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Abstract. The Hubbard model for small size clusters is investigated. Us-
ing direct diagonalization of the small cluster Hamiltonian, an electronic,
magnetic and spin susceptibilities are calculated and their behavior at
low temperature is investigated. The temperature behavior of suscep-
tibilities for two- and three-site clusters is investigated for both center
and edge of the Brillouin zone. If at given concentration ground state is
polarized, a susceptibilities diverge following the Courier law and system
is transformed to the magnetically ordered state at 7" = 0.
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1. Introduction

Compounds with transition- and rare-earth metals (oxides, sulfides and
other) possess an unique physical properties and attract great attention
in the fields of practical applications and general-theoretical learning. Re-
garding the magnetic properties of such compounds, they are ferromag-
netic, ferrimagnetic, antiferromagnetic. The peculiarity of some of them
is in possibility of magnetic transitions which are followed by the change
of magnetic-order type under the external influence. According to the
electrical properties, transition- and rare-earth metal compounds may be
divided into four groups: insulators, metals, compounds which possess
a possibility of a metal-insulator transition (caused by external factors)
with simultaneous change of the magnetic properties and a magnetic-
disordered compounds in which a metal-insulator transition takes place
too. But at the same time, mechanisms of the exchange interactions at
the metal-insulator transition in such compounds are investigated in-
sufficiently and that is connected with the according of strong electron
correlation. In this connection there is a need for the investigation of
physics of such phenomena as ferromagnetism, antiferromagnetism etc.
by using the Hubbard model.

The Hubbard model [1-3] was originally proposed for the description
of correlations in narrow-band materials on a three-dimensional lattice.
It takes into account the main system characteristics namely electron
hopping and Coulomb interaction. Its two-dimensional version is often
considered as the minimal model for describing the copper oxide planes
in high-T, superconductors [4,5]. The one-dimensional Hubbard model
has an exact solution in terms of the Bethe-Ansatz [6], displays Luttinger
liquid and Mott insulator phases and has received much attention [7]. In
infinite dimensions an another exact solutions for Hubbard model were
obtained within Dynamical Mean Field Theory [8].

In other dimensions, for which there are no exact solutions, a great
variety of approximate treatments have been proposed in order to ac-
commodate a suitable theoretical framework. In this connection, much
efforts were used to obtain exact ground states of few electrons for the
Hubbard model on a finite size cluster (see, Ref. [9] and references there-
in) from which the ground state energy for the low-dimensional cases
can be estimated using a concept of dimensional scaling [10].

The last period has provided new motivations for the further investi-
gations of the systems containing small number of particles confined in
a device or unit, as for example in the case of quantum dots, quantum
well structures, mesoscopic systems, experimental entanglement, etc., for
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which the knowledge of the ground state is not enough. Consideration of
the excited states is much more complicated problem and at the moment
it is studied in detail only for the two-site [11-13] and four-site [14] clus-
ters. In Ref. [15] the linear chains and rings containing two to six atoms
were studied numerically and it was found that with increase of the
cluster size the thermodynamic properties of the model at half-filling ap-
proaches its one-dimensional limit whereas magnetic susceptibility shows
clear even-odd effect in the very low temperature region.

As there is no direct interaction between spins in the Hubbard model,
it is hard to predict a behavior of a spin system. Going out of the fact,
that a susceptibility of spin system at zero temperature diverges follow-
ing the Courier law [16], by means of calculating cluster susceptibilities
and investigating their behavior at low temperatures, one can speculate
about the system order. The problem is also interesting, because a phe-
nomenon of the frustration (problem of spins mutual accommodation)
is appearing in three-site case and it is worth investigating how it influ-
ences on a system ordering [17]. In particular, recently great attention
was paid to the systems where the geometrical frustration exists, be-
cause an interesting phenomenon was discovered. Namely in compounds
LiV504 with polychlorine ions structure a strong fermion behavior is
observed [18]. Also another polychlorine compound Y(SC)Mny [19] ex-
hibits a quantum spin-liquid behavior at low temperature. The influence
of frustration is investigated for the Hubbard model on triangular lattice,
which is a net of a tetrahedron edges in which an interactions between
the apexes (sites) are not the same: the hopping integral (') between
the sites of base of a tetrahedron is different then between the base site
and the apex of a tetrahedron (¢) [20]. It was shown that frustration due
to non-local correlations suppresses short-range antiferromagnetic fluc-
tuations and thereby assists the formation of heavy quasi-particles near
half-filling. That is why a three-site cluster is investigated in presented
work.

The aim of this work is investigation of Hubbard model on a three-
site cluster, namely calculation of the energy of the many-electron states
and one-electron transitions, the charge and longitudinal and transverse
spin susceptibilities, which will contain the information about charge and
magnetic states of a system.

2. Method

In this work the direct calculation of the relevant Green’s functions is
carried out for investigation of susceptibilities of small size clusters (two-
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and three-site) by means of the direct diagonalization of the Hamiltonian
of a system. In such approach the analytical expressions for magnetic and
spin susceptibilities are determined in the case of two-site cluster. For
tree-site cluster a numerical methods are used because the analytical
expressions are too complicated. The theoretical derivation of a work
formula is the same for both cases and is presented below.

By definition, the Green’s function built on operators flm, ng/ is

equal . .
Gijoor (1) = —(T' Aio(7) Bjor (0)), (1)

where A, Bj(,/ are operators of the Bose or Fermi type, ¢ and j are site
indexes, and 0,0’ = (1, ).

In general, all operators act in some complete basis of many particle
states and can be represented by the Hubbard operators

Ajg = APIXPI B =Y BYIXPY, (2)
pq p'q
where p, ¢ denote many particles states, then the Green’s function can

be expressed in terms of Green’s functions constructed by the Hubbard
operators

Gijoor (1) = — > APIBY 4 (T XP(r)X7'7 (0)). (3)
pap’q’

Now, let us introduce a certain unitary transformation VPP which
transforms the Hamiltonian of system to a diagonal form. Then, Hubbard
operators defined on initial basis |p) are connected with the Hubbard
operators defined on eigenstates by

X1 =|p)(g| = S VPP (VA gy = Y VPP (Ven)txPT ()

g pq
and, respectively, the Green’s function is equal
Gujorr (1) = = 3" ABLS Vo (vei) w7 (vi'd )t
pap'q’
pap’q
x (TXPI(r)XP'7 (0)). (5)

By definition, the Heisenberg’s representation for X-operators defined
on eigenstates is reduced to [21]

Xﬁ‘j(r) = ¢As=2A)T xPd (6)
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and introducing notations
Afp =) vrr(ARvaT, (7)

B Z VP (Bf(;g’ ya'ad )T

jo'

an expression for the Green’s function takes form
Gijoo (7 ZAﬁizB?f: —AOT(XP), (8)

e_mﬁ
S

Now we will pass on to an energy representation, or in other words,
we will carry out the Fourier transformation.

(X77) =

B
gijm,/ (wn) = —/ —iWnT ZAPQBQP ()\5—)\§)T<Xi)f)>d7_
0

1 — eBAs—Ag—iwn)
G 9)

Zququ pr>

Taking into consideration that for the Bose particles w,, = 2”7”7 while for

the Fermi particles w,, = %, we will obtain:
JOp <Xﬁﬁ:Fqu>
Gijoor (wn) = » AVIBI ——— (10)
! %I; 1% 4wy — (Mg — Ag)

where plus is for the Fermi particles and minus is for the Bose particles.

Given expression is final in case of the Fermi particles, while for
the Bose particles we should take into account a presence of diagonal
components, namely that

(XPPX) = 655(XPP), (11)

then we will obtain final expression of a work formula for Bose particles:

(T Aiq (1) Bjor (0)) — {Aio) (Bjor) (12)
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PP _ Y44
= Zququ X)L L)

7 =g =2 | T
{Z Appop pr> ZA55<XPP>ZB;IZ/ <qu>}
p q

(FT denotes Fourier transformation).

3. Two-site cluster

It is appropriate to consider first a simpler case of the Hubbard model
on a two-site cluster. Using the Green’s function formalism, we shall
calculate an electronic, magnetic and spin susceptibilities and investigate
their behavior at 7' — 0 case. It will allow us to estimate the possibilities
of the ferromagnetic or antiferromagnetic ordered ground states. In case
of a two-site cluster, the problem can be solved analytically without using
a numerical calculations, what is practically impossible for a three-site
cluster case.

3.1. Basic equations

Our aim is to calculate the Matsubara Green’s functions (T'h;(7)7,(0)),
(T (7)1 (0)) and (T'SF(7)S7(0)), where iy = gy +iviy, (Rig = @), di0)
is particle number operator, m; = %(fm — 7)) is magnetic moment
operator, S = aTTau, Sf = alaﬁ are spin-flip operators.

The Hamlltonian of the Hubbard model on a two-site cluster is as
follows

H = Z UnzTnzl - Mznﬂf +tz a‘lo'a‘Q‘7 + Cl;o.alq) (13)

1=1,2

where U denotes the single-site Coulomb interaction, p is a chemical
potential, and ¢ is a hopping energy.

Solution of the problem in the case of two-site cluster (density of
states is calculated and energy spectra is analyzed) is shown in Ref. [12],
that is why here we will not present any details of derivations. We will
apply only that results, which are needed for the calculation of suscep-
tibilities.

The initial basis of states |p) = |ni1, n1}, 2, N2y ) consists of sixteen
states:

[1) =0,0,0,0),
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[2) =10,1,0,0) = af, [1),
[3) =10,0,0,1) = a} [1),
[4) =[1,0,0,0) = al,[1),
5) =10,0,1,0) = @k, [1),
6) = 10,1,0,1) = a} |2) = —al,[3),
7) = [1,0,1,0) = ak, |4) = —al,[5),
8) = [1,1,0,0) = a},|2) = —al, [4), (14)
19) = [1,0,0,1) = af, |3) = —a],[4),
10) = 10,1,1,0) = a},[2) = —a],|5),
|11) =10,0,1,1) = a},[3) = —a},|5),
12) = [1,1,0,1) = a},|6) = af [9) = —a],|8),
13) = 0,1,1,1) = a,|6) = al |11) = —al, |10)
14) = [1,1,1,0) = a] | |7) = al,|8) = —al,[10),
15) = [1,0,1,1) = a},|7) = a,|9) = —al,[11),
|16) = |1,1,1,1) = &1T|13) d2T|12>
:d1¢|15>:a2¢|14>7
which, by transformation [p) = _ VPP |p)
P
1) =[1),16) = [6),  [7) =7),[16) =|16), (15)
(|2> 4) [12) |13>>
3) [5) [14) [15)
_ 7 7 ’(@ 4y |12) |;§>>7
v IR 3) 15) [14) [15)
\/—cosgb \/_smd) 0 —\% |§>
blnqﬁ fcowﬁ % 0 @ 7
12) g g I
t) =

where sin 2¢(

St

create a new basis of eigenstates |p), where
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the Hamiltonian has a diagonal form H = Y A\; XP?, with energy spectra:
P

and J =

Ar =0,

A3 =A; = —p+t,

Az = 5=—u—t

A = X5 = A5 = —24,

)\QZU-FJ—Q/J,, (16)
Ay =—J =2y,

A =U -2y,

)\EZAQZU—?)M-FL
/\’1‘52)\1‘5=U—3u—t,
A = 2U — 4y,

4t

e
V2§

3.2. Calculation of susceptibilities

For the

chain with N=2 periodic boundary conditions we calculate

charge and magnetic susceptibilities at the center (¢ = 0) and edges

(¢==+7

) of the Brillouin zone. The charge and magnetic susceptibilities

are constructed by the particle number operators which are represented
by the Hubbard operators on a diagonalized basis as follow:

~ ~ 1 ~ ~
7/:7/1'[ — _X4,4 + _X5,5 + X7,7 + _X8,8 + _X9,9 (17)

1 1676 77 loms 1
Zx1010 |, Ty ILI1 - yI202 -
+ 2 + 2 + 2 + 2

L xTATE . yT5I5 | 16,18

_;XM+X&5_;XEﬁ+Xﬁﬁ)

1 570 . i 1 ISR
-3 sin ¢ (X %10 4 X10:8) 3 cos ¢ (X310 4 x109)

1 o~ —
= COS¢(X8’11 + X11,8) +

1. 611 | yIL5
5 2sm¢(X + X)),

N |




IIpenpunT ICMP-06-06E
1 1 1 T 1
2X14 E 2X1 15 4 x16,16 + 1(92 319351915195 195 393,391 5191512
- %(Xé’g + X532 (X14 5y x15.11) +sin® ¢ (g5 17 + 971,) + 05" ¢ (95 17 + 977.5)
L. 8,10 Tﬁ 8 5,10 | 10,5
+ 58 (X0 + X7 + S cosd (X0 + XT7) (Thy (T)72(0)) = (Tha(7)71(0)) (22)
STT | o118 5IT | 5110 1
— —cosp (XM + X8) 4 Ssing (XPH + X9, £ §(wn) Z(w§+w3+w4+w5) + wgtwstwg+wg
135 1_gs 1 ss 1oss )
fiag = §X4’4 4 5Xs,s Xy §X8’8 n 5X9,9 (19) + wgtwy + Z(w12+w13+w’12+w’13)+4w16
— — — 1
1X1o 10 4 5X11,11 X212 4 %XIS,IS + Z(gi 31935191 519531973 fg—kgﬁ 12+gﬁ =91 14)
+XMM+Xﬁﬁ+X%ﬁ —sin® ¢ (g5 71 — 971,5) + c0s” ¢ (95 17 + 971.8)
. oo — —_ . ~ e—Brp
5(X4,5 + x5 5(X12,13 X13.12) where we introduce notations w; = (X?P) = Ze"”q ,
5 5m (X310 4 XT08) 1 2 cos 6 (XP10 4 XT09) (X5 _ X0
§T1 , 4118 511, 411 T o = 0 = 20) 23)
§COb¢(X’ +X %) — —sing (X7 4+ X7,
and account that (2;7;) = (Riryr) + (R gy ) + (g ) + (R i)
. 1,55 1,33 66 Losz, 1oo By definition, the electronic susceptibility for different values of the
nz| = §X + §X + X7+ §X + §X (20) wave vector, is equal
10,10 11,11 12,12 13,13 (R
;XM oy - X15 5, 16,16
+ %(XQS + Xé é) (X14 15 + X15 14)
1 —
-5 bln¢(X8 0 4 x10 8) : C05¢(X9,10 + X109)
cos ¢ (Xg’ﬁ + Xﬁ’g) —

sin ¢ (Xg’ﬁ + X119
Applying described in previous chapter method, the Green’s func-

contribution
)
tions constructed by the particle number operators, are calculated
(T'hy ()N
FT

(24)
where ¢ = 0, +£Z (a is a lattice constant). Then for the homogeneous
(¢ = 0) electronic susceptibility we will obtain only static (wy,
1(0)) =
1
= 5(Wn)

4

o — Z{<Tm(r>m- (0) - <m><m>}
(Tha(r)ia(0))

= 0)
FT 2 1 1 1 1
= —5(wn) {wl (Zw§+1wg+zw4+4w5—|—w6+w7+w8
(21)
(w3 +wstwitws) + wstws+wg+ws
9
+ wiptwg + 1

(25)

(wistwtwygtwss) + dwgg

9 9
+ wy + wig +wig + Vb + 1413 + Fheva 4w15>
9 9 9
+ wrg Zw§+ ng + 4w4+ Zw5 + wg + ws + wg
1 1
+w9+wf5+’LUﬁ+wa§+

1

1
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1 1 1 1
+ (wg + wz) | Jws + Jws + Jwi+ Jws
1

1 1 1

111 1 1 1
+(wg +ws) | qwstywst gt untywntyws

1 1 1 1 1 1
+ (wﬁ + wﬁ) §w§+§wg+zwg+zwg+zwﬁ+zwﬁ

+ g (g ) (o o) o) (o)

In order to investigate a susceptibility behavior at T'— 0, we should
consider limits:

(XPP — X07) 0 iwn # 0
— = [ . 2
)\ﬁ_l)I\Iq}_}o RN Wy BXTD), jw, =0 (26)
. Ga 0 Ag > Ami
7,4y — ) q min
When electron concentration is equal n = 1: Apyip, = A5 = A\g = —p — ¢;

for n = 2: Apin = A\g = —J = 2p; for n = 3: Apin = Az = Az =
U — 3u — t, and analyzing an expression and taking into account cor-
responding limits, one can see that at temperatures close to zero the
charge susceptibility follows to zero, since the lowest energy states do
not give a contribution. At the edges of the Brillouin zone (¢ = £%), the
electronic susceptibility is pure dynamical (w,, # 0):

o= S e (T, ) - o)) | (28)

T

&

(925+95,é+91,5+95,4+9ﬁ,1§+91§,i§+gﬁ,ﬁ+gﬁﬂ)
+4 {(gé,fo + 910,5) sin” ¢ + (95,15 + 976.5) cos? 4

and do not diverge when 7' — 0 also.

In order to determine magnetic (longitudinal) susceptibility, we
should find expressions for the Green’s functions constructed by the op-
erators Mm; = 267 = Ny —n,|. They can be represented by the electronic
functions, because of (1h;1h;) = (Rirfp) + (a1 ) — (g gy ) — (R )
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Thus in center of the Brillouin zone, a longitudinal susceptibility is fol-
lowing

Yon = Z{@mmmj (0) - <mi><mj>} (29)

FT 2 1 1 1 1
—= Td(wn) |:wi <Zw§ + ng + Zw;l =+ ng + wg + ws

1 1 1 1 1 1
+ 5wﬁ+§wﬁ+§wﬁ+§wﬁ —l—(wg—i—wg) iwi—l—iwg

1 1 1 1 1
+ ng—k ng—F Z’LU’I‘@—F Zwﬁ+wﬁ+wﬁ+ Z’LU’{@)

1 1 1 1 1 1
+ (w;l + wg) §w§ + §w5 + ng + ng—l—zwﬁ—i—zwﬁ

1 1 1 9 9
+ ws + wWis + — W7 twg| wws + —wsz + ~w;z + —ws

4 4 4 4 4
1 9
+2w7+wg+wg+wﬁ+wﬁ+Zwﬁ—i—zwﬁ—l—zwﬁ

9 9 9 1 1
+ — W + W Fws| —ws + —wsz + sw; + ~ws + 21116

4 4 4 4 4
9 9
+wg+wg+wiﬁ+wﬁ+Zwﬁﬂ-zwﬁ—i-zwﬁ—i-zwig
1 1 1 1

+ wyg | +(wgz + wiz) +Zw5§ + 7 + 710 + 711

1 1 1 1 1
+ Ewﬁ + E’wfg + waé +(wﬁ + wfg) +ng + ng

1 1 1 1 1

An analysis of an expression shows, that for concentration n = 1:
XmiTﬂo — 00, and the ground state is symmetric one:

1 1 -

B = 503 - 1) = 75(/ v (30)
- 1 1

B = —(5) - 14) = E%/Jc/b)'

When n = 2: Xm| 7o — 0 and the ground state is a superposition of

N
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the RVB and doublon states:

1 .
E{COS¢(I9> +110)) —sin ¢ (|8) + [11))} (31)

_ %<cos¢<dﬁ>+¢/b> ‘SM(M*@/@”

In case of three electrons, as for one, the magnetic susceptibility diverge
and the ground state is doubly degenerated (it is symmetric hole state):

5) = —5(113) - [12) ﬁ M (32)
— 1
) = —5(115) - 14) Q/q ﬁ/b

7T

At the edges of the Brillouin zone (¢ = £7) susceptibility contains
dynamic components only and does not diverge in limit 7" — 0.

19) =

= ST (), 0) — ) )|

FT
= (92,3 +935+9i5 19511 91373

t 93t T gfs:,iz)
+2[<98 10T 910,51 9511 +9119) sin” ¢
+ (99,’16 + 9105 T 951+ 9ﬁ,§> cos® 4

The spin-flip operators represented by means of the Hubbard opera-
tors on a diagonalized basis are as follow:

N 1 45 1_.35 1_.:85 1 _z3
SIF — §X472 _ §X4,3 _ §X5,2 + §X5 3 (33)
_lXiZ,12_lX1413 lxﬁﬁ+lXﬁﬁ
2 2 2 2
+ 51n¢X7’é + COb¢>X7’§

ICMP-06-06E 13

»
+
I

Xﬁ 12

and operator SA’%_ is Hermitian conjugated to Sj'
Similarly, a transversal susceptibility is determined at the center of
the Brillouin zone by static contributions:

Xs = Y (TS5 (7)55(0)) (35)
i—j

o 1 Qwg + 2 5

= 1T |Wa T ws + 2wg + 2w + wys + wiz | d(wn),
that, like a longitudinal susceptibility, diverges when electron concentra-
tion is n =1 and n = 3.

At the edge of the Brillouin zone, a transversal susceptibility contains
dynamic contributions and in limit 7' — 0 approaches to certain constant
value, what one can see from an expression:

= (TS7 (1)S7 (0)) — (TS ()55 (0)) (36)
FT
= 9131t 955+ 91113 t 9512

+2cos® ¢ (975 +955) +2 sin? ¢ (975 +956)-

In summary, we have calculated an electronic, magnetic and spin
susceptibilities and investigated their behavior in limit T — 0. At the
center of the Brillouin zone, the magnetic and spin susceptibilities di-
verge when electron concentration is n = 1 and n = 3, while the charge
susceptibility approaches to zero at any electron concentrations. At the
edge of the Brillouin zone, all susceptibilities approach to constant value
for any filling of cluster.
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4. The Hubbard model on a three-site cluster

It is seen from the consideration of a two-site cluster, that the ferro-
magnetism can appear in the case of odd number of electrons in system.
Such result is in good agreement with Nagaoke solution [22], which has
shown that if in system, described by the Hubbard model, a number of
electrons is ne = n £ 1 (n- number of sites) and U — oo, the ground
state will be ferromagnetic for the simple lattices.

Now, let us investigate the Hubbard model on a three-site cluster. In
this case, the frustration phenomenon can appear and it is interesting to
research how it affects on the result.

4.1. Basic set of equations

We will start from the Hubbard Hamiltonian for the three-site cluster:

H= Z (Ut — ,uan + tzz (G;,G50 + a o Gic ), (37)

i£j o

where o =1, | and [4,j] = (1,2, 3).

A basis of states consist of 64 states which are grouped into sets of
the states with the same number of electrons. In matrix representation,
the Hamiltonian has a block structure. As in the previous case, a basis
of states is created by functions in a particle number representation
lp) = [n11,nay, ey, n2y, nap, may):
we have one empty state

|1> = |07010701070>7 H|]—> - 07 (38)
six states with one electron
|2> = |170a070a070> = &1T|1>a
|3) =10,0,1,0,0,0) = d2T|1),
14) =10,0,0,0,1,0) = a3, 1), (39)
|5) =10,1,0,0,0,0) = d1l|1>’
|6) =10,0,0,1,0,0) = d2l|1>’
|7) =10,0,0,0,0,1) = a, |1),

ICMP-06-06E 15
—p ot t 0 0 0
t —u ot 0 0 0
_ t t —uw 0 0 O
H 0 0 0 —pu t t ’ (40)
0 0 0 t —p ot
0 0 0 t t  —pu
nine states with two electrons with opposite spins
8) =11,1,0,0,0,0) = —a,[2) = al,|5),
19) =11,0,0,1,0,0) = _&21H2> = d1T|6>’
10) = [1,0,0,0,0,1) = —a} |2) = al,|7),
|11) =0,1,1,0,0,0) = &l [3) = —a},|5),
12) = [0,1,0,0,1,0) = a]  |4) = —al,|5), (41)
|13) =0,0,1,1,0,0) = —a}, |3) = a},|6),
|14) = 10,0,1,0,0,1) = —al [3) = a},|7),
|15) =10,0,0,1,1,0) = a21|4> d3T|6>,
|16) = 10,0,0,0,1,1) = —al, |4) = af,|7),
U—-2pt t —t -t 0 0 0 0
t —2ut 0 0 t 0 —t 0
t t-22.0 0 0O t 0 t
-t 0 0 —2pt -t -t O 0
H=| -t 0 0 ¢t —2u O 0o t -t (42)
0 t 0 -t 0U-2ut —t O
0 0 t —t 0 t —2u0 ¢t
0O -t 0 0 t —t 0 —2u —t
0 0O ¢t 0 —t 0 t —tU-—2u
and six states with two electrons with the same spins
17) = [1,0,1,0,0,0) = —a},[2) = al,[3),
[18) =1,0,0,0,1,0) = —ag3,[2) = Gy, |4),
|19> |05071507150> _a3T|3> a2T|4>a (43)
|20) =10,1,0,1,0,0) = —ay, |5) = ay,6),
|21) =10,1,0,0,0,1) = —ag  [5) = ay,|7),
|22) =10,1,0,1,0,0) = —ag [6) = a2l|7>,
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—2u  t —t 0 0 0
t —2p ot 0 0 0
_ —t t =2 0 0
H 0 0 0 —2u t —t (44)
0 0 0 t —2u ot
0 0 0 —t t —2u

Nine states with three electrons and with total spin %

1,1,1,0,0,0) = ab,|8) = al,|11) = —al 17),
1,1,0,0,1,0) = al,[8) = a],[12) = —al [18),
125) = [1,0,1,1,0,0) = —a},|9) = al,|13) = &}, [17),
126) = [1,0,1,0,0,1) = —a},|10) = a],[14) = af [17),

23) = )
) = )
) = )
) = )
127) =11,0,0,1,1,0) = a},|9) = al,|15) = —a} [18), (45)
)= )
) = )
) = )
) = )

|24

128) = [1,0,0,0,1,1) = —a},|10) = a],[16) = a] |18),

29) = [0,1,1,0,1,0) = a, [11) = —a},[12) = a] [19),

130) = [0,0,1,1,1,0) = a}, [13) = a},|15) = —a} |19),

31) =0,0,1,0,1,1) = —a},|14) = a},[16) = a}, |19),

H = (46)

U3y t —t —t 0 0 t 0 0
t U=3u 0 0 t —t —t 0 0
—t 0 U=3ut —t 0 0 t 0
—t 0 t =340 t 0 0 —t

t -t 0 =3p —t O t 0 ,

—t 0 t —tU=3u0 0 ¢t
—t 0 0 0 0 —3u —t ¢t
t
0

0 0 t 0 —tU-3u —t
0 —t 0 t t —t U-3u

OO+ OO

one state with three electrons and total spin %
32) = [1,0,1,0,1,0) = a, [17) = &} [18) = al,[19), (47)
H|32) = —31|32). (48)
Similarly for the states with total spin —%

|33> = |1a 170a 170a0> = CAl2l|8> = _d11|9> = dJ{T|20>7
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[34) = [1,1,0,0,0,1) = a,[8) = —a], |10) = af,[21),
35) = [1,0,0,1,0,1) = af,|9) = —a}, |10) = al,[22),
136) =10,1,1,1,0,0) = &} [11) = a],[13) = —al,|20),
37) =10,1,1,0,0,1) = a1, [11) = ] [14) = —al|21), (49)
138) = 10,1,0,1,1,0) = —a [12) = a},[15) = a,|20),
39) =10,1,0,0,1,1) = a1, [12) = a],[16) = —al[21),
40) =10,0,1,1,0,1) = a1, [13) = —a}, |14) = a},|22),
41) =0,0,0,1,1,1,) = 4l |15) = &} |16) = —al,[22),
H = (50)
U=3u t —t —t 0 t 0 0 0
t U=3u t 0 —t 0 —t 0 0
~t t U=3u0 0 0 0 t —t
—~t 0 0 =3ut —t 0 t 0
0 —t 0 t —=3u 0 t —t 0
t 0 0 —t 0U-3u—t 0 t
0 —t 0 0 t —t —3u 0 ¢
0O 0 t t —t 0 0 U=3u —t
0 0 —t 0 0 ¢t t —tU=3u
and—%
[42) = 0,1,0,1,0,1) = af [20) = —a} [21) = a] [22),  (51)
H|42) = —3p[42). (52)

Nine states with four electrons and with total spin 0

43) = [1,1,1,1,0,0) = —a}, [23) = —a] |25)
= d2T|33> = &1T|36>7
|44) = |1,1,1,0,0,1) = —al [23) = —a] |26)
= &£T|34> = &1T|37>’
|45) = ]1,1,0,1,1,0) = a}, [24) = —a] |27)
= _d3y|33> = &1T|38>7
|46) = [1,1,0,0,1,1) = —al [24) = —a] |28)
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= af,[34) = a},[39),
|47) = [1,0,1,1,0,1) = —a}, |25) = a}[26)

= —a};[35) = al,[40),
48) = [1,0,0,1,1,1) = —al, [27) = —a}, |28)

= a3,[35) = aj; |41),
49) =10,1,1,1,1,0) = a}, [29) = al,[30)

= —al,[36) = —al,[38),
[50) = [0,1,1,0,1,1) = —a}|29) = af,[31)

= &3T|37> = _&£T|39>a
51) = [0,0,1,1,1,1) = —al [30) = —a}, |31)

= G3;|40) = Gy [41),

U t —t 0 t 0 —t 0 0
t U 0 t —t 0 0 t 0
—~t 0 U -t 0 t —t 0 0
0 t —t20 0 t 0 —t 0
H=|t —t 0 0 U —t 0 0 t |—4ul
0 0 ¢t t —tU 0 0 t
—t 0 —t 0 0 0 U —t —t
0 t 0 —t 0 0 —t U —t
0 0 0 0 t t —t—t2U

and six states with total spin +1

[52) = |1,1,1,0,1,0) = —ay;|23) = a};[24)
= &1T|29> = _d1l|32>a
= a17|30) = ay,[32),

[54) = [1,0,1,0,1,1) = al,|26) = —al,[28)
= ayy[31) = _d:§1|32>a

55) = [1,1,0,1,0,1) = —al, [33) = a},[34)
= —al|[35) = af,]42),

[56) =10,1,1,1,0,1) = —ay, [36) = ay, [37)

(53)

(55)

ICMP-06-06E
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= CAL11|40> = _d2T|42>7
57) =0,1,0,1,1,1) = —a} |38) = —al, |39)
= &1l|41> = &§T|42>,

U—dp —t  t 0 0 0
—t U—dp -t 0 0 0
0 0

t

b t -t U—4u 0
0 0 0 U—dp —t
0 0 0 —t U—4p —t
0 0 0 t —t U—4p

Six states with five electrons

58) = 1,1,1,1,1,0) = a},[43) = a,]45)
= a14[49) = —a5,[52) = —a;[53),

59) = [1,1,1,0,1,1) = —al;[44) = ay[46)
= al,[50) = a} |52) = —al, |54),

60) = [1,0,1,1,1,1) = —al,[47) = —ay,[48)
=a},|51) = al,[53) = b |54),

61) = [1,1,1,1,0,1) = ag,[43) = —ay, [44)
= —a},|47) = af,|55) = al,[56),

62) = [1,1,0,1,1,1) = ay,[45) = ay, |46)
= —af |48) = —a];|55) = a],57),

63) =10,1,1,1,1,1) = a3 [49) = a5, |50)
=al||51) = —al,[56) = —a}, |57),

W—bu —t —t 0 0 0
—t 2U-5u —t 0 0 0

o | —t  —t 2W-su 0 0 0
0 0 0 2U-5u —t —t
0 0 0 -t 2U-bp —t
0 0 0 —t —t 2U-5pu

Finally, we have one state with six electrons

64) = [1,1,1,1,1,1) = —al |58) = —a}, |59)
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Figure 1. n(u) plot for ¢ > 0 and T = 0.
= —a},[60) = aly[61) = a}y[62) = a}(63),
H[64) = (3U — 641)[64). (60)

4.2. Diagonalization of the Hamiltonian

The unitary transformation, that diagonalize the Hamiltonian can be
constructed by the eigenvectors of this Hamiltonian. The problem on
eigenvectors and eigenvalues is solved numerically. We consider the case
U = 10t (U > t). The small fields h; ~ 107° at different sites, and
to the chemical potential for different orientation of spins (of the same
degree of smallness) with condition ) Apu, = 0, were introduced in the
Hamiltonian for avoiding the degeneracy of eigenvalues.

Below all energetic quantities are given in units of ¢. For calculating
the susceptibilities we use the same formula (12). It should be noticed
that matrices of the unitary transformation VPP are calculated numer-
ically and have dimension 64 x 64. In fig.1 we present dependence of
the electron concentration on the chemical potential value at 7' = 0 and
t>0.

When p = —1, we have degeneracy and states with zero, one and two
electrons have the lowest energy simultaneously, but if ;1 goes down then
the state with “0” electrons is the lowest one and if u goes up, the state
with two electrons will be the ground state. In case of negative value
of ¢, this dependence will be symmetric with regards to replacements
pw— (U/2—p) and n — (6 —n).
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4.3. Numerical results for susceptibilities

The particle number operators represented by Hubbard operators on the
initial basis are:
Ay = fug +Anp = X224 X0 4 2X58 4 xO0 (61)

LoX10.00 4 x 1111y 1212 4 ¢IT07 | x1818

4 X20.20 | x21.21 4 9x2323 | 9x2424 | x25.25

4 X26.26 4 x27.27 4 y28.28 | ¥20.20 | 32,32

1 0X3333 | ox3434 | 3535 | 36,36 | x37.37

L X838 | x89.30 | yd2.42 4 9x43.43 4 o xdd4d

1 9X4545 | 94646 | yATAT | Y4848 | 49,49

4 X050 4 9x52,52 | x53.58 | y54.54 4 955,55

L X656 | X5T.5T 4 o x58,58 4 959,59 | x60,60

4 2X0161 4 9x6262 | y63,63 | 9 x64,64

g = fgy + g = X>% 4 X0 4 x99 4 x 101 (62)

+ 9 x13,13 +X14,14 _|_X15,15 +X17’17 —|—X19’19

—|—X20’20 +X22’22 —|—X23’23 + 9 25,25 +X26,26

+X27,27 +X29,29 + 9 x30,30 +X31,31 +X32,32

+X33,33 +X35,35 + 9 36,36 +X37,37 _|_X38,38

+ 9 40,40 +X41,41 +X42,42 + 9 43,43 +X44,44

+ 45,45 + X 4747 + 48,48 + 9 x 49,49 + 50,50

+ 9 x51,51 +X52,52 + 9 53,53 +X54,54 +X55,55

+ 9 X 56,56 + 57,57 + 9 X 58,58 + 59,59 + 9 x 60,60

4 2X61,61 +X62’62 4 2X63,63 4 2X64’64,

fig = fgp + ngp = X5+ X774 X010 (63)
_|_X12,12 +X14,14 _|_X15,15 + 9 x16,16 +X18,18
+X19,19 +X21,21 +X22,22 +X24,24 +X26,26
—|—X27’27 —|—X28’28 —|—X29’29 +X30’30 4 2X31,31
—|—X32’32 +X34’34 —|—X35’35 +X37’37 —|—X38’38
+ 9 X39,39 + 40,40 + 9 41,41 + 4242 + 44,44
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1 X45.45 4 x46.46 4 ydTAT | o xd8.d8 | yd9.49

1 9XB050 | oxBLAL | 52,52 | 53,53 | o x54.54
4 X55.55 4 y56.56 | o 57,57 | y58,58 | o y59,59

4 2X00.60 | y6L61 | o y62,62 | 9x63,63 4 oy6464

Now, let us find electronic susceptibility in the center and out of the
center of the Brillouin zone (¢ = 0, :I:g—’;) By means of numerical calcula-
tions we find the unitary transformation, which diagonalize Hamiltonian.
Because we are interesting only in the low temperature behavior of the
susceptibilities, we extract from the large number of terms in (12) only
the one that involve the states with lowest energy. Then we have obtained
that for ¢ = 0 electronic susceptibility is equal to:

o= Z{<Tm<7>ﬁj<o>> - <m><ﬁj>} (64)
i
FT
= —0.1(g935 55 + 935.38) + 0-12(915 55 + 950.19)
+02(9p5 +95.3) T0-19nm + 97 )

+ 019557 + 951.18) + 0- 195155 + 915,52

1
+ 0.1(92177;@ + g;@’;ﬁ) + T [0.911)311);1 + 0.9wsws
+ 0.9w;lwé —+ 0.911)611)77 + 0.2wﬁwﬁ —+ O.Qwﬁwgﬁ

+ 0.2wwsg — 0.2wggwgy + n.s.] 0(wn)

(n.s. denote all other components, which do not contribute at 7' — 0).

As is seen from the expression, the susceptibility has both dynamic
and static components. Analyzing its behavior in limit 7" — 0, one can
see that for concentration n = 1, the ground states are A, = A5 =
Ai = A = A5 and susceptibility diverges at T' — 0, X"‘T—>O — 00.

For two electrons: A\ = Ay = Az = Agg, and therefore the sus-
ceptibility diverges in this case too.

In the case of three electrons, the states with lowest energy are A5 =
A55 = A51 = M35 = A3z and as a result susceptibility goes to zero.

When we have four electrons Ay, = Ag7 and at T — 0, the suscep-
tibility approaches constant value.

For five electrons Apmin = Agg = Agq, and the susceptibility diverges
for such cluster filling.
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Out of the center of the Brillouin zone ¢ = :I:%—Z, the electronic sus-
ceptibility is equal

o= Z exi%a‘){@m(ﬂm (0)) — <m><ﬁj>} (65)

2935+ 933) +3.7(95.5 + 95.5)
+0.2(95 17 + 911.5) + 0.1(95 13 + 913 5)

+ O.2(g§§7§§ + g§g7§§) + 0.3(95533 + ggigg)
+0-2(955 55 + 958,36) + 5-9(956.35 + 930,36)
+5.8(955 30 + 950.38) + Y213 + 915,77

+ 39713 + 913.12) T 02095 77 + 99 16)

+ 2.7(9@755 + gga;@) + 0.1(g;1155 + 95572171)
+0.8(95 37 + 977.10) + 349z 15 + 955.33)
+0.Y95 55 + 955.03) + 01955 51 + 957, 38)
+0.1(957 35 + 935.57) + 2(955.50 + 959 58)

+ % [0.5w5 + wg + 0.2w5 + 0.7wrs + 1.4wsg
+ 1.3wsg + L.lwg + 0.1wgs + 0.7wsy + 0.5wsg| 6 (wn)

and in this case, the susceptibility will diverge if there is one electron in
a system. In another cases (n = 2, 3, 4, 5, 6), the susceptibility is a finite
quantity.

The longitudinal susceptibility is built on the magnetic moment op-
erators, which are expressed through the particle number operators and
by means of the Hubbard operators on initial basis and are as follow:

ml _ ﬁlT _ ﬁll _ X2’2 _ X5,5 4 X9,9 T XlO,lO (66)
_ XM y1212 ) x1717 | w1818 x20,20 _ x21.21

4 X25:25 | x26,26 | y27.27 | y28.28 20,20 | 32,32

4 X35:35 _ x36,36 _ 37,37 _ y38,38 _ 3939 y42.42

4 XATAT | x4848 _ 4949 y50.50 | 53,53 | 54,54

_ X56.56 _ x57.57 | 60,60 _ 63,63

m2 — 'FLQT _ ﬁQl — X3,3 _ X6,6 _ X9,9 + Xll,ll (67)
—|—X14’14 _ X15,15 —|—X17’17 +X19,19 _ X20,20 _ X22,22
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1X23.23 4 x26.26 _ y27.27 | ¥20.20 | 3131 | 3232

=4 |4
_ X33.33 _ y35,35 | y3T.37 _ 3838 ydldl _ x42.42
4oXA444 _ x45.45 _ yd8.48 | 50,50 | 5252 | 54,54
55,55 57,57 59,59 62,62
- X - X + X - X ,

M3 = fgy — gy = X4A_xTT_x10.10 4 1212 (68)
X414y y1515 4 w1818 | 1919 | x2121 22,22
4OX2424 _ x26.26 4 y27.27 | 2020 | 3030 | 32,32

_ X344 _ y35.35 _ x37.37 | 3838 y4040 _ x42.42

_ X444y yd5d5 _ ydTAT | 4949 | 05252 | 53,53

_ X55.55 _ 56,56 | y58,58 _ 61,61

At the center of the Brillouin zone (¢ = 0) the susceptibility contains
the static components only:

mn=§:{HWMﬂmﬂm>—OMMmﬁ} (69)
i—j

Fr 1

=7 [dwsws + dwzws + 3wzwg + 3wzwg + 16wEwsg

+ 4wﬁwﬁ + 4wﬁw§6 + 4w§§w§§ + 4w§2w§§
+ Bwgzwgg + 3wy wsy + dwgzwe + ”5] 6(wn)
and diverges when electron concentration is n = 2, 3, 5.

Out of the center of the Brillouin zone g = :I:S(17 the magnetic sus-
ceptibility contains both dynamic and static terms

o = D] i 0) - ) )
i—j
= 2.02(g55 + 935) + 2.01(95 15 + 955.77) (70)
+2.96(915 15 + 915.73) + 2.73(911 15 + 915.17)
+0.28(g5.15 + 915.5) + 2.94(935.11 + 97i.12)
+0.04(g5 71 + 9712.5) + 0-01(g5 75 + 976.5)
+ 1.99(g26 55 T 9336) + 1.92(935 55 + 930.36)
+1.92(935 55 + 950,38) + 7-56(953.35 + 935.33)
+0.24(935 55 + 958,35) + 0-2(935 3 + 936.35)

ICMP-06-06E 25

+ 0.11(g53 35 + 930.53) + 0-08(953 55 + 955 33)
+ 2.01(gg§75§ + 9z, 5) + 2-94(927,56 + 956 7)
+2.85(951.55 + 955.11) + 0-14(953.55 + 9Is0.33)
+2.92(955 35 + 955.17) + 0-08(95.35 + 935.35)
+0.06(935 55 + 950,35) + 2-02(955 55 + 959 58)

2
+7 [0.49w5 + 0.49wg + 1.84wgz5 4 0.49wg;
+ 0.49w5§] d(wn)

Hence for n = 3, the static part of susceptibility diverges out of the
center of the Brillouin zone. At temperatures close to zero, the dynamic
part of susceptibility converges to positive constant for any filling of the
cluster.

And at last the spin (transverse) susceptibility is built on the spin-flip
operators. On the initial basis:

Svfr — d%&ll — 25 +X9,20 +X10,21 _|_X17,11 (71)
4+ X812 4 x25,36 4 26,37 | x27.38 | y28,39
4 X3229 4 x3542 4 xAT,56 | x48,57 | 53,49
4 X450 | x60,63

S;r _ @T&% = X364 x1120 4 x14.22 | 5179 (72)
4 X1915 4 x23.33 | 2635 | y29.38 | y3141
43227 4 x3742 | 4455 | y50,57 | x52.45

4 XP448 | x59,62

S;' _ &LT&?’l = X474 x1221 4 x1522 | x1810 (73)
4 X1914 | x2434 | x27.35 | ¥20.37 | ¥30,40
4 X32:26 4 x3842 | 45,55 | y49.56 | Y5244

—|—X53’47 —|—X58’61.

If we switch to new basis and do all necessary operations, we will
obtain that at the center of the Brillouin zone, the susceptibility is as
follows:

Xs = Y _(TS(1)S; (0)) (74)

1—J
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2
gf{w§+w3+w4+4wﬁ+4w5+4wﬁ

+ 1.02411155 + 1.02411}51 + 7w55 + wgg + Wz + Wag
+ wgg + wsg + way + 3wgs + 4wy + dwsg + dwsy

At temperatures close to zero, it is obtained, that for concentration

n =2 Amin = A3 = Az = Az and the susceptibility follows to infinity.
This states can be represented as a superposition of the initial states.

14) = 1077|8) — 0.4]9) + 0.4|10) — 0.4]11) (75)
+0.4[12) + 1075(13) — 0.4[14) — 0.4[15) — 10~ 7|16)

_()zltb&O +04®&® _04@&
2 2
+0.4®&® —0.4& —0.4&
1 3 1 3 1 3

is a superposition of the states with two opposite spins at different sites
(something like an itinerant RVB bound) and

117) = 0.58/17) — 0.58|18) + 0.58|19) (76)
_058®&Q —058®&d> +058©A®
120) = 0.58]20) — 0.58]21) + 0.58/22) (77)

—05%&@ —058®&® +0586&®

states with parallel spins.

For n = 3, vaS|THO — oo and the relative states reflect frustration

|23) = —0.1]23) 4 0.02|24) + 0.1]25) — 0.8]26) (78)
+0.37|27) 4 0.12]28) 4 0.42]29)—0.01|30)—0.13|31)

—08®A® +037®&® +O4Q®A®
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|24) = 0.08]23) — 0.1|24) + 0.08]25) — 0.03|26) (79)
+0.7]27) + 0.05/28)—0.67|29)—0.13|30)+0.0431)

133) = —0.1/33) + 0.04|34) — 0.5[35) + 0.08]36) (30)
—0.2537) + 0.77|38) + 0.1]39) + 0.004]40)—0.13|41)

—05& —025& +077@&®

34) = 0.06]33) — 0.12[34) + 0.6]35) + 0.1/|36) (81)
—0.75|37) + 0.15|38) — 0.07|39) — 0.1]40) + 0.02[41)

For electron concentration n = 4: A\p,;n = Az, and ground state is

43’

43) = —0.12[43) + 0.4|44) — 0.4]45) — 0.12/46) (82)
+ 0.4]47) + 0.4]48) — 0.4]49) — 0.4|50) + 0.12|51)

N04ﬂA® —044:& +04GA®
2 2 2

—0.4& +O'4@Aﬂ —O.Zl@&tt

V3 1 3 N3

When n = 5, Apin = Asg = gy, then xp s — 0o and relative

|T—>0

states are
|58> =0. 58|58 + 0. 58|59 + 0. 58|60 (83)
—05843& +058@Ag +058¢Ag
|61) =0. 58|61 + 0. 58|62 + 0. 58|63 (84)

—058& +058Q&Q +058®ﬂQ

Out of the center of the Brillouin zone ¢ = :I:g—;r the susceptibility
contains both static and dynamic components.

Xo = Y €T S EINTS(7)57(0)) (85)

i
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1
= 7 | 033 +0 3w 125w 0 3w +0.3wgg | 6(wn)

+ 0-3(%1,55 +933.71) + 0-5(973.33 + 955 73)
+0.5(953,77 + 977,13) +0-5(911,55 + 93.17)
+ (931,32 + 953.31) + 0-3(935 36 + 936.50)

+0.3(937 35 + 938.27) T 0-3(935,35 + 938,30
+0.3(953 35 + 935,33) +0-3(951 55 + 955 57
+ 0'5(944 56 T 956, )+ 0'5(947 56 T 956,47
+0.5(957 55 + 955,07) T 0-3(955,62 + 9625

30)
51)
)
5)

Static contribution to the transverse susceptibility diverges out of the
center of the Brillouin zone, only if there are three electrons in the system
and dynamical contribution to the susceptibility approach to constant
value for any filling of cluster.

5. Summary

The Hubbard model on a two- and three-site clusters is investigated. For
the narrow conduction band (U > t), the susceptibilities are determined
and their behavior is investigated in case of T — 0. It is seen from the
consideration of a two-site cluster, that the ferromagnetism can appear
in the case of odd number of electrons in system and only at the center
of the Brillouin zone. Such result is in good agreement with Nagaoke so-
lution [22], which has shown that if in system, described by the Hubbard
model, a number of electrons is n, = n £+ 1 (n is number of sites) and
U — oo, the ground state will be ferromagnetic for the simple lattices.

In case of a three-site cluster, at the center of the Brillouin zone, sus-
ceptibilities diverge in both cases of odd and even numbers of electrons
in system. Out of the center of the Brillouin zone, modulated magnetic
structure can appear at half-filling also. Such results shows that for the
three site cluster, when the ferromagnetic state is destroyed by frustra-
tion, the Nagaoke solution is not more valid, and such behavior can be
predicted for larger frustrated lattices.
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