To prevent the appearance of arbitrarily large particles we follow
computer simulation studies [12] and terminate the distribution function
at σ = σc.

In Figure 13 we show the phase diagram for the LJ mixture at hand
as obtained from the HTA together with MC results for the cloud curves
at two different values of the upper size cutoff σc = 1.4σ0 and σc = 1.6σ0.
Both methods predict a substantial shift of the gas branch of the cloud
curve into the direction of larger temperatures caused by the different
values of σc. Quantitative agreement between theoretical and computer
simulation methods is less satisfactory with about 9% difference in the
critical temperature. Critical density as predicted by HTA almost coin-
cide with the MC critical density. Similarly different values of σc affect
the distribution functions of the coexisting phases (Figure 14), shifting
the liquid shadow phase distribution function into the direction of larger
particles. Here quantitative agreement between theory and MC simu-
lation method is not very good. In addition we calculate distribution
function of the liquid shadow phase at upper size cut off σc = 3σ0. In
agreement with the moment free energy method [12] liquid shadow phase
distribution function shows strong fractionation effects with additional
maximum appearing at σ = σc (Figure 14).

5. Concluding remarks

In this paper we propose HTA for the polydisperse multi-Yukawa hard-
sphere fluid mixture. We show that within HTA the model belongs to the
family of the “truncatable free energy models” with its thermodynamical
properties defined by the finite number of the generalized moments of
the distribution function. This property allows us to map the phase coex-
istence relations that are particularly complex for polydisperse systems
onto a coupled set of highly non-linear equations for the unknown mo-
ments of the daughter distribution functions. To validate the accuracy of
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the HTA we consider several models of polydisperse fluid and calculate
their full phase diagrams, which includes binodals, cloud and shadow
curves and distribution functions of the coexisting phases. In particular
we apply the theory to investigate the phase behavior of polydisperse
one-Yukawa hard-sphere mixture with factorizable Yukawa coefficients
and polydisperse LJ mixture with polydispersity in interaction energy
parameter and/or in size polidispersity. The former model was studied
recently utilizing more advanced MSA approach [7] and the latter mod-
el was studied using MC simulation method [4,12]. Results of the HTA
appear to be in reasonable agreement with corresponding results of the
MSA and MC. The accuracy of the HTA predictions ranges from the
semi-quantitative in the case of the phase diagram calculations, to quan-
titative in the case of the distribution function calculations. Although
the HTA approach proposed here is less accurate than MSA theory, it
is simpler and more flexible. This can make it to be a useful theoretical
method in the analysis of the phase behavior of different polydisperse
systems.
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A. Fitting of the Lennard-Jones potential

LJ potential (63) was fitted by the 8-Yukawa potential (34) using the
least square method to optimize the Yukawa coefficients A(nm)(σ). The
function

F
({

A(nm)(σi)
})

= (67)

=

Nσ∑

ij

Nr∑

k

[VLJ(rk, σ1,i, σ2,j) − V (rk, σ1,i, σ2,j)]
2
,

was minimized on a 3-dimensional regular grid formed by the variables
σ1, σ2, r in the intervals σmin ≤ σ1, σ2 ≤ σmax and σ12,ij ≤ r ≤ 3.5σ12,ij

with the number of points Nσ = 20 and Nr = 40. Here σmin = 0.2σ0

and σmax = 3σ0 in the case of LJ potential with size polydispersity only
and σmin = 0.5σ0 and σmax = 3.5σ0 in the case of the LJ potential with
size and energy polydispersity.
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B. Correction of the expressions for the chemical po-

tential and pressure due to the Yukawa potential

truncation

Substituting the integral in the expression for Helmholtz free energy
(36) by its truncated counterpart (65) and using the standard relation
between Helmholtz free energy, chemical potentials and pressure, we have

∆µ
(tr)
i = 4πε0

∑

n

∑

m

(−1)m

zn

A
(nm)
i e−znσi

[(
m̃

(nm)
0 − m

(nm)
0

zn
2

(68)

+
m

(nm)
1

zn

)(
1 +

3znσi

2

)
+

3zn

2

(
m̃

(nm)
1 − m

(nm)
1

zn
2

+
m

(nm)
2

zn

)]

∆P (tr) = −2πε0
∑

n

∑

m

(−1)m

zn




(

m̃
(nm)
0 − m

(nm)
0

zn
2

+
m

(nm)
1

zn

)2

(69)

+ 3zn

(
m̃

(nm)
1 − m

(nm)
1

zn
2

+
m

(nm)
2

zn

)(
m̃

(nm)
0 − m

(nm)
0

zn
2

+
m

(nm)
1

zn

)]
,

where 2MNY new generalized moments m̃
(nm)
l have been introduced:

m̃
(nm)
l =

∑

k

ρkm̃
((nm))
l (k), (70)

m̃
(nm)
l (k) = ρkσl

kϕ (zn, σk)A
(nm)
k , l = 0, 1

and other MNY additional m
(nm)
2 moments defined in (58) appeared.
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shadowcloud

ρ∗

T ∗

C2
C1 E2

E1

0.80.60.40.20

1.5

1.4

1.3

1.2

1.1

1

0.9

Figure 1.

Phase diagram of polydisperse one-Yukawa hard-sphere mixture, includ-
ing cloud and shadow curves (as labeled) and critical binodals. HTA
results are represented by the solid lines and MSA results by the dashed
lines. Two pairs of points are marked on the curves: the points E1 and
E2 are localized on the cloud curve and shadow curves, respectively, and
the points C1 and C2 are localized on the gas branch and liquid branch of
the critical binodals, respectively. For the reference we include the phase
diagram of corresponding monodisperse one-Yukawa model with dotted
line representing results of the HTA and dashed-dotted line representing
results of the MSA. Filled circle on the top of each binodal denote the
position of the critical points.
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σ/σ0

f(σ)

f0(σ)

f2(σ)

f1(σ)

21.81.61.41.210.80.60.4

4

3.5

3

2.5

2

1.5

1

0.5

0

Figure 2.

Parent [f0(σ)] and daughter [f1(σ) and f2(σ)] distribution functions for
polydisperse one-Yukawa hard-sphere mixture investigated for the points
C1 and C2. HTA results are represented by the solid line and MSA results
by the dashed line.
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σ/σ0

f(σ)

f2(σ)f1(σ) = f0(σ)
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4

3.5

3

2.5

2

1.5

1

0.5

0

Figure 3.

As in Figure 2 for the points E1 and E2.
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〈σ〉/σ0

T ∗

1.61.51.41.31.21.110.90.8

1.5

1.4

1.3

1.2

1.1

1

0.9

Figure 4.

〈σ〉i, i = 1, 2 as defined in Eq. (62) along the shadow curve for the
polydisperse one-Yukawa mixture. Dashed lines – gas phase (i = 1),
solid line – liquid phase (i = 2). The upper curve represents HTA results
and the lower curve – MSA results. Filled circles denote the position of
the critical points.
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Dσ

T ∗

0.0220.020.0180.0160.0140.0120.010.0080.0060.004
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1.2

1.1

1

0.9

Figure 5.

As in Figure 4 for Dσ;i, i = 1, 2.
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r/σ0

V ∗(r; σ1, σ2)

43.532.521.510.50

0

-0.2

-0.4

-0.6

-0.8

-1

Figure 6.

LJ potential (63) for the model with size polydispersity only (dashed
lines) and its 8-Yukawa fit (solid lines) for σ1 = σ2 = 0.5σ0, σ0, 1.5σ0.
Both potentials are scaled by the value of the LJ interaction parameter
ε0.
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ρ∗

T ∗

0.70.60.50.40.30.20.10

1.4

1.35
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1.25

1.2

1.15

1.1

1.05

1

Figure 7.

Phase diagram of polydisperse LJ mixture with size polydispersity only.
Lines represent predictions of the HTA and symbols represent predictions
of the MC simulation method [4]. Cloud curve is denoted by empty circles
and solid line, shadow curve is denoted by empty rectangular and dashed
line. For the reference the phase diagram of monodisperse version of the
model (empty triangulares and dotted line) is included. Filled circles and
crosses show position of the corresponding critical points.
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Figure 8.

As in Figure 7 in temperature T ∗ vs packing fraction η = πm3/6 coor-
dinates.
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Figure 9.

Distribution function of the shadow gas phase (empty triangles and sol-
id line) and shadow liquid phase (empty rectangular and solid line) at
T ∗ = 0.91T ∗

cr for polydisperse LJ mixture with size polydispersity only.
Lines represent results of the HTA and symbols represent MC simulation
results [4]. Dashed line denote distribution function of the parent phase.
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Figure 10.√
Dσ;i, i = 1, 2 with Dσ;i as defined in Eq. (62) along the shadow

curve for polydisperse LJ mixture with size polydispersity only. Results
of the HTA are represented by the lines and results of the MC simulation
method [4] by the symbols. Dashed line and empty rectangular denote
the gas phase (i = 1), solid line and empty circles denote the liquid phase
(i = 2). Filled circle and cross show position of the critical point.
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Figure 11.

〈σ〉i, i = 1, 2 as defined in Eq. (62) along the shadow curve for polydis-
perse LJ mixture with size polydispersity only. Results of the HTA are
represented by the lines and results of the MC simulation method [4] by
the symbols. Dashed line and empty rectangular denote the gas phase
(i = 1), solid line and empty circles denote the liquid phase (i = 2).
Filled circle and cross show position of the critical point.
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Figure 12.

Position of the critical point on T ∗ vs η plane. Filled circles denote MC
simulation results [4] and empty circles denote results of the present
theory.
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Figure 13.

Phase diagram of polydisperse LJ mixture with size and energy param-
eter polydispersity. Lines represent predictions of the HTA and symbols
represent predictions of the MC simulation method [12]. Cloud curve
at σc = 1.4σ0 is denoted by empty circles and lower solid line, cloud
curve at σc = 1.6σ0 is denoted by empty rectangularand higher solid
line. Shadow curves are denoted by the dashed lines.
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Figure 14.

Distribution functions of the shadow liquid phase at T ∗ = Tcr,MC as
predicted by MC simulation method [12] (symbols) and at T ∗ = Tcr.HTA

as predicted by HTA (solid lines). σc = 1.4σ0 (empty triangles and solid
line), σc = 1.6σ0 (empty circles and solid line) and σc = 1.8σ0 (empty
rectangular and solid line) from the top to the bottom at σ = σ0 and
σc =. Dashed line represents results of the HTA at σc = 3σ0.


