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Amnotarnis. V crarTi y3arajbHeHO PO3B’I30K CepeHbO-CHEPUIHOrO HAb-
JIMZKEHHS 1T 6araTOKOMIIOHEHTHOT 0araTor0KaBIBCHKOL PIJIMHNA TBEPIIX
cdep [ist MO INCIEPCHOTO BUNAJIKY. Y 3arajJbHEHHsI BUKOPUCTOBYE PO3-
KJIaJ] TI0 OPTOrOHAJBHUX WOJIHOMAaX, 3aCTOCOBaHWit y poborax Jlamgo
(Phys. Rev. E 54, 4411(1996)). IIpeacraBieno 3aMKHY T aHaiTHIH] BH-
pa3u i CTPYKTYPHUX Ta TEPMOIMHAMIYHUIN BJACTHBOCTEH CUCTEMH, SAKi
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BOCTI OJTHO Ta JIBOIOKaBiBCHKOI MOJIEJII.

Solution of the mean spherical approximation for polydisperse
multi-Yukawa hard-sphere fluid mixture using orthogonal poly-
nomial expansions

Yurij V. Kalyuzhnyi and Peter T. Cummings

Abstract. The Blum-Hgye solution of the MSA for multi-component
multi-Yukawa hard-sphere fluid is extended to a polydisperse multi-
Yukawa hard-sphere fluid. Our extension is based on the application of
the orthogonal polynomial expansion method of Lado (Phys.Rev.E 54,
4411(1996)). Closed form analytical expressions for the structural and
thermodynamic properties of the model are presented. They are given in
terms of the parameters, that follow directly from the solution. By way
of illustration the method of solution is applied to describe the thermo-
dynamic properties of one- and two-Yukawa versions of the model.
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1. Introduction

Polydispersity is an intrinsic property of a vast majority of colloidal
and polymeric materials. In contrast to atomic fluids or fluids of small
molecules, most complex fluids consist of the many species of particles,
each being unique in its size, charge, shape, or other properties. Under-
standing of the effects of polydispersity on the structure and thermody-
namic properties of such systems, in particular on their phase behavior
and fractionation are of crucial importance in numerous technological
applications.

Most of the concepts currently used to study polydisperse systems
view such systems as a mixture with an infinite number of components,
each of them characterized by a continuous variable &, which is distribut-
ed according to a certain distribution function f(§). Theoretical descrip-
tion of the structural and thermodynamic properties of such fluids, using
the methods of the modern liquid state theory, represents a nontrivial
problem. One of the possibilities in solving the problem is to use an
analytical solution of the corresponding integral equation approxima-
tion. This possibility was used to describe the properties of polydisperse
hard-sphere fluid utilizing Percus-Yewick (PY) approximation [1-4] and
polydisperse Yukawa hard-sphere fluid using mean spherical approxima-
tion [5—7] (MSA). More recently the MSA was used to study the phase
behavior of polydisperse hard-sphere mixtures with Yukawa [8], Coulom-
bic [9-11], and sticky [12] interactions outside the hard core. In the case
of Yukawa and sticky potentials application of the MSA is restricted to
the systems with factorized version of interaction, i.e. the matrix of the
coeflicients describing the strength of the corresponding interaction is
factorized into the product of two vectors.

In the present study we are removing this restriction for the system
with Yukawa interaction. We propose here an extension of the Blum-
Hgye solution of the MSA [13,14] for multi-component multi-Yukawa
hard-sphere fluid to polydisperse multi-Yukawa hard-sphere fluid. To
reach the goal we use the orthogonal polynomial expansion method, de-
veloped recently [15,16]. The paper is organized as follows: In Section
IT we introduce the model and MSA closure relations and in Section IIT
we present the solution. Expressions for thermodynamic and structural
properties written in terms of the solution obtained in the previous sec-
tion are derived in Section IV and in Section V we present and discuss
numerical results for one- and two-Yukawa versions of the model, which
illustrate our solution. Finally our conclusions are collected in Section
VI
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2. The model and MSA closure relation

We consider a polydisperse hard-sphere multi- Yukawa fluid mixture at a
temperature T (f = 1/kpT) and number density p. The pair potential
acting between particles of species £; and &2 is

e :{ Ly, K™, &)e SRS o

o(&1,82) <71 < oo,

where 0(&1,&2) = [0(&1) +0(£)] /2, o(€) is the hard-sphere diameter
of the particles of species &, K (&,&) = Boél)eén)A(")(&,fg), e
is the energy parameter, 0(()1) is the average hard-sphere diameter and
A (&1, &2) is the dimensionless parameter characterizing the intensity of
Yukawa interaction between the particles of species & and &». The par-
ticles of species £ are distributed according to the distribution function

f(&).
For the present model MSA theory consists of the Ornstein-Zernike

(OZ) equation

h(r12;€1,&2) = c(ri2;1,€2)
+ P/ désf(fa)/drs (113561, €3)h(rs2; €3, €2) (2)
0

and boundary conditions

{ o(ri&1,6) = %Zn K(n)efzn[rfa(ﬁhﬁz)]’ 0(&,&) <r < oo 3)
h(r;&,&) =-1, 0<r<o(&,&),

where h(r; &1, &) and ¢(r; &1, &) are the total and direct correlation func-
tions, respectively. OZ equation (2) together with the MSA closure rela-
tion (3) represent closed set of equations to be solved.

3. Solution op the MSA

3.1. Extension of the Blum-Hgye solution

Formal solution of the set of equations (2) and (3) can be obtained by
generalizing solution of the MSA for the multi-component multi-Yukawa
hard-sphere fluid derived by Blum and Hgye [13,14]. Their solution is
given in terms of the factor correlation @-function, which is obtained
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using the Baxter Wiener-Hopf factorization method [17]. Extension of
this solution to polydisperse hard-sphere Yukawa fluid is rather straight-
forward and thus we will present here only the final results. For the
model at hand the factor correlation function Q(r;&1,&2) can be written
as follows

Q(r;&1,&) = QO (r &1, &) + Y DM (&, &p)e*nlrolenl - (g)

where in the interval A(&,&1) <r < o(&1,62)

QU(r;&1,&) =1r—o(, &) — A&, &) A&)
+[r—o(&1,&) B(&) (5)
+32, C (&1, &) [emmnlrmotenel 1]

Outside this interval Q) (r; &1, &) = 0. Here A(&1,&) = 1[o0(&) — (&)
and Q-function parameters A(¢), B(€) and C™) (&, &) are determined

by the unknowns of the problem G((&1,&) and D™ (&, &), which
satisfy the following set of equations

D€, &) / des [(E5)D™ (€1, £5)Q >(52,§3>=—K<” (1.62)
GO (61, 6) - / des F(E5)CM (61,6)0M (3.62) = F™(€1,62), (6)

where
FO,6) = % [ 1+ ao(e)]| Ale) + - B(&)
-2 M), ™)
QM (&,&) =MW (&)A(&L) + ¢ ™ (&)B(&)
+3,, [C0 (&, &)Q0m™) (&) 8)
+ D (&, &)™) (51)]
with

90 = % {1 5200(@ - 14 5200| 0} ©

§(E) = = [1- za0(€) — e (&)] . (10)

Zn
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1

Zn + Zm

e - @] - S i-emig]

Zn

TEGE

e™ (&) = exp [~ 20 (€)), eM(€) = exp [zq0(6)].  (12)

Here G(™ (&1,&) = G(s;51,52)63”(51’52)\3:2” and G(s;&1,&) is the
Laplace transform of the radial distribution function g(r; &1, &2), i.e.

Gls: 61, ) = /0 dr rg(r: &1, €2)e". (13)

_ Relations between parameters A(§), B(), C™ (&, &) and unknowns
G(€1,&2) and D (€4, &) are

B = [o(0) + 2ZN<“><5>] , (14)
A© =Tt teBO+Y M“”(é)] , (15)
where -

A=1-Tg, (16)
= p /0 d¢ F(€)o™(€), (17)
NM(&) =p /Ooodéz F(&)CMN(&)DM (&) (18)
M) = p [ des FEQICWM (€D 19)

COW (g) — 2mp /0 s F(€) G (1, )6 (€)
+Zi2 [1 + %zno(&)} , (20)
COM (g1) = 2mp /0 "t F(@)0 (61,6)67) (E) - — (&), (1)
8 = — {11+ zao@) () 1} (22)
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Assuming that species variable £ takes a discrete set of values, i.e.
E=1,2,...,4,..., M, we have

M
£ = Z 2:6(i — €), (23)

where §(z) is the Dirac delta-function and z; is the fraction of the par-
ticles of species 7. In this case solution outlined above reduces to the
original solution of Blum and Hgye [13,14].

Solution of the set of equations (6) will be obtained using orthogonal
polynomial expansion technique developed by Lado [15].

3.2. Orthogonal polynomial expansion method of solution

Following the method of Lado [15] we expand all {-dependent functions
in terms of the orthogonal polynomials

Pa(§) = chfp (a=0,1,2...), (24)
p=0

which are associated with the distribution function f(§). For a given
functions x(§) and y(&1, &) we have

2(€) =Y wapal§), (25)
a=0

Y(€,&) = D Yarpa(S)ps(&2), (26)
a,b=0

where the expansion coefficients x, and y,; are defined by the following
relation

20 = /0 e F©a(E)pale). (27)

Yab = /000 d&1dSa f(€1)f(&2)y (€1, §2)pa(§1)p6(E2)- (28)

Now the set of equations (6) can be written in terms of the expansion
coeflicients G’gg) and D((IZ), which represent unknowns of the problem

G (&1,&) and DM (€, &)

500 (54— p@f) = ZK .
> G(n) (5 b — PQ(:) LF(") ’ (29)
cUac c c

2w~ ab
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n 1 1 .
F(Eb) -2 <5a0 T %% > Ay + _6aoBb Z C‘(Lb ', (30)

zn+z

A = WA,
~(m)
mn €c ( ) de
+ Jimn) 4 DYV ¢ 31
;%: g 2+ 2 db ]q (31)
with
1 1 1
¢((1n) = 2_3 [5(10 - §Zn0'((11) - Z <6d0 + 5271 (1)> eg )qgc] ) (32)
n dc
o) = L (520 2aof — el (53)
1 1
(mn) _ (m) (n)) _ = _ ™)
aimm = —— ( )7 (Bo—e) 39
and
B, = % <o§1> +2 ZN(@) : (35)
Aa= T | dao + 56 Ba + > MM, (36)
n n 27T ~(n n n
C((zb) = _Dt(zb) + P Z G;C)ng)eg )qu (37)
n ped
with
Cm = pog™, (38)
N = pZ DR, (39)
AR (40)
n ~(n n ]-
OV = 2mp 3" EW i + = <5a0 + 5%0&“) , (41)
d n
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Here ¢b¢ are the expansion coefficients of the product py(£)pe(€), i.e.
b+c

Z apa(é (43)

For these coefficients we have the followmg recurrent relation

b+c
i < Z q ) (b+c—a) (44)

p=a+1

with g5, = djs../ep}c and
a a
b z Pn z Dn z Pn
d,f =0 ch C’;,d + 65 Z CZ CZ,d + 03 Z CZ CZ,d, (45)
d=0 d=a—py d=a—pn
where
01 =190 (pn - a) )

0 = 0(p; — a)f(a — pp, — 1),
O3 = g(pn + Pz — a)@(a — Pz — ]-)a
O(x) is the Heviside step function

0, z <0
O(x) = { 1 2> 0 (46)

and p,, = min(b, ¢), p, = max(b,c).

Thus the solution of the MSA (3) for polydisperse multi-Yukawa
hard-sphere fluid is reduced now to the solution of the set of algebraic
equations equations (29) for the unknown coefficients Gg’g) and Dg’g).
The input parameters of this set of equations involve orthogonal polyno-
mial expansion coefficients for the quantities K (&1, &), o(€), e™(€)
and é(™(¢), which define the potentials for the model fluid under con-
sideration. We have

KD - /0 d1d€s F(6)F(E)K ™ (61, &)pa(@)pn(&a)s  (47)

o™ = /0 e F(©)0m(E)pal©), (48)
o = / e £ (©)pae), (49)
&m = /0 de FE)F™ (€)pal©). (50)

These coefficients can be easily calculated as soon as the above potential
model parameters and distribution function are given as functions of &.
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4. Thermodynamic and structure properties

Once the coefficients of the factor @Q-function are found the thermo-
dynamic and structure properties can be calculated. For the multi-
component multi- Yukawa hard-sphere fluid corresponding expressions in
terms of the @Q-function coefficients are derived by Blum and Hgye [13]
and in the form convenient for application presented by Arietta et.al. [18].
Here we will recast the latter version of these expressions in terms of the
orthogonal polynomial expansion coefficients of the constants in the fac-
tor @-function.

4.1. Thermodynamics

For the excess internal energy U(¢®) inverse isothermal compressibility
x !, virial pressure P?, energy pressure P(¢), Helmholtz free energy A

and chemical potential 1(€) we thus obtain

ﬂU(M) = —QFpQZZKab G, (51)

- —ﬂ(ap>6 i A (52)

B (P v - PHS) = gmp? {Zab ooy {gf{Z) (53)
+ 3. (gco + géi)) qé"’]
- % (C1 +G+ EC1C2)} +J,

5 (P~ Pus) = gmo {ZJ“ 9oe Z (067 ai® + o1 at)

abe
% [%CS (&Cs + 1) + %C1C2 (ZCS + 3) + 5(3] } +J, (54)

A—Aps L UE
= =

_3 (P@ - PHs) + %p (' = xus),  (55)
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—pz ZwZZK(n Gcb qbe

bep n
(2w ) + (a2 - o)

> (QueQoc — QL Q“’)H Pa(€)- (56)

B (&) — nus(§)]

_|_

Here g( 7) represent the contact values of the radial distribution function
(see below), subscript HS denote the corresponding quantity of polydis-
perse hard-sphere mixture,

= —prznZ[ < G(n nég’g))
1 (1)ZG (K(n é(’;)qc )‘| 7 (57)

. 1 A (n) S 5m) !
G — (_aF<"> +pG(")3Q(n)) (1-@") " 69)
27
G QM. aG ™ 3Q(ﬂ) OF () are the matrices with the elements ng ,
Qab , 0G Z), aQ(’g , 8Fab , respectively,

n 1 /2 1
8F{Eb) = 2 (Zn5a0 + 20(1)) Ap — 2—25aoBb
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~(n ]_ 3 3 ]- n) c
n n cd "

23
1 (n)_cd
t 3|0~ _6a0+z —5c0 €q a | Bo
1
+ ooam — —— - piMelm | ¢, (60)
;% b (2 +2m)° ¢
( ) x(m)
1 —e€
Q(m n) _ a
o4 Zn+2Zm | Zn+Zm +ZU a]
|2 =3 agelmgle (61)
Zn - b c a )
5 1 9 1 (2
Qab = —EUQ Ab — §O—a Bb (62)

- (e St -
pc

n

and

~(0 1 0 0
QY = oA — LoP B, (63)

4.2. Structure

Contact values for the radial distribution function g[o™(&1,&2); &1, &
are given by

o(&1,&)g [0 (&, 8):&4,86] = ZQEL‘;)Pa(&)Pb(&), (64)
ab

where

27Tg(ﬂ) 0'((11)14}, + 00 By — Z ZnCG(,Z)' (65)

For the Laplace transform of the radial distribution function (13) we
have

G(s:61, &)%) =" Gap(s)pa(&1)ps(&2), (66)

ab
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where expressions for the expansion coefficients G (s) follows from the
second of the equations (29) written for z, = s, i.e.

271G (s) = F(s) [1 - pQ(is)} - (67)

Here G(s), F(s) and Q(is) are the matrices with the elements Gop(s),
Fop(s) and Qup(is) and

1 1 1 Zm m
Fup(s) = = ((5(,,0 + 55(7&1)) Ay + géaOBb - Z Py Ct(lb )a (68)

Qab(is) %( )Ab + (,Og Bb + Z Z |: m)Q(m)

m  dc
é(m) (m)| d
c D m c
+ s+ 2, db P (69)

1 1 1
wagzggFm—5w9—226m+5w9)a@¢ﬂ, (70)

be
Pals) = 55 [0 = 50— ea(s)] ()
Q) (s) = - +1zm 6 — eus)] - é [Bu0 — €a(s)], (72)
eAQ=A dg FE)e= " p(£). (73)

5. Numerical calculations

5.1. Numerical solution of the set of equations for D{(;bl) and GEZZ)
via iteration

Solution of the set of algebraic equations (29) can be obtained by the
standard numerical methods, e.g. Newton-Raphson method. However in
the present study we propose an iterative method of solution, which in
spite of its simplicity appears to be very efficient. Keeping this goal in
mind we recast the set of equations (29) in the matrix form as follows

D = 2K [1 ) (Qm))T] B

s {1 ) pQ<n>} A ; (74)

G
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where D™, G Q(") and F(") are the matrices with the elements ng),
GS; , Q(n and Fab , respectively, and (.. ) denotes matrix transpose.

Our iteration loop consists of two steps. In the first step current
values of F(™ and Q(") are used to calculate D™ and G™ via the set
of equations (74). On a second step we insert these values of D™ and
G™ into the right hand side of relations (30) and (31) to get a new
estimate for F(") and Q n) ThlS iteration loop is repeated until self-
consistency of the unknowns D™ and G is achieved. For the initial
guess we have used the values of F(") and Q(") calculated in the limit
of infinitely high temperature. In this limit 5 — 0 and MSA (3) reduces
to Percus-Yewick approximation for polydisperse hard-sphere mixture.
Thus

n 1 1 1
FMO - > (5a0 + 52n0a> A 4 Z—aaoBgo), (75)
Q% =M AP + oM B (76)
with
40 _ 27 (5 o+ ol ) BO = T ()
« T A 2A ’ NG

Usually we start at relatively high temperature and gradually lower the
temperature until the state point of interest is reached. To be sure that
our solution is physical we monitor the smoothness of variation of the
solution variables D((f;) and GEJ}:’) while changing the temperature.

5.2. Gamma distribution

Solution of the MSA derived in Section 3 is quite general and can be
used to describe a polydisperse multi-Yukawa hard-sphere fluid with
any functional dependence of the potential model parameters (&) and
K™ (&1,£) on the polydispersity attribute ¢ and for any reasonable
choice for the distribution function f(£). For the sake of simplicity we
assume that the hard-sphere size of the particle completely defines its
species. i.e. the hard-sphere size takes the role of polydispersity attribute
¢ and the energy parameter K" (o, 05) and distribution function f(o)
become the functions of o. In this study the particle sizes are assumed
to follow the gamma (Schultz) distribution [19]

fu(o) = A(2 )Jaefo‘E", (77)
where T
o . 1
A(E,) . = o — a+

ICMP-06-02E 13

Here I'(z) is the gamma function and « is related to the distribution
function width D,

(2) 1
1= (78)
(1) 1+«

0

(o8”)

Orthogonal polynomials, associated with the gamma distribution are
represented by the associated Laguerre polynomials Lﬁf” (z), i.e.

pa(0) = PLY L (ay0), (79)
where 12
T(a+1)
plo) — | 2> ) . 80
@ {I‘(a +a+ 1)} (80)
For our choice of the distribution function (77) the orthogonal poly-
nomial expansion coefficients aé””, e&" and €, " are
(m) _ (_1\a 4(@) p(a),, —(a+m+1) m F(Oé +m+ 1)
o = (-1)"Ay Py o Ry (81)
ar 1
egln) — A(ZQ)P(EQ) Zn (a + Oé;:_ail , (82)
al (ag + 2p)
i “Tla+a+1)
(M — (1) AL p) L 83
é, A T
(=17 4x a!(ozz—zn)JrJrl (83)

5.3. Numerical results

To illustrate the solution of the MSA developed in the previous sections
we present here numerical results for the thermodynamical properties
(equation of state and internal energy) of the two versions of polydis-
perse Yukawa hard-sphere fluid. The first version employs one-Yukawa
hard-sphere potential and the second one uses two-Yukawa hard-sphere
potential. In all cases orthogonal polynomial expansions of the type rep-
resented by the expressions (25) and (26 were terminated at a = 10.
According to our investigation the contribution from polynomials with
a > 10 is negligible.

In what follows, the temperature T" and the density p of the system
will be expressed in terms of dimensionless quantities 7% = kT'/eoZ3
and p* = p(o (1)) , where ¢ is the depth of the Yukawa potential well
between the particles of the size 0(()1) and for the definition of Z, see
below.
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5.3.1. One-Yukawa polydisperse hard-sphere fluid

We have chosen the following one-Yukawa potential

0 0§7’§0’12

O(r;01,02) = { —eooél)mew(r*m) o12 <1 < 00, (34

where
Z(01)Z(02)
1+« (01 — 06”) (02 - 0(()1)) / (052))2

2
and Z(o) = Zyo?/ (0(()2)> . Here zo(()l) = 1.8, Zp is the average value of

Z (o) and parameter o defines degree of departure of the potential (84)
from the hard-sphere Yukawa potential with factorizable coefficients; the
latter is recovered at o = 0. Properties of polydisperse hard-sphere fluid
with factorized Yukawa potential have been studied earlier [5-8]. Our
choice for the Yukawa potential enables us to study the effects due to
the departure of the potential from its factorizable version.

In Fig. 1 we show the behavior of the coefficient A(o1,02) as a func-
tion of ¢ = 01 = 09 at different values of parameter co. With the increase
of a the difference between factorizable and non-factorizable versions of
the potentials substantially increases for larger hard-sphere sizes and
slightly increases for smaller hard-sphere sizes. At the same time inter-
action between the particles of the sizes close to their mean value 0(()1) is
unchanged. The latter feature of the potential (84) is build in to provide
a meaningful comparison of the properties of the systems with factoriz-
able and non-factorizable interaction. For the same values of «, as those
shown in Fig. 1, in Figs. 2 and 3 we present our results for the pres-
sure P* = %(oél))3ﬂp(e) and for the excess internal energy SU®) /V
as a functions of the density p* at T* = 1.17 and gamma distribution
width D, = 0.02. For the lower values of «, the pressure isotherms show
the presence of thermodynamic instability, i.e. with increasing density
the pressure decreases. However with increasing «, contributions from
the particles with low strength of Yukawa attraction increase and this
instability disappears, reflecting the increasing difference between fac-
torized and non-factorized versions of the Yukawa potentials. For similar
reasons, the excess internal energy becomes less negative with the in-
creasing values of a (Fig.3).

A(O’l,O'Q) = (85)
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5.3.2. Two-Yukawa polydisperse hard-sphere fluid

In the presence of double-layer and depletion interactions effective pair
potential between colloidal particles is strongly attractive on short dis-
tances and repulsive on long distances. This type of interaction can be
described by the two-Yukawa hard-sphere potential of the following form

00, 0<r <o
o)

(e

O(r;o1,00) =~ [6(()1)14(1)(01,02)6_21(T_”12) O19 <1 < 00 (86)
+ e(()Q)A(Q) (o1, 02)6*22(“"12)} ; B

where 6(()2) = € — e(()l), zla(()l) = 5, zgo(()l) = 4 and A(")(al,ag) =
Z™)(¢1)Z ™ (o3). To mimic depletion and double-layer interactions we

assume, that e(()l) > 0, e(()?) < 0and

2

(o g
ZW (o) = Zo—y Z® (o) = Zo—y- (87)
0o 0o

Thus it is assumed that depletion interaction is proportional to the hard-
sphere size of the particles [20,21]. For the double-layer interaction the
usual assumption on the proportionality of the particle charge to its
surface is used.

Figure 4 shows two-Yukawa potential (86) between the pair of the

particles of the same size 0(()1) at different values of e(()l). With the increase

of e(()l) one can see the increase of the potential barrier and its shift
to shorter distances. These peculiarities of the two-Yukawa potential
(86) can substantially affect the phase behavior of the model. In the
limiting case of a monodisperse fluid (D, = 0) the critical temperature
T exhibits non-monotonic dependence on the value of e(()l) (Fig. 5). In

the range of e(()l) from 1 to 7 the critical temperature decreases and for

e(()l) > 7 increasing e(()l) causes an increase in T,.. This effect can be seen
also from the behavior of the pressure isotherms, shown in Fig.6. While

for the low and high values of e(()l) one can observe the existence of a

thermodynamic instability, for intermediate values of eél) it disappears.
The excess internal energy (Fig. 7) increases with increasing e((]l) and for
e(()l) < 11 becomes positive in the whole range of the densities studied.
Finally in Figs. 8 and 9 we show the pressure isotherms and excess
internal energy for the model at hand at 7% = 0.298, e((]l) = 8 and
different values of the polydispersity parameter D,. Note that for the
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highest values of polydispersity parameter D, = 0.021, 0.025 we were
not able to find convergent solutions in a certain range of the densities.
For low and high degrees of polidispersity pressure isotherms show the
presence of thermodynamic instability, which disappears at intermediate
values of D,. Due to the increase of eél) in monodisperse case and D, in
polydisperse case the role of the particles with higher potential barrier
becomes more important, which causes similarity in the behavior of both
versions of the model at hand.

6. Conclusions

In this paper we have shown how to extend applicability of the MSA to
describe the structure and thermodynamical properties of polydisperse
multi-Yukawa hard-sphere fluid by combining the Blum-Hgye solution
of the MSA for multi-component multi-Yukawa hard-sphere fluid [13,14]
and the orthogonal polynomial expansion method of Lado et al. [15,16].
In a subsequent paper we are planning to apply the method developed
here to study the effects of polydispersity on the phase behavior and
fractionation of polydisperse Yukawa fluids.
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Figure 1.
A(o1,09) versus o = o1 = 09 at a = 5000, 200, 20, 5, 2, 1, 0 from the
bottom to the top at 0/0(()1) =15
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Figure 2.

Pressure isotherms of the one-Yukawa model at T« = 1.17, D, = 0.02
and « = 5000, 200, 20, 5, 2, 1, O from the top to the bottom at
p*=0.5

ICMP-06-02E 19

0 T T T T T T
05N\ OO O SOt SOOI PSR SO 4
b T N .
P~
15 s ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -
e S — -
205 S e D e e ]
R T s i ... -]
R
ab N
s i i i i i P
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Figure 3.

Excess internal energy of the one-Yukawa model at T+« = 1.17, D, = 0.02
and o = 5000, 200, 20, 5, 2, 1, 0 from the top to the bottom at p* = 0.5
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Figure 4.
Pair potential ®(r,01,02) of the two-Yukawa model at o1 = g9 = a(()l)
and e(()l) =1,23,4,5,6,7, 8,9, 10, 11, 12, 13, 14 from the bottom

to the top at r/o(()l) =12
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Critical temperature T7. of the two-Yukawa model versus eél) at D, =0

(solid line). Crosses denote the values of the temperature 7% and e

(1)
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used to calculate pressure and excess internal energy presented in Figs.

6 and 7
6

Figure 6.

Pressure isotherms of the two-Yukawa model at T = 0.35, D, = 0 and
eél) =1,2 3,4,5, 6,7 8 9, 10, 11, 12, 13, 14 from the bottom to

the top at p* =0.8
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Figure 7.

Excess internal energy of the two-Yukawa model at T« = 0.35, D, =0
and e(()l) =1,23,4,5,6,7, 8,9, 10, 11, 12, 13, 14 from the bottom
to the top at p* = 0.8
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Figure 8.

Pressure isotherms of the two-Yukawa model at T = 0.298, ¢,

0.2 0.4 0.6 0.8 1 1.2

(1)

=8

and D, = 0, 0.005, 0.01, 0.015, 0.018, 0.019, 0.02, 0.021, 0.025 from
the bottom to the top at p* =1
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Figure 9.

Excess internal energy of the two-Yukawa model at T+ = 0.298, eél) =38
and D, = 0, 0.005, 0.01, 0.015, 0.018, 0.019, 0.02, 0.021, 0.025 from
the top to the bottom at p* = 0.6
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