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Реакцiя випромiнювання у 2 + 1-електродинамiцi

Ю.Г.Яремко

Анотацiя. Шукаємо реакцiю випромiнювання прискореного заря-
ду у тривимiрному просторi Мiнковського. Обчислюємо енергiю, iм-
пульс та момент кiлькостi руху електромагнетного поля точкового
заряду, якi розбиваємо на причастинкову та радiацiйну частини. В
рамках процедури перенормування причастинковi доданки абсорбу-
ються iмпульсом та моментом iмпульсу “голої” частики. Радiацiйнi
доданки, разом з перенормованими iндивiдуальними характеристи-
ками частинки, утворюють iнтеграли руху системи. Аналiзуючи їхнi
похiднi, отримуємо ефективне iнтегро-диференцiйне рiвняння руху
точкового заряду у зовнiшньому електромагнетному полi.

Radiation reaction in 2+1 electrodynamics

Yu.Yaremko

Abstract. We discuss the radiation reaction problem for an electric
charge moving in flat space-time of three dimensions. We calculate
energy-momentum and angular momentum carried by electromagnet-
ic field of the accelerating point-like charge. We decompose them into
bound and radiative components. The bound terms are absorbed by in-
dividual particle’s characteristics within the renormalization procedure.
Radiative terms together with already renormalized three-momentum
and angular momentum of point-like charge constitute the total con-
served quantities of our particle plus field system. Their differential con-
sequences yield the effective (integro-differential) equation of motion of
radiating charge in an external electromagnetic field.
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1. Introduction

Recently [1,2], there has been considerable interest in renormalization
procedure in classical electrodynamics of a point particle moving in flat
space-time of arbitrary dimensions. The main task is to derive the ana-
logue of the well-known Lorentz-Dirac equation [3]. The Lorentz-Dirac
equation is an equation of motion for a charged particle under the influ-
ence of an external force as well as its own electromagnetic field. (For a
modern review see [4–6].)

A special attention in [1,2] is devoted to the mass renormalization
in 2 + 1 theory. (Note that electrodynamics in Minkowski space M 3 is
quite different from the conventional 3 + 1 electrodynamics where one
space dimension is reduced because of symmetry of specific problem. For
example, small charged balls on a plane are interacted inversely with the
square of the distance between them, while in M 3 the Coulomb field of
a small static charged disk scales as |r|−1.) An essential feature of 2 + 1
electrodynamics is that Huygens principle does not hold and radiation
develops a tail, as it is in curved space-time of four dimensions [7] where
electromagnetic waves propagate not just at the speed of light, but all
speeds smaller than or equal to it.

In Refs. [1,2] the self-force on a point-like particle is calculated from
the local fields in the immediate vicinity of its trajectory. The schemes
involve some prescriptions for subtracting away the infinite contributions
to the force due to the singular nature of the field on the particle’s
world line. In [2] the procedure of regularization is based on the methods
of functional analysis which are applied to the Tailor expansion of the
retarded Green’s function. The authors derive the covariant analogue of
the Lorentz-Dirac equation which is something other than that obtained
in [1]. Both the divergent self-energy absorbed by "bare" mass of point-
like charge, and the radiative term which leads an independent existence,
are non-local. (They depend not only on the current state of motion of
the particle, but also on its past history.)

In this paper we develop a consistent regularization procedure which
exploits the symmetry properties of 2 + 1 electrodynamics. It can be
summarized as a simple rule which obeys the spirit of Dirac scheme of
decomposition of vector potential of a point-like charge.

According to the scheme proposed by Dirac in his classical paper
[3], one can decompose retarded Green’s function associated with four-
dimensional Maxwell field equation Gret(x, z) = Gsym(x, z)+Grad(x, z).
The first term, Gsym(x, z), is one-half sum of the retarded and the ad-
vanced Green’s functions; it is just singular as Gret(x, z). The second
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one,Grad(x, z), is one-half of the retarded minus one-half of the advanced
Green’s functions; it satisfies the homogeneous wave equation. Convolv-
ing the source with the Green’s functions Gsym(x, z) and Grad(x, z) yield
the singular and the radiative parts of vector potential of a point-like
charge, respectively.

The analogous decomposition of Green’s function in curved space-
time is much more delicate because of richer causal structure. Detweil-
er and Whiting [9] modify the singular Green’s function by means
of two-point function v(x, z) which is symmetric in its arguments. It
is constructed from the solutions of the homogeneous wave equation
in such a way that a new symmetric Green’s function GS(x, z) =
Gsym(x, z) + 1/(8π)v(x, z) has no support within the null cone.

It is obvious that the physically relevant solution to the wave equa-
tion is the retarded solution. In [10] the Lorentz-Dirac equation is de-
rived within the framework of retarded causality. Teitelboim substitutes
the retarded Liénard-Wiechert fields in the electromagnetic field’s stress-
energy tensor and computes the flow of energy-momentum which flows
across a tilted hyperplane which is orthogonal to particle’s four-velocity
at instant of observation. The effective equation of motion is obtained
in [10] via consideration of energy-momentum conservation. Similarly,
López and Villarroel [11] find out the total angular momentum carried
by electromagnetic field of a point-like charge. Outgoing waves carry
energy-momentum and angular momentum; the radiation removes en-
ergy and angular momentum from the source which then undergoes a
radiation reaction. It is shown [12] that the Lorentz-Dirac equation can
be derived from the energy-momentum and angular momentum balance
equations. In ref. [13] the analogue of the Lorentz-Dirac equation in
six dimensions is obtained via analysis of 21 conserved quantities which
correspond to the symmetry of an isolated point particle coupled with
electromagnetic field. (Firstly this equation was obtained by Kosyakov
in [14] via the consideration of energy-momentum conservation. An alter-
native derivation was produced by Kazinski, Lyakhovich and Sharapov
in [2].)

In non-local theories the computation of Noether quantities is highly
nontrivial. Quinn and Wald [15] study the energy-momentum conserva-
tion for point charge moving in curved spacetime. The Stokes’ theorem is
applied to the integral of flux of electromagnetic energy over the compact
region V (t+, t−). It is expanded to the limits t− → −∞ and t+ → +∞,
so that finally the boundary of the integration domain involves smooth
spacelike hypersurfaces at the remote past and in the distant future . The
spacetime is asymptotically flat here. The authors prove that the net en-
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ergy radiated to infinity is equal to the total work done on the particle by
the electromagnetic self-force. (DeWitt-Brehme [7,8] radiation-reaction
force is meant.) It is shown also [15] that the total work done by the
gravitational self-force is equal to the energy radiated (in gravitational
waves) by the particle. (The effective equation of motion of a point mass
undergoing radiation reaction is obtained in [16]; see also review [18]
where the motion of a point electric charge, a point scalar charge, and a
point mass in curved spacetime is considered in details.)

In [17] Quinn derives the effective equation of motion of a point
particle coupled with scalar field moving in curved spacetime. The author
establishes that the total work done by the scalar self-force matches the
amount of energy radiated away by the particle.

In the present paper we calculate the total flows of energy-momentum
and angular momentum of the retarded field which flow across a hyper-
plane Σt = {y ∈ M 3 : y0 = t} associated with unmoving observer.
The field is generated by a point-like charge arbitrarily moving in flat
Minkowski space M 3 of three dimensions. This paper is organized as
follows. In Section 2 we recall the retarded and the advanced Green’s
functions associated with three-dimensional D’Alembert operator. Con-
volving them with the point source, we derive the retarded and the
advanced vector potential and field strengths. In Section 4 we trace a
series of stages in calculation of surface integral which gives the energy-
momentum carried by the retarded electromagnetic field. (Details are
given in Appendices.) We introduce appropriate coordinate system cen-
tered on an accelerated world line and we express the components of
the Maxwell energy-momentum tensor density in terms of these curvi-
linear coordinates. We integrate it over the variables which parametrize
the surface of integration Σt. Resulting expression becomes a combina-
tion of two-point functions depending on the state of particle’s motion
at instants t1 and t2 before the observation instant t. They are inte-
grated over particle’s world line twice. We arrange them in Section 3.
We split the momentum three-vector carried by electromagnetic field in-
to singular and radiative parts by means of Dirac scheme which deals
with fields defined on the world line only. All diverging quantities have
disappeared into the procedure of mass renormalization while radiative
terms lead independent existence. In analogous way we analyze the an-
gular momentum of electromagnetic field. Total energy-momentum and
total angular momentum of our particle plus field system depend on
already renormalized particle’s individual characteristics and radiative
parts of “electromagnetic” Noether quantities. Having differentiated the
conserved quantities we derive the effective equation of motion of radi-
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ating charge. In Section 5 we discuss the result and its implications.

2. Electromagnetic potential and electromagnetic

field in 2+1 theory

We consider an electromagnetic field produced by a particle with δ-
shaped distribution of the electric charge e moving on a world line
ζ ⊂ M 3 described by functions zα(τ) of proper time τ . The Maxwell
equations

Fαβ
,β = 2πjα (2.1)

where current density jα is given by

jα = e

∫ +∞

−∞

dτuα(τ)δ(3)(y − z(τ)) (2.2)

governs the propagation of the electromagnetic field. uα(τ) denotes
the (normalized) three-velocity vector dzα(τ)/dτ and δ(3)(y − z) =
δ(y0 − z0)δ(y1 − z1)δ(y2 − z2) is a three-dimensional Dirac distribution
supported on the particle’s world line ζ. Both the strength tensor Fαβ

and the current density jα are evaluated at a field point y ∈ M 3. (We
choose Minkowski metric tensor ηαβ = diag(−1, 1, 1) which we shall use
to raise and lower indices. Greek indices run from 0 to 3, and Latin indices
from 1 to 2; summation over repeated indices understood throughout the
paper.)

We express the electromagnetic field in terms of a vector potential,
F̂ = dÂ. We impose the Lorentz gauge Aα

,α = 0; then the Maxwell field
equation (2.1) becomes

�Aα = −2πjα. (2.3)

In 2+1 theory the retarded Green’s function associated with the
D’Alembert operator � := ηαβ∂α∂β has the form [1,2]

Gret
2+1(y, x) =

θ(y0 − x0 − |y − x|)
√

−2σ(y, x)
. (2.4)

θ(y0 − x0 − |y − x|) is step function defined to be one if y0 − x0 ≥
|y−x|, and defined to be zero otherwise. Synge’s world function σ(y, x)
is numerically equal to half the squared distance between y and x:

σ(y, x) =
1

2
ηαβ(yα − xα)(yβ − xβ). (2.5)
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The first is y, to which we refer the "field point", while the second is x,
to which we refer the "emission point".

(We choose Minkowski metric tensor ηαβ = diag(−1, 1, 1) which we
shall use to raise and lower indices. Greek indices run from 0 to 3, and
Latin indices from 1 to 2; summation over repeated indices understood
throughout the paper.)

While in four-dimensional Minkowski spacetime the retarded Green’s
function has support on the future light cone of the emission point x, in
2 + 1 electrodynamics its support extends inside the light cone as well.

Using the retarded Green function (2.4) and the charge-current den-
sity (2.2) we construct the retarded Liénard-Wiechert potential in three
dimensions. Denoting Kµ = yµ − zµ(τ) the unique timelike (or null)
geodesic connecting a field point y to the emission point z(τ) ∈ ζ, we
arrive at

Aret
µ (y) = e

∫ +∞

−∞

dτθ(K0 − |K|) uµ(τ)
√

−(K ·K)
(2.6)

where "dot" denotes the scalar product of three-vector K on itself (it
is equal to double Synge’s function of field point y and emission point
z(τ)).

We now turn to the calculation of electromagnetic field F ret
µν =

∂µA
ret
ν − ∂νA

ret
µ generated by an arbitrarily moving point-like charge.

It consists of two quite different terms. The first term is due to differen-
tiation of θ-function involved in the vector potential (2.6):

F (δ)
µν = lim

τ→τret

e
√

−(K ·K)

uµKν − uνKµ

−(K · u) . (2.7)

τret(y) denotes the proper-time parameter at point on the world line
which links with y by the unique future-directed null geodesic. Since
τret(y) is the root of algebraic equation K0 − |K| = 0 the δ-term (2.7)
diverges.

The second term is

F (θ)
µν = −e

∫ +∞

−∞

dτθ(K0 − |K|)uµKν − uνKµ

[−(K ·K)]3/2

= −e
∫ τret(y)

−∞

dτ
uµKν − uνKµ

[−(K ·K)]3/2
. (2.8)

We see that the strength tensor F ret
µν of the adjunct electromagnetic field

consists of terms proportional to δ− and θ−functions: F̂ ret = F̂ (δ)+F̂ (θ).
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Figure 1. In four dimensions the retarded (advanced) field at observation point
P (y) is generated by a single event in spacetime: the intersection of the world
line and P ’s past (future) light cone. In three dimensions the retarded field de-
pends also on the particle’s history before τ ret(y). The advanced field depends
on the particle’s history after τadv(y). The vector K is a vector pointing from
the emission point z(τ ) ∈ ζ to field point P .

The terms separately are singular. But the singularity, however, can be
removed from the sum of F̂ (δ) and F̂ (θ). Using the identity

1

[−(K ·K)]3/2
=

1

−(K · u)
d

dτ

1
√

−(K ·K)
(2.9)

in eq.(2.8) yields

F (θ)
µν = − e

√

−(K ·K)

uµKν − uνKµ

−(K · u)

∣

∣

∣

∣

τ→τret(y)

τ→−∞

(2.10)

+ e

∫ τret(y)

−∞

dτ
√

−(K ·K)

{

aµKν − aνKµ

−(K · u)

+
uµKν − uνKµ

[−(K · u)]2 [1 + (K · a)]
}

after integration by parts. Summing up (2.7) and (2.10) and taking into
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account that 1/
√

−(K ·K) vanishes whenever τ → −∞1, we finally
obtain the expression

F̂ ret(y) = e

∫ τret(y)

−∞

dτ
√

−(K ·K)

{

a ∧K
r

+
u ∧K
r2

[1 + (K · a)]
}

(2.11)
which is regular on the light cone. (It diverges on the particle’s trajectory
only.) Symbol ∧ denotes the wedge product. The invariant quantity

r = −(K · u) (2.12)

= −ηαβ(yα − zα(τ))uβ(τ)

is an affine parameter on the time-like (null) geodesic that links y to
z(τ); it can be loosely interpreted as the time delay between y and z(τ)
as measured by an observer moving with the particle. When τ = τret(y)
parameter r is also the spatial distance between z(τret) and y as mea-
sured in this momentarily comoving Lorentz frame.

In three dimensions the advanced Green’s function

Gadv
2+1(y, x) =

θ(−y0 + x0 − |y − x|)
√

−2σ(y, x)
(2.13)

is nonzero in the past of x. The advanced strength tensor

F̂ adv(y) = e

∫ +∞

τadv(y)

dτ
√

−(K ·K)

{

a ∧K
r

+
u ∧K
r2

[1 + (K · a)]
}

(2.14)
is generated by the point charge during its entire future history following
the advanced time associated with y (see figure 1).

3. Equation of motion of radiating charge

In this section we derive the "three-dimensional" analogue of the
Lorentz-Dirac equation via analysis of the energy-momentum and an-
gular momentum balance equations. The momentum three-vector car-
ried by electromagnetic field is calculated in the next Section and in
Appendices D, E, and F; the total angular momentum is obtained in
Appendix G. We split the Noether quantities into bound (singular) and
radiative (regular) parts. Energy-momentum and angular momentum of

1We assume that average velocities are not large enough to initiate particle creation

and annihilation, so that "space contribution" |K| can not match with an extremely

large zeroth component K
0.
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"bare" sources absorb the bound terms within regularization procedure.
Already renormalized characteristics of charged particles are proclaimed
to be finite. Together with radiative terms, they constitute the total
energy-momentum and angular momentum of our particle plus field sys-
tem which are properly conserved.

To find out electromagnetic field’s energy-momentum we integrate
the Maxwell energy-momentum tensor density over the plane Σt = {y ∈
M 3 : y0 = t}. The resulting expressions (4.3.6) and (4.3.7), presented in
the next Section, can be rewritten in manifestly covariant fashion:

pµ
em(τ) =

e2

2

∫ τ

−∞

dτ2
uµ(τ2)

√

2σ(τ, τ2)
(3.1)

+

e2
∫ τ

−∞

dτ1

∫ τ1

−∞

dτ2

e2
∫ τ

−∞

dτ2

∫ τ

τ2

dτ1















[

− ∂2σ

∂τ1∂τ2

qµ

(2σ)3/2

+
1

2

∂

∂τ1

(

uµ
2√
2σ

)

− 1

2

∂

∂τ2

(

uµ
1√
2σ

)]

.

(We omit structureless terms which arise due to choice of non-covariant
surface of integration.) Index 1 indicates that particle’s velocity or posi-
tion is referred to the instant τ1 ∈]−∞, τ ] while index 2 says that the par-
ticle’s characteristics are evaluated at instant τ2 ≤ τ1. Here qµ = zµ

1 −zµ
2

defines the unique timelike geodesic connecting a field point z(τ1) ∈ ζ to
an emission point z(τ2) ∈ ζ; by σ we mean the Synge’s world function
(2.5) of z1 and z2, taken with opposite sign:

σ(τ1, τ2) = −1

2
(q · q). (3.2)

Two double integrals over (proper) time variables (one about the other)
describe integration over the domain Dτ = {(τ1, τ2) ∈ R

2 : τ1 ∈] −
∞, τ ], τ2 ≤ τ1}.

We have to decompose the expression eq.(3.1) into singular and reg-
ular parts. Following ref. [2], we postulate that splitting should satisfy
the conditions:

• proper non-accelerating limit of singular and regular parts;

• proper short-distance behavior of regular part;

• Poincaré invariance and reparametrization invariance.
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By "proper short-distance behavior" we mean the finiteness of integrand
at the edge τ2 = τ1 of the domain Dτ .

So, we take one-half of the first term in between the square brackets
under the double integral signs in eq.(3.1):

−1

2

∂2σ

∂τ1∂τ2

qµ

(2σ)3/2
= −1

2

(u1 · u2)q
µ

[−(q · q)]3/2
(3.3)

and add the second term

1

2

∂

∂τ1

(

uµ
2√
2σ

)

=
1

2

(u1 · q)uµ
2

[−(q · q)]3/2
. (3.4)

It is convenient to rewrite the resulting expression as follows:

pµ
12 =

1

2
u1,α

−uα
2 q

µ + uµ
2q

α

[−(q · q)]3/2
. (3.5)

We introduce the function

Gµ
ret(τ1) = e2u1,α

∫ τ1

−∞

dτ2
−uα

2 q
µ + uµ

2q
α

[−(q · q)]3/2
(3.6)

which is intimately connected with the retarded field (2.11) generated at
point z(τ1) ∈ ζ by the portion of the world line that corresponds to the
interval −∞ < τ2 ≤ τ1:

Gµ
ret(τ1) =

e2

2
aµ
1 − eu1,αF

µα
ret (τ1). (3.7)

(It may be checked via integration by parts.)
Next we take the remaining one-half of the first term and add the

third term:

−1

2

(u1 · u2)q
µ

[−(q · q)]3/2
+

1

2

(u2 · q)uµ
1

[−(q · q)]3/2
=

1

2
u2,α

−uα
1 q

µ + uµ
1q

α

[−(q · q)]3/2
. (3.8)

We change the order of integration of this term over Dτ :

e2

2

∫ τ

−∞

dτ1

∫ τ1

−∞

dτ2u2,α
−uα

1 q
µ + uµ

1q
α

[−(q · q)]3/2
(3.9)

=
e2

2

∫ τ

−∞

dτ2u2,α

∫ τ

τ2

dτ1
−uα

1 q
µ + uµ

1q
α

[−(q · q)]3/2
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and interchange indices "first" and "second". Taking into account that
q(τ2, τ1) = −q(τ1, τ2), we finally obtain:

−e
2

2

∫ τ

−∞

dτ1u1,α

∫ τ

τ1

dτ2
−uα

2 q
µ + uµ

2q
α

[−(q · q)]3/2
. (3.10)

The integrand coincides with that under integral sign in the right-hand
side of eq.(3.6) while the domain of inner integration corresponds to the
interval τ1 ≤ τ2 ≤ τ . We introduce the function

Gµ
adv(τ1, τ) = e2u1,α

∫ τ

τ1

dτ2
−uα

2 q
µ + uµ

2q
α

[−(q · q)]3/2
. (3.11)

If the instant of observation τ tends to +∞, this function can be rewrit-
ten as

Gµ
adv(τ1) =

e2

2
aµ
1 − eu1,αF

µα
adv(τ1). (3.12)

The second term is convolution of velocity with the advanced field (2.14)
generated at point z(τ1) ∈ ζ by the portion of the world line that cor-
responds to the interval [τ1,+∞[. The relations (3.7) and (3.12) are
symmetric upon future and past.

We see that the double integral in eq.(3.1) can be expressed as one-
half of Gret minus one-half of Gadv integrated over the world line ζ. For
this reason we proclaim the expression

pµ
R(τ) =

1

2

∫ τ

−∞

dτ1 [Gµ
ret(τ1) −Gµ

adv(τ1, τ)] (3.13)

= e2
∫ τ

−∞

dτ1

∫ τ1

−∞

dτ2

[

− (u1 · u2)q
µ

[−(q · q)]3/2
+

1

2

(u1 · q)uµ
2

[−(q · q)]3/2

+
1

2

(u2 · q)uµ
1

[−(q · q)]3/2

]

the radiative part of energy-momentum carried by electromagnetic field.
The situation is pictured in figure 2.

We evaluate the short-distance behavior of the expression under the
double integral in eq.(3.13). Let τ1 be fixed and τ1 − τ2 := ∆ be a small
parameter. With a degree of accuracy sufficient for our purposes

√

−(q · q) = ∆ (3.14)

qµ = ∆

[

uµ
1 − aµ

1

∆

2
+ ȧµ

1

∆2

6

]

uµ
2 = uµ

1 − aµ
1∆ + ȧµ

1

∆2

2
.
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Substituting these into integrand of the double integral of eq.(3.13) and
passing to the limit ∆ → 0 yields regular expression

lim
τ2→τ1

[

1

2
u1,α

−uα
2 q

µ + uµ
2q

α

[−(q · q)]3/2
+

1

2
u2,α

−uα
1 q

µ + uµ
1q

α

[−(q · q)]3/2

]

=
1

3
(a1)

2uµ
1−

1

12
ȧµ
1 .

(3.15)
Therefore the subscript "R" stands for "regular" as well as for "radia-
tive".

Alternatively, choosing the linear superposition

pµ
S(τ) =

1

2

∫ τ

−∞

dτ1 [Gµ
ret(τ1) +Gµ

adv(τ1, τ)] (3.16)

we restore the first term in the right-hand side of eq.(3.1). Indeed, having
integrated the half-sum of functions (3.6) and (3.11) over ζ we obtain

pµ
S =

e2

2

τ
∫

−∞

dτ2
uµ

2
√

2σ(τ1, τ2)

∣

∣

∣

∣

∣

τ1=τ

τ1=τ2

+
e2

2

τ
∫

−∞

dτ1
uµ

1
√

2σ(τ1, τ2)

∣

∣

∣

∣

∣

τ2=τ1

τ2→−∞

=
e2

2

∫ τ

−∞

dτ2
uµ(τ2)

√

2σ(τ, τ2)
. (3.17)

Since this non-local term diverges, in eq.(3.16) the subscript "S" stands
for "singular" as well as "symmetric".

In specific case of uniformly moving charge
√

2σ(τ, τ2) = τ − τ2.
Hence pµ

S(τ) coincides with that obtained in Appendix A where recti-
linear uniform motion is considered (see eq.(A.14)). Since the bracketed
integrand in (3.13) vanishes if uµ = const, non-accelerating charge does
not radiate.

We therefore introduce the radiative part pR of energy-momentum
and postulate that it, and it alone exerts a force on the particle. Singular
part, pS, should be coupled with particle’s three-momentum, so that
"dressed" charged particle would not undergo any additional radiation
reaction. Already renormalized particle’s individual three-momentum,
say ppart, together with pR constitute the total energy-momentum of
our particle plus field system: P = ppart + pR. Since P does not change
with time, its time derivative yields

ṗµ
part(τ) = −ṗµ

R (3.18)

= −e
2

2

∫ τ

−∞

ds

[

uτ,α
−uα

s q
µ + uµ

s q
α

[2σ(τ, s)]3/2
+ us,α

−uα
τ q

µ + uµ
τ q

α

[2σ(τ, s)]3/2

]

.

(The overdot means the derivation with respect to proper time τ .) Here
index τ indicates that particle’s velocity or position is referred to the
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Figure 2. The term (3.6) with integration over the portion of the world line
before τ1 we call "retarded". The term (3.11) with integration over the por-
tion of the world line after τ1 we call "advanced". For an observer placed at
point z(τ1) ∈ ζ the regular part (3.13) of electromagnetic field momentum
looks as the combination of incoming and outgoing radiation. And yet the re-
tarded causality is not violated. We still consider the interference of outgoing
waves presented at the observation instant τ . The electromagnetic field carries
information about the charge’s past.
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observation instant τ while index s says that the particle’s characteristics
are evaluated at instant s ≤ τ .

Our next task is to derive expression which explain how three-
momentum of "dressed" charged particle depends on its individual char-
acteristics (velocity, position, mass etc.). We do not make any assump-
tions about the particle structure, its charge distribution and its size. We
only assume that the particle 3-momentum ppart is finite. To find out the
desired expression we analyze conserved quantities corresponding to the
invariance of the theory under proper homogeneous Lorentz transforma-
tions. The total angular momentum, sayM , consists of particle’s angular
momentum z∧ppart and radiative part of angular momentum carried by
electromagnetic field:

Mµν = zµ
τ p

ν
part(τ) − zν

τ p
µ
part(τ) +Mµν

R (τ). (3.19)

(Singular part is absorbed by ppart.) The last term is calculated in Ap-
pendix G:

Mµν
R =

e2

2

∫ τ

−∞

dτ1

∫ τ1

−∞

dτ2 (zµ
1 p

ν
12 − zν

1p
µ
12 + zµ

2 p
ν
21 − zν

2p
µ
21) (3.20)

where two-point function pα
12 is given by eq.(3.5).

Having differentiated (3.19) and inserting eq.(3.18) we arrive at the
equation

uτ ∧ ppart =
e2

2

∫ τ

−∞

ds
uτ ∧ us
√

2σ(τ, s)
(3.21)

where symbol ∧ denotes the wedge product. We obtain the system of
tree linear equations in three components of particle’s momentum. Its
rank is equal to 2. Therefore, an arbitrary scalar function m(τ) arises:

pµ
part(τ) = muµ(τ) +

e2

2

∫ τ

−∞

ds
uµ(s) − uµ(τ)
√

2σ(τ, s)
. (3.22)

(We choose the simplest expression being finite near the point of ob-
servation.) We see that, apart from usual velocity term, particle’s 3-
momentum contains also non-local contribution from particle’s electro-
magnetic field.

The scalar product of particle three-velocity on the first-order time-
derivative of particle three-momentum (3.18) is as follows:

(ṗpart · uτ ) =
e2

2

∫ τ

−∞

ds

[

(uτ · us)
(uτ · q)
[2σ]3/2

+
(us · q)
[2σ]3/2

]

. (3.23)
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Since (u·a) = 0, the scalar product of particle acceleration on the particle
three-momentum (3.22) is given by

(ppart · aτ ) =
e2

2

∫ τ

−∞

ds
(aτ · us)√

2σ
. (3.24)

Summing up (3.23) and (3.24) we obtain

d

dτ
(ppart · uτ ) =

e2

2

∫ τ

−∞

ds

{

∂

∂τ

[

(uτ · us)√
2σ

]

+
(us · q)
[2σ]3/2

}

. (3.25)

Alternatively, the scalar product of 3-momentum (3.22) and 3-
velocity is as follows:

(ppart · uτ ) = −m+
e2

2

∫ τ

−∞

ds
(uτ · us) + 1√

2σ
. (3.26)

Further we compare its differential consequence with eq.(3.25). A sur-
prising feature of the already renormalized dynamical mass m is that it
depends on τ :

ṁ =
e2

2

∫ τ

−∞

ds
(q · uτ ) − (q · us)

[2σ]3/2
. (3.27)

It is interesting, that similar phenomenon occurs in the theory which
describes a point-like charge coupled with massless scalar field in flat
spacetime of three dimensions [19]. The charge loses its mass through
the emission of monopole radiation.

Having integrated derivative (3.27) over the world line ζ we obtain

m = m0 +
e2

2

∫ τ

−∞

dτ1

∫ τ1

−∞

dτ2

[

∂

∂τ1

(

1√
2σ

)

+
∂

∂τ2

(

1√
2σ

)]

= m0 +
e2

2

∫ τ

−∞

ds
√

2σ(τ, s)
(3.28)

where m0 is an infinite "bare" mass of the particle. Inserting this into
(3.22) we arrive at the equality pµ

part(τ) = m0u
µ
τ + pµ

S which shows that
particle’s momentum renormalization agrees with the renormalization of
mass.

The main goal of the present paper is to compute the effective equa-
tion of motion of radiating charge in 2+1 dimensions. To do it we replace
ṗµ
part in left-hand side of eq.(3.18) by differential consequence of eq.(3.22)

where the right-hand side of eq.(3.27) substitutes for ṁ. At the end of a
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straightforward calculations, we obtain

maµ
τ =

e2

2
aµ

τ − e2
∫ τ

−∞

ds

[

uτ,α
−uα

s q
µ + uµ

s q
α

[2σ]3/2
− 1

2

aµ
τ√
2σ

]

(3.29)

=
e2

2
aµ

τ −Gµ
ret(τ) +

e2

2
aµ

τ

∫ τ

−∞

ds
√

2σ(τ, s)
.

The first term in the right-hand side of this equation looks horribly
irrelevant. The relation (3.7) prompts that the retarded Lorentz self-
force should be substituted for the combination of the first (local) and
of the second (non-local) terms in the right-hand side of eq.(3.29). If an
external electromagnetic field F̂ext is applied, the equation of motion of
radiating charge in 2 + 1 theory becomes

maµ
τ = euτ,αF

µα
ret (τ) +

e2

2
aµ

τ

∫ τ

−∞

ds
√

2σ(τ, s)
+ euτ,αF

µα
ext (3.30)

where

Fµα
ret (τ) = e

τ
∫

−∞

ds√
2σ

{

uµ
s q

α − uα
s q

µ

r2
[1 + (as · q)] +

aµ
s q

α − aα
s q

µ

r

}

=

∫ τ

−∞

dsfµα(τ, s) (3.31)

is the field strengths at point z(τ) ∈ ζ generated by portion of the world
line before the observation instant τ . The non-local term in eq.(3.30)
which is proportional to particle’s acceleration a(τ) arises also in [2]. It
provides proper short-distance behavior of the radiation back-reaction. If
s → τ the integrand tends to three-dimensional analog of the Abraham
radiation reaction vector:

lim
s→τ

[

euτ,αf
µα(τ, s) +

e2

2

aµ
τ

√

2σ(τ, s)

]

=
2

3
e2
(

ȧµ − a2uµ
)

. (3.32)

(All quantities on the right-hand side refer to the instant of observation
τ .)

If one moves the second term to the left-hand side of eq.(3.30), they
restore unphysical motion equation which follows from variational prin-
ciple: it involves an infinite "bare" mass and divergent Lorentz self-force.
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4. Energy-momentum of electromagnetic field in 2+1

dimensions

In this section we trace a series of stages in calculation of the surface
integral

pν
em(τ) =

∫

Σ

dσµT
µν (4.1)

which gives the energy-momentum carried by electromagnetic field of a
point-like source arbitrarily moving in M 3. In Appendix D, Appendix E
and Appendix F we perform the computation in detail.

In eq.(4.1) dσµ is the vectorial surface element on an arbitrary space-

like surface Σ. The electromagnetic field’s stress-energy tensor T̂ has the
components

2πT µν = FµλF ν
λ − 1/4ηµνFκλFκλ (4.2)

where F̂ is the non-local strength tensor (2.11).

4.1. Coordinate system

In general, the rate of radiation does not depend on the shape of Σ.
We choose the simplest plane Σt = {y ∈ M 3 : y0 = t} associated
with unmoving inertial observer. If parametrization of the world line
is provided by a disjoint union of planes Σt, particle’s velocity takes
the form uµ = γvµ, vµ = (1, żi), and acceleration aµ = γ4(vv̇)vµ +
γ2v̇µ; factor γ = 1/

√
1 − v2. (The "overdot" indicates differentiation

with respect to t.) Electromagnetic field (2.11) takes the form

F̂ ret(y) = e

tret(y)
∫

−∞

dt
√

−(K ·K)

{

v̇ ∧K
r

+
v ∧K
r2

[

γ−2 + (K · v̇)
]

}

(4.1.1)
where v̇µ = (0, v̇i) and r = −(K ·v). (Although we use the same notation,
r should not be confused with manifestly covariant parameter (2.12).)

Huygens principle does not hold in three dimensions and radiation
develops a tail (see figure 3). In 3D the circle C(z(0), t) = {y ∈ M3 :

(y0)2 =
∑2

i=1(y
i − zi(0))2, y0 = t} is filled up by electromagnetic ra-

diation even if interval △t → 0. (The period of time during which the
point source emanates is meant.) So, a point z(t1) ∈ ζ produces the disk
of radius t − t1 in the observation plane Σt = {y ∈ M3 : y0 = t}. This
property reflects the fact that in M3 the electromagnetic field at y is gen-
erated by the portion of the world line that corresponds to the interval
−∞ < τ < τret(y); this represents the past history of the particle.
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1
Figure 3. Let the point source radiates within the interval [0,△t]. In four
dimensions the support of the Maxwell energy-momentum tensor density in
hyperplane y0 = t is in between two spheres centered at points zi(0) (cross
symbol) and zi(△t) (box symbol) with radii t and t − △t, respectively. In
three dimensions the radiation fills the disk with radius t centered at point
zi(0) (cross symbol) even if the interval shrinks to zero.

We introduce coordinate system associated with two points on a par-
ticle’s world line labelled by instants t1 and t2 (see figure 4). Flat space-
time M3 becomes a disjoint union of planes Σt = {y ∈ M3 : y0 = t}. A
plane Σt is a union of (retarded) disks centered on a world line of the
particle. The disk

C(z(ta), t− ta) = {y ∈ M3 : y0 − ta ≥
√

∑

i

(yi − zi(ta))2, y0 = t}

(4.1.2)
is bounded by the intersection of the future light cone generated by
null rays emanating from z(ta) ∈ ζ in all possible directions, and plane
Σt. The circular spot (4.1.2) is filled up by circles of radii R ∈ [0, t− ta]
centered on points on a line connecting points zi(t1) and zi(t2). Points in
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Figure 4. Outgoing electromagnetic waves generated by the portion of the
world line that corresponds to the interval −∞ < t2 < t1 combine within
the gray disk with radius k0

1 = t − t1. Their contribution is given by the first
fourfold integral in eq.(4.1.4). If the domain of integration t1 < t2 ≤ t the
waves joint together inside the dark disk with radius k0

2 = t − t′2. The second
fourfold integral in eq.(4.1.4) describes them.

an R−circle are distinguished by polar angle ϕ. We define the coordinate
transformation locally written as

y0 = t (4.1.3)

yi = αzi(t1) + βzi(t2) +Rωi
jn

j

where α + β = 1 and nj = (cosϕ, sinϕ). Orthogonal matrix ω is given
by eq.(B.2) (see Appendix B). It rotates space axes till new y1−axis be
directed along two-vector q := z(t1) − z(t2).

The integration of energy and momentum densities over two-dimen-
sional plane y0 = const means the study of interference of outgoing
electromagnetic waves emitted by different points on particle’s world line
(see figure 4). Note that the retarded field is generated by portion of the
world line ζ that corresponds to the particle’s history before tret(y). Since
the stress-energy tensor is quadratic in field strengths, we should twice
integrate it over ζ. There are also two variables which parametrize Σt. In
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curvilinear coordinates (t, t1, t2, s, ϕ) the surface integral (4.1) becomes

pα
em =

∫

Σt

dσ0T
0α (4.1.4)

=

t
∫

−∞

dt1

t1
∫

−∞

dt2

k0

1
∫

0

dR

2π
∫

0

dϕJt0α
12 +

t
∫

−∞

dt1

t
∫

t1

dt2

k0

2
∫

0

dR

2π
∫

0

dϕJt0α
12

with Jacobian

J =

(

1 − q
∂β

∂R
cosϕ

)

R (4.1.5)

=

(

1 + q
∂α

∂R
cosϕ

)

R.

The integrand

2πtαβ
12 = fαλ

(1)f
β
(2)λ − 1

4
ηαβfµν

(1)f
(2)
µν (4.1.6)

describes the combination of field strength densities at y ∈ Σt

f̂(a)(y) =
e

√

−(Ka ·Ka)

(

v̇a ∧Ka

ra
+
va ∧Ka

(ra)2
ca

)

(4.1.7)

generated by emission points z(t1) ∈ ζ and z(t2) ∈ ζ. Symbol ca denotes
the factor γ−2

a + (Ka · v̇a) involved in eq.(4.1.1).
The first multiple integral calculates the interference of the disk em-

anated by fixed point z(t1) ∈ ζ with radiation generated by all the points
before the instant t1. The second fourfold integral gives the contribution
of points after t1 (see figure 4).

It is worth noting that time variables t1 and t2 parametrize the same
world line ζ. Coordinate transformation (4.1.3) is invariant with respect
to the following reciprocity:

Υ : t1 ↔ t2, α↔ β, ϕ 7→ ϕ+ π. (4.1.8)

This symmetry provides identity of domains of fourfold integrals in
energy-momentum (4.1.4).

It is obvious that the support of double integral
∫ t

−∞
dt1
∫ t

t1
dt2 co-

incides with the support of the integral
∫ t

−∞
dt2
∫ t2
−∞

dt1. Since instants
t1 and t2 label different points at the same world line ζ, one can in-
terchanges the indices "first" and "second" in the second fourfold inte-
gral of eq.(4.1.4). Via interchanging of these indices we finally obtain
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∫ t

−∞
dt1
∫ t1
−∞

dt2 instead of initial
∫ t

−∞
dt1
∫ t

t1
dt2. Taking into account

these circumstances in the expression (4.1.4) for energy-momentum car-
ried by electromagnetic field we finally obtain

pα
em =

t
∫

−∞

dt1

t1
∫

−∞

dt2

k0

1
∫

0

dR

2π
∫

0

dϕJt0α (4.1.9)

where new stress-energy tensor is symmetric in the pair of indices 1 and
2:

2πt0α = 2π
(

t0α
12 + t0α

21

)

(4.1.10)

= f0λ
(1)f

α
(2)λ + f0λ

(2)f
α
(1)λ − 1

4
η0α

[

fµν
(1)f

(2)
µν + fµν

(2)f
(1)
µν

]

.

4.2. Angular integration of energy-momentum tensor density

We see that it is sufficient to consider the situation when t1 ≥ t2. The
smaller disk C1(z1, t− t1) ⊂ C2(z2, t− t2) is filled up by non-concentric
circles with radii R ∈ [0, k0

1 ] (see figures 4,5). To calculate the total flows
(4.1.9) of electromagnetic field energy and momentum which flow across
the plane Σt we should integrate the Maxwell energy-momentum tensor
density (4.1.10) over angular variable ϕ, over radius R and, finally, over
time variables t1 and t2. Integration over ϕ is not a trivial matter. The
difficulty resides mostly with norms ‖Ka‖2 = −ηαβK

α
aK

β
a of separation

vectors Ka = y − za which result elliptic integrals. To avoid dealing
with them we modify the coordinate transformation (4.1.3). We fix the
parameter β in such a way that the norm ‖K1‖2 becomes proportional
to the norm ‖K2‖2:

‖K1‖2 = −β
α
‖K2‖2. (4.2.1)

Keeping in mind identity α+β = 1, we arrive at the quadratic algebraic
equation on β which does not contain the angle variable:

R2 = α(k0
1)2 + β(k0

2)2 − αβq2. (4.2.2)

We choose the root which vanishes when R = k0
1 :

β =
1

2q2

(

−(k0
2)

2 + (k0
1)

2 + q2 +
√
D
)

(4.2.3)

D =
[

(k0
2)2 − (k0

1)
2 − q2

]2 − 4q2
[

(k0
1)2 −R2

]

.

If q2 tends to zero while t1 6= t2, it becomes the unique root of the linear
equation on β originated from eq.(4.2.2) with q2 = 0.

ICMP–07–06E 21

-

I k02 ��� k01
y1

6y2
O1 A

O

2z
1z

Figure 1.
1

Figure 5. The interference picture in a plane Σt. The points z(t1) ∈ ζ and
z(t2) ∈ ζ, t2 < t1, emanate the radiation which filled up the disks centered at
z1 and z2, respectively. The gray disk with radius k0

1 = t − t1 is filled up by
non-concentric circles centered at the line crossing both the points z1 and z2.
If parameter β vanishes the circle is centered at z1; its radius is equal to k0

1 .
If β = β0 < 0 the circle reduces to the point A labelled by the box symbol.
In case of intermediate value β0 < β < 0 we have the circle of radius R with
center at point O between z1 and A.

If R = 0 the R−circle reduces to the point A with coordinates (zi
1 −

β0q
i) where β0 = β|R=0. If R = k0

1 then β = 0 and the circle is centered
at zi(t1) (see figure 5).

Changing the variable of integration from R to β transforms two
inner integrals in the fourfold integral (4.1.9) as follows:

k0

1
∫

0

dR

2π
∫

0

dϕ

(

1 − q
∂β

∂R
cosϕ

)

R =

0
∫

β0

dβ

2π
∫

0

dϕ

(

1

2

∂R2

∂β
− qR cosϕ

)

.

(4.2.4)
Having differentiated eq.(4.2.2) with respect to β we obtain new Jacobian

J = (1/2)
[

(k0
2)

2 − (k0
1)2 − q2

]

+ βq2 − qR cosϕ. (4.2.5)

It is straightforward to substitute the field densities (4.1.7) evaluated
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at instants t1 and t2 into expression (4.1.10) to calculate the integrand of
the multiple integral (4.1.9). It is of great importance that the square of
norm ‖Ka‖ is proportional to J (see eqs.(B.6) derived in Appendix B).

For the first term, Jtαβ
12 , we obtain the following cumbersome expression

Jtαβ
12 =

e2

2
I

{

T̂αβ
12

(

∂2σ

∂t1∂t2

)

+ T̂α
1

(

vβ
2

∂σ

∂t1

)

+ T̂ β
2

(

vα
1

∂σ

∂t2

)

+ T̂ 0(vα
1 v

β
2 σ) − Cα

1 v
β
2

∂2σ

∂t1∂t2
−Dα

1 v
β
2

∂3σ

∂t21∂t2
−Bβ

2 v
α
1

∂2σ

∂t1∂t2

− Dβ
2 v

α
1

∂3σ

∂t1∂t22
−B0vα

1 v
β
2

∂σ

∂t1
− C0vα

1 v
β
2

∂σ

∂t2

− D0

(

v̇α
1 v

β
2

∂σ

∂t2
+ vα

1 v̇
β
2

∂σ

∂t1
+ vα

1 v
β
2

∂2σ

∂t1∂t2

)}

− e2

2
I ′T̂ J(vα

1 v
β
2 ) − e2

4
ηαβ

{

IT̂ 0(λ) − I ′T̂ J(λ0)
}

. (4.2.6)

Functions

λ = σ
∂2σ

∂t1∂t2
− ∂σ

∂t1

∂σ

∂t2
, λ0 =

∂2σ

∂t1∂t2
(4.2.7)

depend on Synge’s world function (3.2) of two timelike related points,
z(t1) ∈ ζ and z(t2) ∈ ζ, taken with opposite sign. Symbols I, I ′ denote
β-dependent factors

I =
1√
−βα, I ′ =

√

−β
α

+

√

α

−β . (4.2.8)

Each second order differential operator

T̂ a = Da ∂2

∂t1∂t2
+Ba ∂

∂t1
+ Ca ∂

∂t2
+Aa (4.2.9)

has been labelled according to its dependence on combination of com-
ponents of the separation vectors K1 and K2 pictured in figure 6 (see
Appendix B), or on Jacobian (4.2.5). The components of these vectors
are involved in ϕ-dependent coefficients

Da =
1

2π

a

r1r2
, Ba =

1

2π

ac2
r1(r2)2

(4.2.10)

Ca =
1

2π

ac1
(r1)2r2

, Aa =
1

2π

ac1c2
(r1)2(r2)2

where factor a is replaced by Kα
1 K

β
2 ,K

α
1 ,K

β
2 , J or 1 for T̂αβ

12 , T̂α
1 , T̂ β

2 ,

T̂ J or T̂ 0, respectively.
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Integration of the electromagnetic field’s stress-energy tensor over
the angular variable is the key to the problem. All the ϕ-dependent
constructions are concentrated in the coefficients of differential operators
of type (4.2.9). We introduce new operator

T̂ a = Da ∂2

∂t1∂t2
+ Ba ∂

∂t1
+ Ca ∂

∂t2
+ Aa (4.2.11)

where calligraphic letters denote the coefficients (4.2.10) integrated over
ϕ. (The integration is performed in Appendix C).

To distinguish the partial derivatives in time variables we rewrite the
operator (4.2.11) as the sum of the second-order differential operator

Π̂a =
∂2

∂t1∂t2
Da +

∂

∂t1

(

Ba − ∂Da

∂t2

)

+
∂

∂t2

(

Ca − ∂Da

∂t1

)

(4.2.12)

and the "tail"

πa =
∂2Da

∂t1∂t2
− ∂Ba

∂t1
− ∂Ca

∂t2
+ Aa. (4.2.13)

For a smooth function f(t1, t2) we have

T̂ a(f) = Π̂a(f) + fπa. (4.2.14)

In Appendix C we derive the relations

π0 = 0, πJ = 0 (4.2.15)

πα
1 = vα

1

(

B0 − ∂D0

∂t2

)

, πβ
2 = vβ

2

(

C0 − ∂D0

∂t1

)

παJ
1 = vα

1

(

BJ − ∂DJ

∂t2

)

, πβJ
2 = vβ

2

(

CJ − ∂DJ

∂t1

)

παβ
12 = vα

1

(

Bβ
2 − ∂Dβ

2

∂t2

)

+ vβ
2

(

Cα
1 − ∂Dα

1

∂t1

)

− vα
1 v

β
2D0

which allow us to rewrite the integral of (4.2.6) over ϕ in terms of dif-
ferential operators Π̂a:

∫ 2π

0

dϕJtαβ
12 =

e2

2
I

{

Π̂αβ
12

(

∂2σ

∂t1∂t2

)

+ Π̂α
1

(

vβ
2

∂σ

∂t1

)

+ Π̂β
2

(

vα
1

∂σ

∂t2

)

+ Π̂0(vα
1 v

β
2 σ) − ∂

∂t1

(

Dα
1 v

β
2

∂2σ

∂t1∂t2

)

(4.2.16)

− ∂

∂t2

(

Dβ
2 v

α
1

∂2σ

∂t1∂t2

)

− ∂

∂t1

(

D0vα
1 v

β
2

∂σ

∂t2

)
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− ∂

∂t2

(

D0vα
1 v

β
2

∂σ

∂t1

)}

− e2

2
I ′Π̂J (vα

1 v
β
2 ) − e2

4
ηαβ

{

IΠ̂0(λ) − I ′Π̂J (λ0)
}

.

Since operator (4.2.12) is the combination of partial derivatives in time
variables, the angular integration gives the key to the problem.

Putting α = 0 and β = i in (4.2.16) we obtain the first term of the
mixed space-time components of the stress-energy tensor (4.1.10). We
add the term where indices "first" and "second" are interchanged. Since
zeroth components of the separation three-vectors K1 and K2 do not
depend on ϕ, the final expression get simplified:

∫ 2π

0

dϕJt0i =
e2

2
I

[

Π̂i
1

(

∂λ2

∂t1

)

+ Π̂i
2

(

∂λ1

∂t2

)

+ Π̂0
(

vi
2λ1 + vi

1λ2

)

− ∂

∂t1

(

vi
2

∂λ1

∂t2
D0

)

− ∂

∂t2

(

vi
1

∂λ2

∂t1
D0

)]

− e2

2
I ′Π̂J (vi

1 + vi
2) (4.2.17)

where

λ1 = k0
1

∂σ

∂t1
+ σ, λ2 = k0

2

∂σ

∂t2
+ σ. (4.2.18)

Similarly we derive zeroth component t00. Putting α = 0 and β = 0 in
(4.2.16) we obtain the first term of energy density. Since it is symmetric
in the pair of indices 1 and 2, the second term, t0021, doubles it. The
integral of energy density t00 over the angular variable has the form

∫ 2π

0

dϕJt00 = e2
[

IΠ̂0(κ) − I ′Π̂J (µ)
]

(4.2.19)

where

κ = k0
1k

0
2

∂2σ

∂t1∂t2
+ k0

1

∂σ

∂t1
+ k0

2

∂σ

∂t2
− 1

2

∂σ

∂t1

∂σ

∂t2
+ σµ (4.2.20)

µ =
1

2

∂2σ

∂t1∂t2
+ 1.

We see that the integration of electromagnetic field’s stress-energy
tensor over ϕ yields integrals being functions of the end points only.
In the next subsection we classify them and consider the problem of
integration over the remaining variables.
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4.3. Integration over time variables and β

Our purpose in this section is to develop the mathematical tools re-
quired in a surface integration of energy-momentum tensor density in
(2+1)−electrodynamics. Integration over angle variable results the com-
bination of partial derivatives in time variables:

pα
em(t) =

e2
∫ t

−∞

dt1

∫ t1

−∞

dt2

e2
∫ t

−∞

dt2

∫ t

t2

dt1















(

∂2Gα
12

∂t1∂t2
+
∂Gα

1

∂t1
+
∂Gα

2

∂t2

)

. (4.3.1)

By virtue of the equality

∫ 0

β0

dβ
∂G(β, t1, t2)

∂ta
=

∂

∂ta

[
∫ 0

β0

dβG(β, t1, t2)

]

+G(β0, t1, t2)
∂β0(t1, t2)

∂ta
(4.3.2)

the triple integral (4.3.1) can be rewritten as follows:

pα
em(t) = e2

[

lim
k0

1
→0

∫ 0

β0

dβGα
12

]t2=t

t2→−∞

+ e2
∫ t

−∞

dt2 lim
k0

1
→0

[
∫ 0

β0

dβGα
1

]

+ e2
∫ t

−∞

dt2 lim
k0

1
→0

[

Gα
12|β=β0

∂β0

∂t2

]

(4.3.3)

− e2
∫ t

−∞

dt2 lim
△t→0

∫ 0

β0

dβ

[

∂Gα
12

∂t2
+Gα

1

]

k0

1
=k0

2
−△t

+ e2
∫ t

−∞

dt1 lim
△t→0

[
∫ 0

β0

dβGα
2

]

k0

2
=k0

1
+△t

− e2
∫ t

−∞

dt1 lim
t2→−∞

[
∫ 0

β0

dβGα
2

]

+

e2
∫ t

−∞

dt1

∫ t1

−∞

dt2

e2
∫ t

−∞

dt2

∫ t

t2

dt1















(

[

∂Gα
12

∂t2
+Gα

1

]

β=β0

∂β0

∂t1

+ Gα
2 |β=β0

∂β0

∂t2

)

.

In Appendix C we calculate the functions

G0
12 = ID0κ− I ′DJµ (4.3.4)
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G0
1 = −

√

−β
α
κ

v2
1

‖r1‖3
− I ′µ

∂

∂β

(

β

‖r1‖

)

G0
2 =

√

α

−βκ
v2

2

‖r2‖3
− I ′µ

∂

∂β

(

α

‖r2‖

)

Gi
12 =

I

2

[

∂λ1

∂t2
Di

2 +
∂λ2

∂t1
Di

1 +
(

vi
1λ2 + vi

2λ1

)

D0

]

− I ′

2

(

vi
1 + vi

2

)

DJ

Gi
1 =

I

2

β

‖r1‖3

[

∂λ1

∂t2

(

αqiv2
1 + r01v

i
1

)

+
∂λ2

∂t1

(

−βqiv2
1 + r01v

i
1

)

+
(

vi
1λ2 + vi

2λ1

)

v2
1

]

− I ′

2

(

vi
1 + vi

2

) ∂

∂β

(

β

‖r1‖

)

(4.3.5)

Gi
2 =

I

2

α

‖r2‖3

[

∂λ1

∂t2

(

αqiv2
2 + r02v

i
2

)

+
∂λ2

∂t1

(

−βqiv2
2 + r02v

i
2

)

+
(

vi
1λ2 + vi

2λ1

)

v2
2

]

− I ′

2

(

vi
1 + vi

2

) ∂

∂β

(

α

‖r2‖

)

involved in these integrals.
1o. Integrals where t1 → t. Equality (B.10) implies that the lower

limit β0 tends to 0 if k0
1 = t−t1 vanishes. The upper limit is equal to zero

too. Then the integral over parameter β vanishes whenever an expression
under integral sign is smooth. So, we must limit our computations to the
singular terms only. They are performed in Appendix D; these integrals
do not contribute in the energy-momentum at all.

2o. Integrals where t1 = t2. According to eq.(B.10), the equality
t1 = t2 yields sinϑ0 = 1 and lower limit β0 = − tanϑ0 tends to −∞.
The small parameter is the positively valued difference △t = t1 − t2.
The integration is performed in Appendix E; the resulting terms belong
to the bound part of energy-momentum. (To that which is permanently
"attached" to the charge and is carried along with it.)

3o. Integrals where t2 → −∞. Equality (B.10) implies that the
lower limit β0 tends to 0 if k0

2 = t − t2 increases extremely. Then the
integral over parameter β vanishes whenever an expression under integral
sign is smooth. So, we must limit our computations to the singular terms
only. They are performed in Appendix E; the resulting terms belong to
the bound electromagnetic "cloud" which can not be separated from the
charged particle.

4o. Integrals at point where β = β0. In this case the radius of
the smallest circle pictured in figure 5 vanishes and it reduces to the
point A. The contribution in pα

em is given by the last line of eq.(4.3.3).
In Appendix F we present the integrand as the combination of partial
derivatives in time variables and non-derivative "tail". After integration
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over t1 or t2, the derivatives are coupled with bound terms obtained in
Appendix E; the sum is absorbed by three-momentum of "bare" particle
within renormalization procedure. The "tail" contains radiative terms
which detach themselves from the charge and lead independent existence.

Summing up all the contributions 2o − 4o we finally obtain

p0
em(t) = e2

1 + 1/2
√

1 − v2
1

1 +
√

1 − v2
1

1
√

1 − v2
1

∣

∣

∣

∣

∣

t1=t

t1→−∞

(4.3.6)

+
e2

2

∫ t

−∞

dt2
1

√

2σ(t, t2)

+ e2
t
∫

−∞

dt1

t1
∫

−∞

dt2

[

− (v1 · v2)q0
(2σ)3/2

+
1

2

(v1 · q)
(2σ)3/2

+
1

2

(v2 · q)
(2σ)3/2

]

pi
em(t) = e2

1 + 1/2
√

1 − v2
1

1 +
√

1 − v2
1

vi
1

√

1 − v2
1

∣

∣

∣

∣

∣

t1=t

t1→−∞

(4.3.7)

+
e2

2

∫ t

−∞

dt2
vi
2

√

2σ(t, t2)

+ e2
t
∫

−∞

dt1

t1
∫

−∞

dt2

[

− (v1 · v2)qi

(2σ)3/2
+

1

2

(v1 · q)vi
2

(2σ)3/2
+

1

2

(v2 · q)vi
1

(2σ)3/2

]

.

The finite terms which depend on the end points only are non-covariant.
They express the "deformation" of electromagnetic "cloud" due to the
choice of coordinate-dependent hole around the particle in the integra-
tion surface Σt. We neglect these structureless terms. The single inte-
grals describe covariant singular part of energy-momentum carried by
electromagnetic field. The first term in between the square brackets of
eqs.(4.3.6) and (4.3.7) can not be rewritten as the partial derivative in
t1 or t2. It determines the radiation reaction in 2 + 1 electrodynamics.

5. Conclusions

In the present paper, we calculate the total flows of (retarded) electro-
magnetic field energy, momentum and angular momentum which flow
across the plane Σt = {y ∈ M 3 : y0 = t}. The field is generated by
a point-like electric charge arbitrarily moving in flat spacetime of three
dimensions. The computation is not a trivial matter, since the Maxwell
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energy-momentum tensor density evaluated at field point y ∈ Σt is non-
local. In odd dimensions the retarded field is generated by portion of
the world line ζ that corresponds to the particle’s history before tret(y).
Since the stress-energy tensor is quadratic in field strengths, we should
twice integrate it over ζ. We integrate it also over two variables which
parametrize Σt in order to calculate energy-momentum and angular mo-
mentum which flow across this plane. Thanks to integration we reduce
the support of the retarded and advanced Green’s functions to particle’s
trajectory.

The Dirac scheme which manipulates fields on the world line only
is the key point of investigation. By fields we mean the convolution
uµ(τ1)F

µν
(ϑ) of three-velocity and non-local part (2.8) of the retarded

strength tensor evaluated at point z(τ1) ∈ ζ; the torque of this "Lorentz
θ-force" arises in electromagnetic field’s total angular momentum. (Sin-
gular δ-term (2.7) is defined on the light cone; it is meaningless since both
the field point, z(t1), and the emission point, z(t2), lie on the time-like
world line). The retarded and the "advanced" quantities arise naturally.
The retarded Lorentz self-force as well as its torque contain integra-
tion over the portion of the world line which corresponds to the interval
−∞ < t2 ≤ t1. Domain of integration of their "advanced" counterparts
corresponds to the interval t1 ≤ t2 ≤ t.

Noether quantity Gα
em carried by electromagnetic field consists of

terms of two quite different types: (i) singular, Gα
S , which is permanent-

ly "attached" to the source and carried along with it; (ii) radiative, Gα
R,

which detaches itself from the charge and leads independent existence.
The former is the half-sum of retarded and "advanced" expressions, inte-
grated over ζ, while the latter is the integral of one-half of the retarded
quantity minus one-half of the "advanced" one. Within regularization
procedure the bound terms Gα

S are coupled with energy-momentum and
angular momentum of "bare" source, so that already renormalized char-
acteristics Gα

part of charged particle are proclaimed to be finite. Noether
quantities which are properly conserved become:

Gα = Gα
part +Gα

R.

Energy-momentum balance equations define the change of particle’s
three-momentum under the influence of an external electromagnetic field
where loss of energy due to radiation is taken into account. The angu-
lar momentum balance equations explain how this already renormalized
three-momentum depend on particle’s individual characteristics. They
constitute the system of three linear equations in three components of
particle’s momentum. Its rank is equal to 2, so that arbitrary scalar
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function arises naturally. It can be interpreted as a dynamical mass of
"dressed" charge which is proclaimed to be finite. A surprising feature
is that this mass depends on the particle’s history before the instant of
observation when the charge is accelerated. Already renormalized parti-
cle’s momentum contains, apart from usual velocity term, also non-local
contribution from point-like particle’s electromagnetic field.

Having substituted this expression in the energy-momentum balance
equations we derive three-dimensional analogue of the Lorentz-Dirac
equation

maµ
τ = euτ,αF

µα
ret (τ) +

e2

2
aµ

τ

∫ τ

−∞

ds
√

2σ(τ, s)
+ euτ,αF

µα
ext .

The loss of energy due to radiation is determined by work done by
Lorentz force of point-like charge acting upon itself. Non-local term
which is proportional to particle’s acceleration provides finiteness of the
self-action. Third term describes influence of an external field.

In this paper we develop convenient technique which allows us to in-
tegrate non-local stress-energy tensor over the spacelike plane. The next
step will be to implement this technique to a point particle coupled to
massive scalar field following an arbitrary trajectory on a flat spacetime.
The Klein-Gordon field generated by the scalar charge holds energy near
the particle. This circumstance makes unclear the procedure of decom-
position of the energy-momentum into bound and radiative parts.

In [20] the remarkable correspondence is established between dynam-
ical equations which govern behavior of superfluid 4He films and Maxwell
equations for electrodynamics in 2+1 dimensions (see also refs. [21,22])2.
Perhaps the effective equation of motion (3.30) will be useful in study
of phenomena in superfluid dynamics which correspond to the radiation
friction.
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Appendix A. Uniformly moving charge: conserved quantities

The simplest field is generated by unmoved charge placed at the coor-
dinate origin. Putting z = (t, 0, 0) and u = (1, 0, 0) in eq.(2.11), one can

2I wish to thank O.Derzhko for drawing these papers to my attention.
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derive that the only non-trivial components of static field are:

Fi0 = e

y0
−r
∫

−∞

dt
√

(y0 − t)2 − r2
yi

(y0 − t)2
(A.1)

= −e y
i

r2

√

(y0 − t)2 − r2

y0 − t

∣

∣

∣

∣

∣

t=y0
−r

t→−∞

= e
yi

r2
.

r :=
√

(y1)2 + (y2)2 is the distance to the charge. Having performed
Poincaré transformation being the combination of translation and
Lorentz transformation we find out the field generated by uniformly
moving charge:

Fαβ = e
uαkβ − uβkα

r
. (A.2)

Here r = −ηαβ(yα − zα(s))uβ is the retarded distance where particle’s
position zα(τ) = zα

0 + uατ is referred to the retarded instant of time
s. We denote kα the null-vector yα − zα(s) rescaled by the retarded
distance, i.e.

kα =
yα − zα(s)

r
. (A.3)

It is straightforward to substitute (A.2) in (4.2) to calculate the elec-
tromagnetic field’s stress-energy tensor:

2πTαβ =
e2

r2

(

uαkβ + uβkα − kαkβ +
1

2
ηαβ

)

. (A.4)

Now we calculate the electromagnetic field momentum

pν
em(t) =

∫

Σt

dσµT
µν (A.5)

where an integration surface Σt is a surface of constant y0. We start with
coordinate transformation (y0, y1, y2) 7→ (r, s, ϕ) locally given by

yα = zα(s) + rkα, kα = Λα
α′nα′

(A.6)

where nα′

= (1, cosϕ, sinϕ). The Lorentz matrix Λ determines the trans-
formation to the particle’s comoving Lorentz frame where the particle
is at rest. To adopt these curvilinear coordinates to the integration sur-
face Σt = {y ∈ M 3 : y0 = t} we replace the retarded distance r by the
expression

r =
t− s

k0
(A.7)
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where t is the observation time. On rearrangement, the final coordinate
transformation (y0, y1, y2) 7→ (t, s, ϕ) looks as follows:

y0 = t, yi = zi(s) + (t− s)
ki

k0
. (A.8)

Differentiation of this coordinate transformation yields differential chart

~et =
1

k0

(

k0~e0 + ki~ei

)

(A.9)

~es =

(

vi − ki

k0

)

~ei

~eϕ = (t− s)

(

ki
ϕ

k0
− ki

(k0)2
k0

ϕ

)

~ei

where kα
ϕ = ∂kα/∂ϕ and vi = γ−1ui. Their scalar products are the

components of metric tensor g of Minkowski space M 3 as it is viewed
in curvilinear coordinates (A.8). To calculate the determinant of g it is
sufficient to know that

gtt = 0, gtϕ = 0, gts = −γ
−1

k0
, gϕϕ =

(t− s)2

(k0)2
. (A.10)

The surface element is given by dσ0 =
√−gdsdϕ where

√−g = γ−1 t− s

(k0)2
(A.11)

is the Jacobian of coordinate transformation (A.8). Electromagnetic field
momentum (A.5) takes the form:

pβ
em =

e2

2π

t
∫

−∞

ds

2π
∫

0

dϕ
γ−1

t− s

(

u0kβ + uβk0 − k0kβ + (1/2)η0β
)

. (A.12)

The angular integration can be handled via the relations

2π
∫

0

dϕkα = 2πuα,

2π
∫

0

dϕkαkβ = 3πuαuβ + πηαβ . (A.13)

After trivial calculations we arrive at the logarithmic divergence

pβ
em =

e2

2

t
∫

−∞

ds
uβ

t− s
(A.14)

as could be expected for the two-dimensional Coulomb potential.



32 Препринт

Appendix B. Coordinate system

Coordinate transformation (4.1.3) is associated with two points, z(t1)
and z(t2), on an accelerated world line ζ (see figure 6). Its differentiation
yields differential chart

~et = ~e0 − q
∂β

∂t
~e1′

~eR = nj′~ej′ − q
∂β

∂R
~e1′

~eϕ = snj′

ϕ~ej′ (B.1)

where n = (cosϕ, sinϕ), nϕ = (− sinϕ, cosϕ) and ~ej′ = ~eiω
i
j′ . Orthog-

onal matrix

ω =

(

n1
q −n2

q

n2
q n1

q

)

(B.2)

where ni
q = qi/q rotates space axes till new x−axis be directed along

two-vector q := z(t1) − z(t2) (we denote q :=
√

q2). In new coordinates
three-vectors Ka = y − z(ta), a = 1, 2, pointing from points of emana-
tion z(ta) := za to an observation point y ∈ Σt (see figure 6) have the
following form:

K0
a = t− ta := k0

a, Ki
a = ωi

jk
j
a (B.3)

where

k1
1 = −βq +R cosϕ, k2

1 = R sinϕ (B.4)

k1
2 = αq +R cosϕ, k2

2 = R sinϕ.

The norms ‖Ka‖ =
√

−(Ka ·Ka) of the separation vectors K1 and
K2 pictured in figure 6 contain the angular variable:

−(K1 ·K1) = (k0
1)2 − β2q2 + 2βqR cosϕ−R2,

−(K2 ·K2) = (k0
2)2 − α2q2 − 2αqR cosϕ−R2. (B.5)

Substituting of the right-hand side of eq.(4.2.2) for R2 in these expres-
sions and comparing them with Jacobian (4.2.5) leads to the important
relations:

‖K1‖2 = −2βJ, ‖K2‖2 = 2αJ. (B.6)

They immediately follow:

J
√

−(K1 ·K1)
√

−(K2 ·K2)
=

1

2
√−βα. (B.7)
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Figure 6. The separation vector Ka is a vector pointing from point of emission
z(ta) := za to point of observation P ∈ Σt with coordinates (y0, y1, y2). The
integrand t0α involves also one-half of square of three-vector q := z1 − z2 =
K2 −K1 (double Synge’s function), and its partial derivatives with respect to
time variables. Space components of q determine the orthogonal matrix (B.2).

To concretely compute integrals over β we clarify mathematical sense
of this parameter. Since eq.(B.6), we parametrize the ratio ‖K1‖/‖K2‖
by angle variable ϑ:

sinϑ =

√

−β
α
. (B.8)

Having inserted it in the expression (4.2.2) we obtain algebraic equation
on sin2 ϑ. Its solution is as follows

cos 2ϑ =
−(k0

1)
2 + q2 +R2 +

√
D

(k0
2)2 −R2

(B.9)

where D is defined by eq.(4.2.3). If R = k0
1 then ϑ = 0 and parameter

β vanishes. If R = 0 we obtain the lower limit of integral over β. We
denote it β0 = − tan2 ϑ0 where

sinϑ0 =
1

2k0
2

(√
2Σ −

√
2σ
)

(B.10)
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and

Σ =
1

2

(

k0
2 + k0

1

)2 − 1

2
q2, σ =

1

2

(

k0
2 − k0

1

)2 − 1

2
q2. (B.11)

Appendix C. Integration over angular variable

To calculate the energy-momentum (4.1.9) carried by electromagnetic
field we should perform the integration over angle firstly. When facing
this problem it is convenient to mark out ϕ-dependent terms in expres-
sions under the integral sign. In the Maxwell energy-momentum tensor
density we distinguish the second-order differential operator T̂a with ϕ-
dependent coefficients (see eq.(4.2.9)). Having integrated this operator
over ϕ we obtain the operator T̂a which can be decomposed into com-
bination of partial derivatives in time variables Π̂a given by eq.(4.2.12)
and "tail" πa of type (4.2.13).

This Appendix concerned with the computation of the "tails".
Equipped with them we express the integrand as combination of par-
tial derivatives in t1 and t2. It allows us to integrate the electromagnetic
field’s stress-energy tensor over the time variables as well as over β.

To implement this strategy we must first integrate the coefficients
(4.2.10) over the angle variable. We start with the simplest one

Da =
1

2π

∫ 2π

0

dϕ
a

r1r2
(C.1)

where ϕ-dependent numerator a is equal to Jacobian (4.2.5) or to 1.
Our task is rewrite the integrand as a sum of term with denominator
r1 and term with denominator r2. To do it I introduce a new layer of
mathematical formalism and develop convenient technique.

We introduce null-vector n = (1, cosϕ, sinϕ) which belongs to the
vector space, say V , such that i0, i1, and i2 is its linear basis. We shall
use ηαβ = diag(−1, 1, 1) and its inverse ηαβ = diag(−1, 1, 1) to lower
and raise indices, respectively. We introduce the pairing

(·) : V × V → R (C.2)

(a · b) 7→ ηαβa
α
b

β (C.3)

which will be called the "scalar product".
We express the ϕ-dependent constructions

ra = −(Ka · va), ca = γ−2
a + (Ka · v̇a). (C.4)
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as the scalar products −(ra · n) and (ca · n), respectively. We shall use
sans-serif symbols for the components of time-like three-vectors ra ∈ V
and ca ∈ V

r
0
1 = k0

1 + β(v1q), r
0
2 = k0

2 − α(v2q), r
j
a = Rva

iωi
j ; (C.5)

c
0
1 = −γ−2

1 + β(v̇1q), c
0
2 = −γ−2

2 − α(v̇2q), c
j
a = Rv̇a

iωi
j

Jacobian (4.2.5) becomes the scalar product (J·n) = J0+J1 cosϕ+J2 sinϕ
where

J0 = βq2 + (1/2)
[

(k0
2)

2 − (k0
1)2 − q2

]

, J1 = −qR, J2 = 0. (C.6)

We introduce the dual space of one-forms, say W , with basis ω̂0, ω̂1

and ω̂2 such that ω̂µ(iν) = δµ
ν where i0, i1, i2 constitute the basis of V .

Wedge product L̂ = â∧ b̂ of two one forms â and b̂ constitutes two-form

L̂ = (a0b1 − a1b0) ω̂
0∧ ω̂1 +(a0b2 − a2b0) ω̂

0∧ ω̂2 +(a1b2 − a2b1) ω̂
1∧ ω̂2.
(C.7)

We introduce dual three-vector L =∗L̂ with components

L
α =

1

2!
εαβγLβγ (C.8)

= εαβγaβbγ .

εαβγ denotes the Ricci symbol in three dimensions:

εαβγ =







1 when αβγ even permutation 0, 1, 2
−1 when αβγ odd permutation 0, 1, 2
0 otherwise.

(C.9)

We raise indices in eq.(C.8) and define the vector product of two
vectors, a and b:

L
α = εα

µνa
µ
b

ν . (C.10)

Tensor
εα

µν = εαβγηβµηγν (C.11)

has the components

ε0µν = ε0µν , ε1µν = −ε1µν , ε2µν = −ε2µν . (C.12)

It is interesting that tensor

ελµν = εαβγηαληβµηγν (C.13)
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is equal to ελµν taken with opposite sign.
Now we calculate the double vector product

[A[BC]]α = εα
βγA

βεγ
µνB

µ
C

ν . (C.14)

Since
εα

βγε
γ

µν = −δα
µηβν + δα

νηβµ (C.15)

we arrive to the unusual rule

[A[BC]] = −B(A · C) + C(A · B) (C.16)

instead of the well-known law acting in space with Euclidean metric.
To simplify denominator r1r2 in the integrand of eq.(C.1) as much

as possible we rewrite 2π-periodic functions (C.4) as follows:

ra = −ra,0 − ρa sin(ϕ + φa), ρa =
√

r2a,1 + r2a,2. (C.17)

(We recall that ra is the scalar products (ra · n) taken with opposite
sign, components rµa are given by eqs.(C.5).) Shift in argument of a-th
function is determined by the relations

ra,1 = ρa sinφa, ra,2 = ρa cosφa. (C.18)

After some algebra we rewrite the integrand of eq.(C.1) as the following
sum

a

r1r2
=
Aa

12 − Ca
12ρ1 cos(ϕ+ φ1)

r1
+
Aa

21 + Ca
12ρ2 cos(ϕ+ φ2)

r2
. (C.19)

Coefficients Aa
12, A

a
21 and Ca

12 satisfy the vector equation

−Aa
12r2 −Aa

21r1 + Ca
12L12 = a (C.20)

where by r1 and r2 we mean three-vectors with components (C.5) and
L12 = [r1r2].

To solve the equation (C.20) we postmultiply it on the vector product
[r1L12], then on the vector product [r2L21] and, finally, on L12. After some
algebra we obtain

Aa
12 =

([ar1] · L12)

D12
, Aa

21 =
([ar2] · L21)

D21
, Ca

12 =
(a · L12)

D12
(C.21)

where denominator D12 = (L12 · L12) is symmetric in its indices.
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Substituting (C.19) into eq.(C.1) and using the identities

1

2π

∫ 2π

0

dϕ

r0a − ρa sin(ϕ+ φa)
=

1

‖ra‖
(C.22)

1

2π

∫ 2π

0

dϕ
cos(ϕ+ φa)

r0a − ρa sin(ϕ+ φa)
= 0

yields

Da =
Aa

12

‖r1‖
+
Aa

21

‖r2‖
(C.23)

after integration over ϕ.
Now we turn to the calculation of the coefficient

Ba =
1

2π

∫ 2π

0

dϕ
ac2

r1(r2)2
. (C.24)

Equipped with the relations (C.19) we rewrite the integrand as a sum of
terms which are proportional to the 1/r1, 1/r2 and 1/(r2)

2, respectively.
Using the identities

1

2π

∫ 2π

0

dϕ

[r0a − ρa sin(ϕ+ φa)]
2 =

r0a

‖ra‖3
(C.25)

1

2π

∫ 2π

0

dϕ
cos(ϕ+ φa)

[r0a − ρa sin(ϕ+ φa)]
2 = 0

and taking into account the relations (C.22) gives

Ba = − 1

‖r2‖3

(a · r2)(c2 · r2)
D21

(r2 · r1) (C.26)

+
1

‖r2‖

[

Ac2

12A
a
21 +Aa

12A
c2

21 −
(a · c2)(r1 · r2)

D21

]

+
1

‖r1‖

[

2Aa
12A

c2

12 −
([ar1] · [c2r1])

D12

]

.

The resulting expression for the term

Ca =
1

2π

∫ 2π

0

dϕ
ac1

(r1)2r2
(C.27)

can be obtained by interchanging of indices the "first" and the "second"
in the right-hand side of eq.(C.26).
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After a routine computation based on the repeated usage of the re-
lation (C.19) we find out the last term

Aa =
1

2π

∫ 2π

0

dϕ
ac1c2

(r1)2(r2)2
(C.28)

=
B12

‖r1‖
+
B21

‖r2‖
+ J1

(a · r1)
‖r1‖3

+ J2
(a · r2)
‖r2‖3

where

J1 = 2Ac1

12A
c2

12 −
([c1r1] · [c2r2])

D12
(C.29)

B12 = 3Aa
12A

c1

12A
c2

21 + 3Aa
12A

c2

12A
c1

21 + 2Ac1

12A
c2

12A
a
21

+ Aa
12

{

([c1r1] · [c2r2])

D12
+

([c1r2] · [c2r1])

D12

}

− Ac1

21

([c2r1] · [ar1])
D12

−Ac2

21

([c1r1] · [ar1])
D12

+ Ac1

12

([c2r1] · [ar2])
D12

+Ac2

12

([c1r1] · [ar2])
D12

and the others, B21 and J2, can be obtained by interchanging of indices
1 and 2.

We now turn to the differentiation of coefficient (C.23) with respect
to time variables t1 and t2. We will use Latin indices a and b which run
from 1 to 2 (a 6= b). We introduce new denotations κ1 = α and κ2 = β
for time-independent variables β and α = 1− β. Differentiation of Da is
based on the relations obtained via differentiation of zeroth components
(C.5), (C.6) and square of radius (4.2.2):

∂r0a

∂ta
= c

0
a − κav

2
a,

∂r0a

∂tb
= −κb(vavb)

∂J0

∂ta
= −(−1)a

r
0
a − κa(vaq),

∂R2

∂ta
= −2κar

0
a.

They immediately give

∂(ra · ra)

∂ta
= 2(ra · ca),

∂(ra · ra)

∂tb
=

2κb

R2

[

r
0
a(ra · rb) − r

0
b(ra · rb)

]

∂(rb · ra)

∂tb
= (ra · cb) +

κb

R2

[

r
0
a(rb · rb) − r

0
b (ra · rb)

]

(C.30)
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and eventually gives

∂

∂ta

(

1

‖ra‖

)

=
(ca · ra)

‖ra‖3
,

∂

∂tb

(

1

‖ra‖

)

=
κb

‖ra‖3

r0a(ra · rb) − r0b(ra · ra)

R2
.

(C.31)
After some algebra we also obtain

∂(J · ra)

∂ta
= (−1)a(ra · ra) + (J · ca) +

κa

R2

[

J
0(ra · ra) − r

0
a(J · ra)

]

∂(J · ra)

∂tb
= (−1)b(rb · ra) +

κb

R2

[

J
0(ra · rb) + r

0
a(J · rb) − 2r

0
b(J · ra)

]

.

Usage of these relations allows us to calculate the following derivatives

∂AJ
ab

∂ta
= AJ

abA
ca

ba +Aca

abA
J
ba +

([Jra] · [carb])

Dab
(C.32)

∂AJ
ab

∂tb
= a− b+ 2Acb

abA
J
ab −

([Jra] · [cbra])

Dab
− κb

R2

(

J
0 + r

0
2A

J
12 + r

0
1A

J
21

)

where latin indices a and b run from 1 to 2, a 6= b.
Having differentiated eq.(C.23), after a straightforward calculations

we derive the following relations

∂DJ

∂t1
= CJ − ∂

∂β

(

α

‖r2‖

)

,
∂DJ

∂t2
= BJ − ∂

∂β

(

β

‖r1‖

)

. (C.33)

Further we find out the expression ∂CJ/∂t2 and prove the identity

AJ − ∂CJ

∂t2
=

∂

∂t1

(

BJ − ∂DJ

∂t2

)

i.e. πJ = 0. (C.34)

(One can derive ∂BJ/∂t1, subtract it from AJ and compare the result
with ∂/∂t2(CJ − ∂DJ/∂t1).)

Similarly we derive analogous equality where Jacobian J with com-
ponents (C.6) is replaced by unit three-vector o = (−1, 0, 0). Having
substituted o for a in the expressions (C.23), (C.26) and (C.28) we ob-
tain the terms D0, B0 and A0, respectively. The remaining term, C0, can
be obtained from B0 via reciprocity. The derivatives of coefficients A0

ab

are as follows:

∂A0
ab

∂ta
= A0

abA
ca

ba +Aca

abA
0
ba +

([ora] · [carb])

Dab
(C.35)

∂A0
ab

∂tb
= 2Acb

abA
0
ab −

([ora] · [cbra])

Dab
− κb

R2

(

o
0 + r

0
2A

0
12 + r

0
1A

0
21

)

.
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Substituting these into equality

∂D0

∂ta
=

∂

∂ta

(

A0
12

‖r1‖
+
A0

21

‖r2‖

)

(C.36)

and using the identities (C.31) yields

∂D0

∂t1
= C0 − αv2

2

‖r2‖3
,

∂D0

∂t2
= B0 − βv2

1

‖r1‖3
. (C.37)

And, finally, we calculate the partial derivative ∂C0/∂t2, subtract it from
A0 and compare the result with ∂/∂t1(B0 − ∂D0/∂t2). We obtain

A0 − ∂B0

∂t1
− ∂C0

∂t2
+

∂2D0

∂t1∂t2
= 0 i.e. π0 = 0. (C.38)

Now, we calculate the "tail"

πα
a = Aα

a − ∂Bα
a

∂t1
− ∂Cα

a

∂t2
+

∂2Dα
a

∂t1∂t2
(C.39)

where

Dα
a =

1

2π

∫ 2π

0

dϕ
Kα

a

r1r2
, Bα

a =
1

2π

∫ 2π

0

dϕ
Kα

a c2
r1(r2)2

(C.40)

Cα
a =

1

2π

∫ 2π

0

dϕ
Kα

a c1
(r1)2r2

, Aα
a =

1

2π

∫ 2π

0

dϕ
Kα

a c1c2
(r1)2(r2)2

.

Zeroth component, K0
a = k0

a, does not depend on ϕ. Inserting relations
D0

a = k0
aD0, B0

a = k0
aB0, C0

a = k0
aC0, and A0

a = k0
aA0 into eq.(C.39) and

taking into account identity (C.38) yields

π0
1 = B0 − ∂D0

∂t2
, π0

2 = C0 − ∂D0

∂t1
. (C.41)

Space components, Ki
a, depend on ϕ. They can be expressed as the

scalar product (Ki
a ·n) where components of three-vectors Ki

a ∈ V are as
follows:

K
i
1,0 = −βqi, K

i
2,0 = αqi, K

i
a,1 = Rωi

1, K
i
a,2 = Rωi

2, (C.42)

where ωi
j are components of orthogonal matrix (B.2). Having substitut-

ed K
i
a for a in the expressions (C.23), (C.26) and (C.28) we obtain the
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terms Di
a, Bi

a and Ai
a, respectively. The last term, Ci

a, can be obtained
from Bi

a via reciprocity. To differentiate them we need the equalities

∂(Ki
a · ra)

∂ta
= (Ki

a · ca) − vi
ar

0
a − κa

R2

[

K
i
a,0(ra · ra) + r

0
a(Ki

a · ra)
]

∂(Ki
a · rb)
∂ta

= −vi
ar

0
b +

κa

R2

[

r
0
b (K

i
a · ra) − K

i
a,0(rb · ra) − 2r

0
a(Ki

a · rb)
]

∂(Ki
a · rb)
∂tb

= (Ki
a · cb) −

κb

R2

[

K
i
a,0(rb · rb) + r

0
b (K

i
a · rb)

]

∂(Ki
a · ra)

∂tb
=

κb

R2

[

r
0
a(Ki

a · rb) − K
i
a,0(rb · ra) − 2r

0
b(K

i
a · ra)

]

in addition to eqs.(C.30) and (C.31).
The derivation of equalities

Ci
1 −

∂Di
1

∂t1
= vi

1D0 +
α

‖r2‖3

(

−βqiv2
2 + r

0
2v

i
2

)

(C.43)

Bi
1 −

∂Di
1

∂t2
=

β

‖r1‖3

(

−βqiv2
1 + r

0
1v

i
1

)

Ci
2 −

∂Di
2

∂t1
=

α

‖r2‖3

(

αqiv2
2 + r

0
2v

i
2

)

Bi
2 −

∂Di
2

∂t2
= vi

2D0 +
β

‖r1‖3

(

αqiv2
1 + r

0
1v

i
1

)

is virtually identical to that presented above, and we shall not both-
er with the detail. Finally, after a straightforward (but fairly lengthy)
calculations we derive the following relations

πi
1 = vi

1

(

B0 − ∂D0

∂t2

)

, πi
2 = vi

2

(

C0 − ∂D0

∂t1

)

(C.44)

which generalize eqs.(C.41).
In analogous way one can derive the equalities

πiJ
1 = vi

1

(

BJ − ∂DJ

∂t2

)

, πiJ
2 = vi

2

(

CJ − ∂DJ

∂t1

)

(C.45)

which arise in ϕ−integration of angular momentum carried by the elec-
tromagnetic field.

We will need also the "tail"

παβ
12 =

∂2Dαβ
12

∂t1∂t2
− ∂Bαβ

12

∂t1
− ∂Cαβ

12

∂t2
+ Aαβ

12 (C.46)
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where

Dαβ
12 =

1

2π

∫ 2π

0

dϕ
Kα

1 K
β
2

r1r2
, Bαβ

12 =
1

2π

∫ 2π

0

dϕ
Kα

1 K
β
2 c2

r1(r2)2
(C.47)

Cαβ
12 =

1

2π

∫ 2π

0

dϕ
Kα

1 K
β
2 c1

(r1)2r2
, Aαβ

12 =
1

2π

∫ 2π

0

dϕ
Kα

1 K
β
2 c1c2

(r1)2(r2)2
.

It can be obtained by means of covariant generalization of previous re-
lations. Putting α = 0 and β = 0 and taking into account eq.(C.38) we
obtain

π00
12 = k0

1

(

C0 − ∂D0

∂t1

)

+ k0
2

(

B0 − ∂D0

∂t2

)

+ D0

= C0
1 − ∂D0

1

∂t1
+ B0

2 −
∂D0

2

∂t2
−D0 (C.48)

where relations D0
a = k0

aD0, B0
a = k0

aB0, and C0
a = k0

aC0 are taken into
account. If α = i and β = 0 we have

πi0
12 = Ci

1 −
∂Di

1

∂t1
+ k0

2v
i
1

(

B0 − ∂D0

∂t2

)

= Ci
1 −

∂Di
1

∂t1
+ vi

1

(

B0
2 − ∂D0

2

∂t2

)

− vi
1D0. (C.49)

If α = 0 and β = j we arrive at

π0j
12 = k0

1v
j
2

(

C0 − ∂D0

∂t1

)

+ Bj
2 −

∂Dj
2

∂t2

= vj
2

(

C0
1 − ∂D0

1

∂t1

)

+ Bj
2 −

∂Dj
2

∂t2
− vj

2D0. (C.50)

An obvious generalization of expressions (C.48)-(C.50) is

παβ
12 = vα

1

(

Bβ
2 − ∂Dβ

2

∂t2

)

+ vβ
2

(

Cα
1 − ∂Dα

1

∂t1

)

− vα
1 v

β
2D0. (C.51)

Appendix D. Calculation of integrals where t1 → t

In this Appendix we compute the integrals in eq.(4.3.3) where time pa-
rameter t1 tends to the observation time t:

pα
t = e2

[

lim
k0

1
→0

∫ 0

β0

dβGα
12

]t2=t

t2→−∞

+ e2
∫ t

−∞

dt2 lim
k0

1
→0

[

Gα
12|β=β0

∂β0

∂t2

]

+ e2
∫ t

−∞

dt2 lim
k0

1
→0

[
∫ 0

β0

dβGα
1

]

(D.1)
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Equality (B.10) implies that the lower limit β0 tends to 0 if k0
1 = t− t1

vanishes. With a degree of accuracy sufficient for our purpose

β0 = − (k0
1)

2

(k0
2)

2 − q2(t, t2)
. (D.2)

Integrals over parameter β vanishes whenever an expression under inte-
gral sign is smooth. So, we must limit our computations to the singular
terms only. We expand expressions in powers of the small parameter β
and then integrate them.

Let us consider contribution p0
t to the energy p0

em carried by electro-
magnetic field. Putting k0

1 = 0 in two-point functions (4.2.20) we obtain

κ(t, t2) = ν(t, t2)
∂σ

∂t2
+ σµ(t, t2) (D.3)

µ(t, t2) = −∂ν(t, t2)
∂t2

where

ν(t, t2) =
1

2

[

k0
2 + (qvt)

]

. (D.4)

Integration of singular part of G0
12 given by eq.(4.3.4) gives regular ex-

pression:

lim
t1→t

∫ 0

β0

dβG0
12 = − 1

|vt|
ln

1 + |vt|
1 − |vt|

ν(t, t2)
√

2σ(t, t2)
(D.5)

where vt denotes the particle’s velocity referred to the time of observa-
tion. According to (D.1), we should take the function (D.5) at the end
points, i.e. its value at the remote past t2 → −∞ should be subtracted
from its value near the observation instant t.

Similarly we calculate the integral

lim
t1→t

∫ 0

β0

dβG0
1 =

(

2 − 1

|vt|
ln

1 + |vt|
1 − |vt|

)

κ(t, t2)

[2σ(t, t2)]3/2
(D.6)

−
(

1 +
1

2|vt|
ln

1 + |vt|
1 − |vt|

)

µ(t, t2)
√

2σ(t, t2)
.

According to eq.(D.1), the result should be added to the limit

lim
t1→t

[

G0
12

∣

∣

β=β0

∂β0

∂t2

]

=
−2κ(t, t2)

[2σ(t, t2)]3/2
+

µ(t, t2)
√

2σ(t, t2)
(D.7)

and the sum should be integrated over t2. After a straightforward calcu-
lations we obtain the expression (D.5), taken with opposite sign. Their
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sum vanishes. Therefore p0
t does not contribute in the energy carried by

electromagnetic field.
In analogous way we calculate contribution pi

t to the momentum of
electromagnetic field. Integration of the singular part of function (4.3.5)
over β gives

[

lim
t1→t

∫ 0

β0

dβGi
12

]t2=t

t2→−∞

= − 1

2|vt|
ln

1 + |vt|
1 − |vt|

[

qi + vi
tk

0
2

√

2σ(t, t2)

]t2=t

t2→−∞

.

(D.8)
It is the first term in eq.(D.1). The limit under the integral sign (second
term) is as follows:

lim
t1→t

[

Gi
12

∣

∣

β=β0

∂β0

∂t2

]

= − qi + vi
tk

0
2

[2σ(t, t2)]
3/2

∂σ

∂t2
. (D.9)

We add it to the integral

lim
t1→t

∫ 0

β0

dβGi
1 =

(

1 − 1

2|vt|
ln

1 + |vt|
1 − |vt|

)

qi + vi
tk

0
2

[2σ(t, t2)]3/2

∂σ

∂t2

− 1

2|vt|
ln

1 + |vt|
1 − |vt|

vi
2 + vi

t
√

2σ(t, t2)
(D.10)

and integrate over t2. We arrive at the function of the end points only
which annuls eq.(D.8).

Appendix E. Calculation of integrals where t2 → t1 and t2 →
−∞

In this Appendix we compute the integrals in eq.(4.3.3) where time pa-
rameters t1 and t2 are equal to each other. We add also the integral
evaluated at the remote past:

pα
△(t) = −e2

∫ t

−∞

dt2 lim
△t→0

[
∫ 0

β0

dβ

(

∂Gα
12

∂t2
+Gα

1

)]

t1=t2+△t

(E.1)

+ e2
∫ t

−∞

dt1 lim
△t→0

[
∫ 0

β0

dβGα
2

]

t2=t1−△t

− e2
∫ t

−∞

dt1 lim
t2→−∞

∫ 0

β0

dβGα
2 .

For fixed instant t1 we assume that the limit

Ai = lim
t2→−∞

qi(t1, t2)

t1 − t2
(E.2)
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is finite if the motion is infinite. (In specific case of finite motion Ai=0.)
If k0

2 → +∞ the lower limit of β-integrals

β0 = −
(

k0
1

k0
2

)2
1

1 − A2
(E.3)

tends to the upper limit (zero) and we must limit our computations to
the singular terms only.

According to eq.(B.10), the equality t1 = t2 yields sinϑ0 = 1 and
lower limit, β0 = − tanϑ0, tends to −∞. In this case the small parameter
is the difference △t = t1 − t2. If the instants t1 and t2 are close to each
other, function β0(t, t1, t2) raises as (△t)−1: the product β0△t possesses
finite limit. We expand expressions under integral sign in powers of △t
and thereafter we integrate series. The integration over β can be handled
via the relations

∫ 0

β0

dβ√
−βα = 2 ln

(

√

−β0 +
√
α0

)

(E.4)

∫ 0

β0

dβ√
−βαβ = −α0

√

−β0

α0
+ ln

(

√

−β0 +
√
α0

)

∫ 0

β0

dβ√
−βαβ

2 = −1

2
β0α0

√

−β0

α0
− 3

4
α0

√

−β0

α0
+

3

4
ln
(

√

−β0 +
√
α0

)

.

Next we take the limit △t→ 0. Suffice it to know that

lim
△t→0

△t
∫ 0

β0

dβ√
−βαβ = − k0

2

1 +
√

1 − v2
2

(E.5)

lim
△t→0

(△t)2
∫ 0

β0

dβ√
−βαβ

2 =
1

2

(

k0
2

)2

[

1 +
√

1 − v2
2

]2 .

We begin with zeroth component. Putting eqs.(4.3.4) in eq.(E.1),
after some algebra we arrive at

p0
△(t) = −e2

∫ t

−∞

dt2 lim
△t→0

[
∫ 0

β0

dβ√
−βα

(

∂κ

∂t2
D0 + κB0

)

(E.6)

−
∫ 0

β0

dβ
α− β√
−βα

(

∂µ

∂t2
DJ + µBJ

)]

t1=t2+△t

+ e2
∫ t

−∞

dt1

[

κ

∫ 0

β0

dβ

√

α

−β
v2

2

‖r2‖3
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− µ

∫ 0

β0

dβI ′
∂

∂β

(

α

‖r2‖

)]t2=t1−△t

t2→−∞

.

Recall that

Da =
1

2π

∫ 2π

0

dϕ
a

r1r2
, Ba =

1

2π

∫ 2π

0

dϕ
ac2

r1(r2)2
(E.7)

where a = 1 for D0,B0 and a is equal to Jacobian (4.2.5) for coefficients
labelled by J .

Quantity r2 = −(r2 · n) can be related to the quantity r1 = −(r1 · n)
by Taylor expansion in powers of △t. With a degree of accuracy sufficient
for our purposes we obtain

r2 = r1 + △tc2 (E.8)

where c2 = (c2 · n). Integration of (E.7) over the angular variable gives

Da =
(a · r2)
‖r2‖3

+ △t
[

3

2

(a · r2)(c2 · r2)
‖r2‖5

+
1

2

(a · c2)

‖r2‖3

]

(E.9)

Ba =
3

2

(a · r2)(c2 · r2)
‖r2‖5

+
1

2

(a · c2)

‖r2‖3

+ △t
[

5

2

(a · r2)(c2 · r2)2
‖r2‖7

+
1

2

(a · r2)(c2 · c2) + 2(a · c2)(c2 · r2)
‖r2‖5

]

.

Expanding the integrands in eq.(E.6) in powers of △t and using the
relations (E.5) we finally obtain

p0
△(t) = e2

∫ t

−∞

dt2
(v2v̇2)

[1 − v2
2]

3/2
lim

△t→0
ln
(√

α0 +
√

−β0

)∣

∣

∣

t1=t2+△t

− e2
∫ t

−∞

dt1
v2

1

k0
1

√

1 − v2
1

lim
△t→0

√

−β0α0

∣

∣

∣

t2=t1−△t
(E.10)

+ e2
∫ t

−∞

dt2
(v2v̇2)

[1 − v2
2]

3/2

1

1 +
√

1 − v2
2

[

2 − 1

2

1 + v2
2

1 +
√

1 − v2
2

]

+ e2
∫ t

−∞

dt1

[

µ(t1, t2)I
′

0

α0

r02

]t2=t1−△t

t2→−∞

+ e2
∫ t

−∞

dt1 lim
k0

2
→∞

µ(t1, t2)
√

1 − A2

k0
1 [1 − (Av2)]

after integration by parts of the last term in eq.(E.6).
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The first and the second terms are singular. To deal with divergences
it is efficient to introduce the hyperbolic angles Ψ and ψ:

coshΨ =
k0
2 + k0

1

q
, sinh Ψ =

√
2Σ

q
(E.11)

coshψ =
k0
2 − k0

1

q
, sinhψ =

√
2σ

q
.

(Function Σ(t, t1, t2) is introduced in Appendix B.) In these notations

β0 = −1

2
[cosh(Ψ − ψ) − 1] = − sinh2 Ψ − ψ

2
(E.12)

α0 =
1

2
[cosh(Ψ − ψ) + 1] = cosh2 Ψ − ψ

2
.

so that

ln
(√

α0 +
√

−β0

)

=
Ψ − ψ

2
(E.13)

√

−β0α0 =
1

2
sinh(Ψ − ψ).

Since the factor before the sign of limit is the total time derivative,
the logarithmic divergence in eq.(E.10) can be integrated by parts:

∫ t

−∞

dt2
d

dt2

(

1
√

1 − v2
2

)

lim
△t→0

Ψ − ψ

2

∣

∣

∣

∣

t1=t2+△t

(E.14)

=
1

√

1 − v2
2

lim
△t→0

Ψ − ψ

2

∣

∣

∣

∣

t2=t

t2→−∞

− 1

2

∫ t

−∞

dt2
√

1 − v2
2

lim
△t→0

[

∂(Ψ − ψ)

∂t1
+
∂(Ψ − ψ)

∂t2

]

t1=t2+△t

.

Taking into account that at the end points hyperbolic angles vanish, we
finally obtain

e2
∫ t

−∞

dt2
(v2v̇2)

[1 − v2
2]

3/2
lim

△t→0
ln
(√

α0 +
√

−β0

)∣

∣

∣

t1=t2+△t

=
e2

2

∫ t

−∞

dt2

[

1

k0
2

√

1 − v2
2

− (v2v̇2)

(1 − v2
2)(1 +

√

1 − v2
2)

]

. (E.15)

Now we rewrite the second divergent term involved in eq.(E.10). We
expand the integrand in powers of △t. Passing to the limit △t → 0, we
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arrive at:
∫ t

−∞

dt1
v2

1

k0
1

√

1 − v2
1

lim
△t→0

√

−β0α0

∣

∣

∣

t2=t1−△t
(E.16)

=

∫ t

−∞

dt1 lim
△t→0

1 −
√

1 − v2
1

△t
√

1 − v2
1

+

∫ t

−∞

dt1

[

1 −
√

1 − v2
1

2k0
1

√

1 − v2
1

+
(v1v̇1)

√

1 − v2
1(1 +

√

1 − v2
1)

− (v1v̇1)

2(1 − v2
1)

]

.

Inserting these expressions in eq.(E.10) we finally obtain

p0
△(t) =

e2

2

∫ t

−∞

dt2

[

1

k0
2

√

1 − v2
2

− (v2v̇2)

(1 − v2
2)(1 +

√

1 − v2
2)

]

(E.17)

− e2
∫ t

−∞

dt1 lim
△t→0

1 −
√

1 − v2
1

△t
√

1 − v2
1

− e2
∫ t

−∞

dt1

[

1 −
√

1 − v2
1

2k0
1

√

1 − v2
1

+
(v1v̇1)

√

1 − v2
1(1 +

√

1 − v2
1)

− (v1v̇1)

2(1 − v2
1)

]

+ e2
∫ t

−∞

dt2
(v2v̇2)

[1 − v2
2]

3/2

1

1 +
√

1 − v2
2

[

2 − 1

2

1 + v2
2

1 +
√

1 − v2
2

]

+ e2
∫ t

−∞

dt1

[

µ(t1, t2)I
′

0

α0

r02

]t2=t1−△t

t2→−∞

+ e2
∫ t

−∞

dt1 lim
k0

2
→∞

µ(t1, t2)
√

1 − A2

k0
1 [1 − (Av2)]

.

The calculation of momentum corrections is virtually identical to
what is presented here, and we shall not worry with the details. It suffices
to present the resulting expression

pi
△(t) =

e2

2

∫ t

−∞

dt2

[

vi
2

k0
2

√

1 − v2
2

− vi
2(v2v̇2)

(1 − v2
2)(1 +

√

1 − v2
2)

]

(E.18)

− e2
∫ t

−∞

dt1 lim
△t→0

vi
1

△t
√

1 − v2
1(1 +

√

1 + v2
1)

− e2

2

∫ t

−∞

dt1

1 +
√

1 − v2
1

[

vi
1

k0
1

√

1 − v2
1

− vi
1(v1v̇1)

(1 − v2
1)(1 +

√

1 − v2
1)

]
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+ e2
∫ t

−∞

dt2
1

1 +
√

1 − v2
2

{

(v2v̇2)v
i
2

[1 − v2
2]

3/2

[

2 − 1

2

1 + v2
2

1 +
√

1 − v2
2

]

+
v̇i
2

√

1 − v2
2

}

+
e2

2

∫ t

−∞

dt1

[

(

vi
1 + vi

2

)

I ′0
α0

r02

]t2=t1−△t

t2→−∞

+
e2

2

∫ t

−∞

dt1 lim
k0

2
→∞

(

vi
1 + vi

2

)√
1 − A2

k0
1 [1 − (Av2)]

.

In the next Appendix the contribution from integrals at point β = β0 is
found. Its bound part contains the terms which annihilate the divergent
terms in expressions (E.17) and (E.18).

Appendix F. Calculation of integrals at point where β = β0

We now would like to extract the partial derivatives with respect to time
variables from the integrand of the following double integral

pα
0 (t) = e2

∫ t

−∞

dt1

∫ t1

−∞

dt2
∫ t

−∞

dt2

∫ t

t2

dt1

(

[

∂Gα
12

∂t2
+Gα

1

]

β0

∂β0

∂t1
+ Gα

2 |β0

∂β0

∂t2

)

(F.1)
Note that

∂β0

∂t1
= α0

r01

J0
,

∂β0

∂t2
= β0

r02

J0
. (F.2)

and functions Gα
12, G

α
1 , G

α
2 are given by eqs.(4.3.4) and (4.3.5).

If β = β0 the radius R of the smallest circle pictured at figure 5
vanishes and it reduces to the point A. Norms ‖ra‖ and ‖ca‖ become
zeroth component r0a and c0

a, respectively. Hence coefficients (4.2.10) get
simplified, e.g.

D0 =
1

r01r
0
2

, DJ =
J0

r01r
0
2

Di
1 =

−β0q
i

r01r
0
2

, Di
2 =

α0q
i

r01r
0
2

. (F.3)

In terms of two-point functions σ = −1/2(q · q) and Σ = σ + k0
1k

0
2 the

angle-free functions κ, µ and λa involved in pα
em are as follows:

κ =
1

2

(

Σ
∂2Σ

∂t1∂t2
− ∂Σ

∂t1

∂Σ

∂t2

)

, µ =
1

2

∂2Σ

∂t1∂t2
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λa = k0
a

∂Σ

∂ta
+ Σ

= k0
a

∂σ

∂ta
+ σ. (F.4)

Firstly we put α = 0. Routine scrupulous calculations allow us to
rewrite the expression under the integral signs in eq.(F.1) as follows:

[

∂G0
12

∂t2
+G0

1

]

β0

∂β0

∂t1
+ G0

2

∣

∣

β0

∂β0

∂t2
=

∂

∂t2

(
√

α0

−β0

κ

r02J0
− I ′0µ

α0

r02

)

+
1

2

∂

∂t2

[

k0
2 + (qv1)

k0
1

(

1√
2Σ

+
1√
2σ

)

+
1√
2Σ

]

(F.5)

+
1

2

∂

∂t1

[

k0
1 − (qv2)

k0
2

(

1√
2Σ

− 1√
2σ

)

+
1√
2Σ

]

− ∂2σ

∂t1∂t2

q0

(2σ)3/2
+

1

2

(

∂

∂t1
− ∂

∂t2

)

1√
2σ
.

This expression contains the term which is proportional to the mixed
second order partial derivative of σ which can not be rewritten as a
derivative with respect to t1 or t2.

In analogous way we rewrite the β0-part of space components pi
em of

the momentum carried by the electromagnetic field:
[

∂Gi
12

∂t2
+Gi

1

]

β0

∂β0

∂t1
+ Gi

2

∣

∣

β0

∂β0

∂t2
= (F.6)

=
1

2

∂

∂t2

[√

α0

−β0

1

r02J0

(

∂λ1

∂t2
α0q

i − ∂λ2

∂t1
β0q

i + vi
1λ2 + vi

2λ1

)

− I ′0
α0

r02

(

vi
1 + vi

2

)

]

+
1

2

∂

∂t2

[

vi
1k

0
2 + qi

k0
1

(

1√
2Σ

+
1√
2σ

)

+
vi
1√
2Σ

]

+
1

2

∂

∂t1

[

vi
2k

0
1 − qi

k0
2

(

1√
2Σ

− 1√
2σ

)

+
vi
2√
2Σ

]

− ∂2σ

∂t1∂t2

qi

(2σ)3/2
+

1

2

∂

∂t1

(

vi
2√
2σ

)

− 1

2

∂

∂t2

(

vi
1√
2σ

)

.

Having integrated the expressions (F.5) and (F.6) over time variables
t1 and t2 according to the rule (F.1) we obtain

p0
0(t) = e2

∫ t

−∞

dt1

[
√

α0

−β0

κ

r02J0
− I ′0µ

α0

r02

]t2=t1

t2→−∞

(F.7)
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+
e2

2

∫ t

−∞

dt1

[

k0
2 + (qv1)

k0
1

(

1√
2Σ

+
1√
2σ

)

+
1√
2Σ

]t2=t1

t2→−∞

+
e2

2

∫ t

−∞

dt2

[

k0
1 − (qv2)

k0
2

(

1√
2Σ

− 1√
2σ

)

+
1√
2Σ

]t1=t

t1=t2

+ e2
∫ t

−∞

dt1

∫ t1

−∞

dt2

[

−q
0(v1 · v2)
(2σ)3/2

+
1

2

(q · v1)
(2σ)3/2

+
1

2

(q · v2)
(2σ)3/2

]

pi
0(t) =

e2

2

∫ t

−∞

dt1

[
√

α0

−β0

1

r02J0

(

∂λ1

∂t2
α0q

i − ∂λ2

∂t1
β0q

i

+ vi
1λ2 + vi

2λ1

)

− I ′0
α0

r02

(

vi
1 + vi

2

)

]t2=t1

t2→−∞

+
e2

2

∫ t

−∞

dt1

[

vi
1k

0
2 + qi

k0
1

(

1√
2Σ

+
1√
2σ

)

+
vi
1√
2Σ

]t2=t1

t2→−∞

+
e2

2

∫ t

−∞

dt2

[

vi
2k

0
1 − qi

k0
2

(

1√
2Σ

− 1√
2σ

)

+
vi
2√
2Σ

]t1=t

t1=t2

+ e2
∫ t

−∞

dt1

∫ t1

−∞

dt2

[

−q
i(v1 · v2)
(2σ)3/2

+
1

2

vi
2(q · v1)
(2σ)3/2

+
1

2

vi
1(q · v2)
(2σ)3/2

]

So, besides the double integral which describes the self-action which
depends not only on the current state of motion of the particle, but also
on its past history, we have the integrals of functions of the end points
only.

According to eqs.(B.11), function Σ(t, t1, t2)|t1=t is equal to the func-
tion σ(t, t2). This circumstance simplifies evaluation of the terms re-
ferred to this end point. We expand the terms near t2 = t1 in powers of
△t = t1 − t2 and take the limit △t → 0. We use the assumption (E.2)
when t2 → −∞. After some algebra we finally obtain:

p0
0(t) = −e2

∫ t

−∞

dt1

[

lim
△t→0

1

△t +
1

2k0
1

− (v1v̇1)

2
√

1 − v2
1(1 +

√

1 − v2
1)

]

− e2
∫ t

−∞

dt1 lim
t2→−∞

µ(t1, t2)
√

1 − A2

k0
1 [1 − (Av2)]

(F.8)

− e2
∫ t

−∞

dt1

[

µ(t1, t2)I
′

0

α0

r02

]t2=t1

t2→−∞

+
e2

2

∫ t

−∞

dt1 lim
△t→0

1

△t
√

1 − v2
1
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+
e2

2

∫ t

−∞

dt2 lim
△t→0

1

△t
√

1 − v2
2

+
e2

2

∫ t

−∞

dt2
1

√

2σ(t, t2)

+ e2
∫ t

−∞

dt1

∫ t1

−∞

dt2

[

−q
0(v1 · v2)
(2σ)3/2

+
1

2

(q · v1)
(2σ)3/2

+
1

2

(q · v2)
(2σ)3/2

]

pi
0(t) = e2

∫ t

−∞

dt1

1 +
√

1 − v2
1

[

− lim
△t→0

vi
1

△t −
vi
1

2k0
1

+
vi
1(v1v̇1)

√

1 − v2
1(1 +

√

1 − v2
1)

+
v̇i
1

2

]

(F.9)

− e2

2

∫ t

−∞

dt1 lim
t2→−∞

(

vi
1 + vi

2

)√
1 − A2

k0
1 [1 − (Av2)]

− e2

2

∫ t

−∞

dt1

[

(

vi
1 + vi

2

)

I ′0
α0

r02

]t2=t1

t2→−∞

+
e2

2

∫ t

−∞

dt1 lim
△t→0

vi
1

△t
√

1 − v2
1

+
e2

2

∫ t

−∞

dt2 lim
△t→0

vi
2

△t
√

1 − v2
2

+
e2

2

∫ t

−∞

dt2
vi
2

√

2σ(t, t2)

+ e2
∫ t

−∞

dt1

∫ t1

−∞

dt2

[

−q
i(v1 · v2)
(2σ)3/2

+
1

2

vi
2(q · v1)
(2σ)3/2

+
1

2

vi
1(q · v2)
(2σ)3/2

]

Divergent terms annul their counterparts aroused in eqs.(E.17) and
(E.18). After that only one term remains:

e2

2

∫ t

−∞

dt2
vµ
2

√

2σ(t, t2)
=
e2

2

∫ t

−∞

dt2
vµ
2√
2Σ

∣

∣

∣

∣

t1=t

t1=t2

(F.10)

+
e2

2

∫ t

−∞

dt1
vµ
1√
2Σ

∣

∣

∣

∣

t2=t1

t2→−∞

.

It is the singular part of energy-momentum carried by elec-
tromagnetic field. (It is worth noting that inverse square root
[ 2Σ(t, t1, t2)|t2→−∞

]−1/2 vanishes even if t1 → −∞, see eqs.(B.11).)
Final expressions are presented in Section 4 (see eqs.(4.3.6) and

(4.3.7)).

Appendix G. Angular momentum in (2+1)-electrodynamics

We now turn to the calculation of the angular momentum tensor

Mµν
em(t) =

∫

Σt

dσ0

(

yµT 0ν − yνT 0µ
)

(G.1)
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carried by the electromagnetic field due to a point-like charge. We apply
the convenient coordinate system introduced in Section 4 and detailed
in Appendix B.

We present the integrand of eq.(G.1) in the following form

mµν
em = mµν

12 +mµν
21 −mνµ

12 −mνµ
21 (G.2)

where

mµν
12 = (zµ

1 +Kµ
1 )

1

2π

[

f0λ
(1)f

ν
(2)λ − 1

4
η0νfαβ

(1)f
(2)
αβ

]

. (G.3)

It is straightforward to substitute the fields (4.1.7) into this expression
to calculate the first term of the integrand (G.2). The others can be
obtained by interchanging of the pair of indices 1, 2 and µ, ν.

Having integrated expression Jmµν
12 over ϕ we obtain

Mµν
12 =

1

2
I

{

T̂ µν
12

(

∂λ1

∂t2

)

+ T̂ µ
1 (vν

2λ1) − vν
2

∂λ1

∂t2
Cµ
1 − vν

2

∂2λ1

∂t1∂t2
Dµ

1

}

− 1

2
I ′T̂ µJ

1 (vν
2 ) (G.4)

+
zµ
1

2
I

{

T̂ ν
2

(

∂λ1

∂t2

)

+ T̂ 0 (vν
2λ1) − vν

2

∂λ1

∂t2
C0 − vν

2

∂2λ1

∂t1∂t2
D0

}

− zµ
1

2
I ′T̂ J (vν

2 )

− η0ν

4

{

I
[

T̂ µ
1 (λ) + zµ

1 T̂ 0 (λ)
]

− I ′
[

T̂ µJ
1 (λ0) + zµ

1 T̂ J (λ0)
]}

where functions λ and λ0 are given by eqs.(4.2.7).
Usage of the equalities (4.2.15) derived in Appendix C allow us to

rewrite the integrand (G.4) as the following sum:

Mµν
12 =

1

2
I

{

Π̂µν
12

(

∂λ1

∂t2

)

+ Π̂µ
1 (vν

2λ1) −
∂

∂t1

(

vν
2

∂λ1

∂t2
Dµ

1

)

(G.5)

+ Π̂ν
2

(

zµ
1

∂λ1

∂t2

)

− ∂

∂t2

(

vµ
1

∂λ1

∂t2
Dν

2

)

+ Π̂0 (zµ
1 v

ν
2λ1) −

∂

∂t1

(

zµ
1 v

ν
2

∂λ1

∂t2
D0

)

− ∂

∂t2

(

vµ
1 v

ν
2λ1D0

)

}

− 1

2
I ′
{

Π̂µJ
1 (vν

2 ) + Π̂J (zµ
1 v

ν
2 ) − ∂

∂t2

(

vµ
1 v

ν
2DJ

)

}

− η0ν

4

{

I

[

Π̂µ
1 (λ) + Π̂0 (zµ

1 λ) −
∂

∂t2

(

vµ
1λD0

)

]

− I ′
[

Π̂µJ
1 (λ0) + Π̂J (zµ

1 λ0) −
∂

∂t2

(

vµ
1 λ0DJ

)

]}

.
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Operators Πa are combinations of partial derivatives (4.2.12).
Further we perform the integration over the time variables and β

according to the rule (4.3.3). It results functions of the end points only.
We deal with four types of integrals described in subsections 4.1o-4.4o.
All of them possess specific small parameter. Near the observation time
t the small parameter is β as well as when t2 → −∞. If t2 tends to t1 (or
vice versa), their difference t1 − t2 tends to zero. These circumstances
simplify the computation of integrals of types 4.1o-4.3o which is virtually
identical to that presented in Appendix D and Appendix E, and we shall
not bother the detail. We obtain the bound terms only which should be
absorbed within the renormalization procedure. Radiative terms arise
from the integration near the point β = β0 where radial variable R = 0
(see subsection 4.4o).

So, having computed the radiative angular momentum we are not
going beyond the limit R → 0. The terms involved in the final expression
(G.5) get simplified sufficiently:

Dij
12 = −α0β0q

iqj

r01r
0
2

(G.6)

Cij
12 −

∂Dij
12

∂t1
= −α

2
0β0q

iqj

(r02)
3

v2
2 + α0

vi
1q

j

r01r
0
2

− α0β0
qivj

2

(r02)
2

+ α2
0

vi
2q

j

(r02)
2

+ α0
δij

r02

Bij
12 −

∂Dij
12

∂t2
= −α0β

2
0q

iqj

(r01)
3

v2
1 − β0

vj
2q

i

r01r
0
2

+ α0β0
qjvi

1

(r01)
2

− β2
0

vj
1q

i

(r01)
2

+ β0
δij

r01

;

DiJ
1 = −β0q

iJ0

r01r
0
2

DiJ
2 =

α0q
iJ0

r01r
0
2

(G.7)

CiJ
1 − ∂DiJ

1

∂t1
= vi

1

J0

r01r
0
2

+ α0v
i
2

J0

(r02)
2
−
[

∂

∂β

(

αβqi

‖r2‖

)]

β0

BiJ
1 − ∂DiJ

1

∂t2
= β0v

i
1

J0

(r01)
2
−
[

∂

∂β

(

β2qi

‖r1‖

)]

β0

CiJ
2 − ∂DiJ

2

∂t1
= α0v

i
2

J0

(r02)
2

+

[

∂

∂β

(

α2qi

‖r2‖

)]

β0

BiJ
2 − ∂DiJ

2

∂t2
= vi

2

J0

r01r
0
2

+ β0v
i
1

J0

(r01)
2

+

[

∂

∂β

(

αβqi

‖r1‖

)]

β0

.
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They are supplemented with the expressions (C.23), (C.37), and (C.33)
taken in the point where radial variable R = 0.

Firstly we put µ = 0 and ν = i into eq.(G.5). The other terms
which constitute the mixed space-time components M0i

em are obtained
by interchanging of indices. A direct consequence of the reciprocity is
the following combination of partial derivatives in t1 and t2:

M0i
em =

e2

2
I

[

Π̂i
1

(

t
∂λ2

∂t1

)

+ Π̂i
2

(

t
∂λ1

∂t2

)

+ Π̂0
[

t
(

vi
2λ1 + vi

1λ2

)]

(G.8)

− ∂

∂t1

(

tvi
2

∂λ1

∂t2
D0

)

− ∂

∂t2

(

tvi
1

∂λ2

∂t1
D0

)]

− e2

2
I ′Π̂J

[

t
(

vi
1 + vi

2

)]

− e2

2
I

[

Π̂i
1 (Λ) + Π̂i

2 (Λ) + Π̂0
[

(zi
1 + zi

2)Λ
]

− ∂

∂t1

(

vi
2ΛD0

)

− ∂

∂t2

(

vi
1ΛD0

)

]

+
e2

2
I ′
[

Π̂iJ
1 (1) + Π̂iJ

2 (1) + Π̂J
(

zi
1 + zi

2

)

− ∂

∂t1

(

vi
2DJ

)

− ∂

∂t2

(

vi
1DJ

)

]

− e2

4

{

I

[

Π̂i
1(λ) + Π̂i

2(λ) + Π̂0
[

λ
(

zi
1 + zi

2

)]

− ∂

∂t1

(

vi
2λD0

)

− ∂

∂t2

(

vi
1λD0

)

]

− I ′
[

Π̂iJ
1 (λ0) + Π̂iJ

2 (λ0) + Π̂J
[

λ0

(

zi
1 + zi

2

)]

− ∂

∂t1

(

vi
2λ0DJ

)

− ∂

∂t2

(

vi
1λ0DJ

)

]}

where

Λ = k0
1k

0
2

∂2σ

∂t1∂t2
+ k0

1

∂σ

∂t1
+ k0

2

∂σ

∂t2
+ σ. (G.9)

Now we turn to the integration over times t1 and t2. It is sufficient to
examine the integrals near the point R = 0. The computation is virtually
identical to that presented in Appendix F. After a tedious calculation
we obtain the following cumbersome expression:

M0i
β0

=
e2

2

∫ t

−∞

dt1t
α0

r02

[

I0
J0

(

∂λ1

∂t2
α0q

i − ∂λ2

∂t1
β0q

i + vi
1λ2 + vi

2λ1

)
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− I ′0
(

vi
1 + vi

2

)

]t2=t1

t2→−∞

− e2
∫ t

−∞

dt1

[

α0

r02

(

I0
J0
κ− I ′0µ

)

(

α0z
i
1 + β0z

i
2

)

]t2=t1

t2→−∞

(G.10)

+
e2

2

∫ t

−∞

dt2

[(

t2
vi
2k

0
1 − qi

k0
2

− zi
2

k0
1 − (qv2)

k0
2

)(

1√
2Σ

− 1√
2σ

)

+
2k0

1v
i
2√

2σ

]t1=t

t1=t2

+
e2

2

∫ t

−∞

dt1

[(

t1
vi
1k

0
2 + qi

k0
1

− zi
1

k0
2 + (qv1)

k0
1

)(

1√
2Σ

+
1√
2σ

)

+
2k0

2v
i
1√

2σ

]t2=t1

t2→−∞

+
e2

2

∫ t

−∞

dt2

[

t1v
i
2 − zi

1√
2Σ

]t1=t

t1=t2

+
e2

2

∫ t

−∞

dt1

[

t2v
i
1 − zi

2√
2Σ

]t2=t1

t2→−∞

+
e2

2

∫ t

−∞

dt1

∫ t1

−∞

dt2

[

2
∂2σ

∂t1∂t2

t1z
i
2 − t2z

i
1

(2σ)3/2
+ t1

∂

∂t1

(

vi
2√
2σ

)

− zi
1

∂

∂t1

(

1√
2σ

)

− t2
∂

∂t2

(

vi
1√
2σ

)

+ zi
2

∂

∂t2

(

1√
2σ

)]

.

The single integrals belong to the boundary part of angular momentum
carried by the electromagnetic field. We couple them with integrals over
β taken at the end points t1 = t2 and t2 → −∞. (Such integrals are
described in subsections 4.1o-4.4o.) The result is as follows:

M0i
S =

e2

2
t

∫ t

−∞

ds
vi(s)

√

2σ(t, s)
− e2

2
zi(t)

∫ t

−∞

ds
√

2σ(t, s)
. (G.11)

The double integral in eq.(G.10) describes the radiative part; it can be
rewritten as follows:

M0i
R =

e2

2

∫ t

−∞

dt1

∫ t1

−∞

dt2

[

t1v1,α
−vα

2 q
i + vi

2q
α

(2σ)3/2
− zi

1v1,α
−vα

2 q
0 + qα

(2σ)3/2

+ t2v2,α
−vα

1 q
i + vi

1q
α

(2σ)3/2
− zi

2v2,α
−vα

1 q
0 + qα

(2σ)3/2

]

. (G.12)

Taking t2 → t1 limit reveals the proper short-distance behaviour.
Now we calculate the space component M ij

em. Putting µ = i and
ν = j into eq.(G.5) we obtain Mij

12. Having interchanged upper and
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lower indices we find out all the terms which constitute the expression
Mij

em obtained from eq.(G.2) via integration over ϕ. Further we integrate
them over times t1 and t2. After tedious calculations we finally obtain:

M ij
β0

=
e2

2

∫ t

−∞

dt1

{

α0

r02

[

I0
J0

(

∂λ1

∂t2
α0(z

i
1q

j − zj
1q

i) − ∂λ2

∂t1
β0(z

i
2q

j − zj
2q

i)

+ (α0z
i
1 + β0z

i
2)(v

j
1λ2 + vj

2λ1) − (α0z
j
1 + β0z

j
2)(v

i
1λ2 + vi

2λ1)
)

− I ′0

(

(α0z
i
1 + β0z

i
2)(v

j
1 + vj

2) − (α0z
j
1 + β0z

j
2)(v

i
1 + vi

2)
)

]}t2=t1

t2→−∞

+
e2

2

∫ t

−∞

dt2

[

1

k0
2

(

zi
1z

j
2 − zj

1z
i
2 + k0

1(z
i
2v

j
2 − zj

2v
i
2)
)

×
(

1√
2Σ

− 1√
2σ

)]t1=t

t1=t2

(G.13)

+
e2

2

∫ t

−∞

dt1

[

1

k0
1

(

−zi
1z

j
2 + zj

1z
i
2 + k0

2(z
i
1v

j
1 − zj

1v
i
1)
)

×
(

1√
2Σ

+
1√
2σ

)]t2=t1

t2→−∞

+
e2

2

∫ t

−∞

dt2

[

zi
1v

j
2 − zj

1v
i
2√

2Σ

]t1=t

t1=t2

+
e2

2

∫ t

−∞

dt1

[

zi
2v

j
1 − zj

2v
i
1√

2Σ

]t2=t1

t2→−∞

+
e2

2

∫ t

−∞

dt1

∫ t1

−∞

dt2

[

2
∂2σ

∂t1∂t2

zi
1z

j
2 − zj

1z
i
2

(2σ)3/2
+ zi

1

∂

∂t1

(

vj
2√
2σ

)

− zj
1

∂

∂t1

(

vi
2√
2σ

)

− zi
2

∂

∂t2

(

vj
1√
2σ

)

+ zj
2

∂

∂t2

(

vi
1√
2σ

)

]

.

All the single integrals should be added to the integrals over β evaluated
at limit points t1 = t2 and t2 → −∞; the sum is the singular part of
angular momentum of the electromagnetic field:

M ij
S =

e2

2
zi(t)

∫ t

−∞

ds
vj(s)

√

2σ(t, s)
− e2

2
zj(t)

∫ t

−∞

ds
vi(s)

√

2σ(t, s)
. (G.14)

The integrand of radiative part is symmetric in indices (12) and anti-
symmetric in indices (ij):

M ij
R =

e2

2

∫ t

−∞

dt1

∫ t1

−∞

dt2

[

zi
1v1,α

−vα
2 q

j + vj
2q

α

(2σ)3/2
(G.15)
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− zj
1v1,α

−vα
2 q

i + vi
2q

α

(2σ)3/2
+ zi

2v2,α
−vα

1 q
j + vj

1q
α

(2σ)3/2
− zj

2v2,α
−vα

1 q
i + vi

1q
α

(2σ)3/2

]

.

The resulting expressions (G.12) and (G.15) can be rewritten in a man-
ifestly covariant fashion.
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