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Energy spectrum of pseudospin-electron model in the dynam-
ical mean-field theory

1.V.Stasyuk, V.O.Krasnov

Abstract. Pseudospin-electron model in the case of Coulomb interacti-
on absence is investiagted. Analytic equations for specral densities within
the framework of the dynamical mean field theory (DMFT) using dia-
grammatic series and Wick’s theorem are established. The effect of the
asymmetry field A and tunneling-like splitting level in the local anhar-
monic well on the existence and number of electron subbands is investi-
gated.
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1. Introduction

Pseudospin-electron model (PEM) is one of models which are used in
physics of the strongly-correlated electron systems in recent years. Ap-
plication of the model to high-temperature superconductors allows, for
example, to describe thermodynamics of anharmonic oxygen ion sub-
system and explain the occurrence of inhomogeneous states and the
bistability phenomena (see in [I]). In this model we take into consid-
eration the dynamics of locally anharmonic structure elements (using
pseudospin variables to describe them), interaction between pseudospins
and electrons; and the asymmetry of local anharmonic potential wells.
The electron subsystem is described by the Hubbard Hamiltonian.

In DMFT method the Hamiltonian with strong correlations is taken
in the infinite space dimension (d — oo) limit; this leads to reformula-
tion of the problem and transition to solution of the single-site problem
described by effective Hamiltonian [2H4]. Only for simplest cases such
as mobile particles in the Falicov-Kimball model one can solve analyti-
cally this problem. An exact solution exists also for pseudospin-electron
model in the case of absence of transverse filed [5]. There are also some
approximate analytical approaches, such as: Hubbard-I, Hubbard-III, al-
loy analogy (AA), modified alloy analogy (MAA) etc., see [6L[7].

The alloy analogy approximation for the single-site problem is used
for pseudo-spin-electron model in this article. Our task is to study elec-
tron spectrum and find the conditions of appearing of a gap. Our problem
is solved in the limit of infinite value of single-site electron interaction.
The performed previously consideration of this problem in the Hubbard-
I approximation [8] revealed complicated structure of the spectrum and
presence of some number of subbands.

Also, in [9] the electron energy spectrum of the pseudospin-electron
model allowing for interaction of the near energy subbands was con-
sidered. The effective single-site problem was solved within the auxil-
iary fermion field approach with the help of procedure of different-time
decoupling of the higher order Green’s functions [6]; the alloy analogy
approximation was used. And a special case of two near subbands was
considered.

2. Hamiltonian of the model and its transformation

The Hamiltonian of the pseudospin-electron model is:

H = ZHZ + Z tija:,r;aja (2.1)

<%,j>,0
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where in the single-site part of the Hamiltonian 2 is the tunneling-like
level splitting, g is the pseudospin-electron interaction constant and h is
asymmetry of the local anharmonic potential:

H; = —p(nigs + i) + g(nig +ni )7 — QST — hST (2:2)

The second term in (2.1) describes the electron site-to-site hopping.

The term Unyny is not included as we invesigate our problem in
the limit of infinite potential of single-site electron interaction U — oo,
where all states with double cite occupation are absent. The single-site
Hamiltonian is considered as the zero-order ones with respect to the
electron transfer. It is useful to introduce the following standard single-
site basis |R) = |n; 4, ni,y, S7), with six eigenvectors [10]:

1 1 1
1)=10,0.5), [B)=10.1,3), 4)=[10.3),  (23)
~ 1 ~ 1 ~ 1
1) =10,0,-3), B)=10.1,-3), B =[10,-3)

Using Hubbard X-operators, which act in the space of such eigenvec-
tors, we can write down the electron annihilation (creation) operators
and pseudospin operators as follows [§]

cir =X XM (2.4)
ot = X104 X

Then, the single-site part of the Hamiltonian can be expressed by
means of X-operators in the way:

h he o35 il
Hy = (—p+ 5 = XE + X + (—p = 5+ )P + X7 +
h 11 Qo7 o1 5 o3 1 1
+§(X}1 - XM+ 5(X}1 + X X3 X3 XM XM (2.5)

This Hamiltonian is diagonal in the case €2 = 0, but if tunneling
splitting is non-zero we have to use a transformation

R\ cos ¢,  sing, r
(ﬁ) o < —Sin(br COS¢T > <7";> (2.6)

to diagonalize it. Here

nrg —h
cos(2¢,) = O i =0ng=ng=1 (2.7)

ICMP-11-21E 3

In that way we have

H = ZETXZ” + Z tijCi Cjo (2.8)

<,j>,0

1
EI,I:i§ h2+Q2,
1
€33 =63 = "HEV (g —h)?>+
Where
cip = cos dar (XM + X1 + sin gar (XM - X1
Ci,l = COS(bgl(XilS+X}§)+Sin¢31(Xi1§—X}3) (29)

oS 41 = €08 (ps — 1) oS P31 = cos (¢3 — ¢1)
sin 41 = sin (¢4 — ¢1)  sin gz = sin (d3 — ¢1).

3. Dynamical mean field theory approach

The transition to the d = oo limit in the DMFT approach is accompanied
by the scaling of the electron transfer parameter:

t*
Vd

In particular, the self-energy part of the electron Green’s function be-
comes a purely local [314]:

t= (3.1)

Yijo(w) =350, d= o0 (3.2)
The Fourier-transform ¥;; ,(w) is hence momentum-independent:
Z (F,w) = Zo(w) (3:3)
The electron Green’s function in (k,w) representation

GI(w) =Y e F -G, (w) (3.4)

i—j

can be expressed as:
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where =, (w) is the part, which is irreducible (in the diagrammatic rep-
resentation) according to Larkin. To calculate the Z,(w) function the
effective single-site problem is used. The transition to this problem cor-
responds to the replacement

B B
e PH 5 emPHess = o= FHo Te:cp{_/ dT/ dr x
0 0

ZJ 7T =7 )ag(r)as(7)} = e 5 (p) (3.6)

where
Hy = H; (3.7)

and J, (17 — 7',) - is an effective time-depended field (coherent potential)
which is determined self-consistently from the condition that the same
self-energy part =,(w) determines the lattice function G¢(w) as well as

the Green’s function G (w) of the effective single-site problem:
1

(@) () — .
A ) S A 5
In this case:
GW = Gy o( ZG" (3.9)

The set of simultaneous equations (3.5, 3.8, 3.9) becomes closed when it
is supplemented with the functional dependence

G (w) = f([Jo(w)]) (3.10)

which is obtained as the result of solving the effective single-site problem
with the statistical operator exp(—SHesy).

4. Reformulation of Wick’s theorem for single-site
problem.

To find out the relation (3.10) let us calculate the electron Green’s func-
tion using an expansion in powers of coherent potential J,(w). In zero
approximation:

(Tey(r)et (7))o = —(TX )X (7))o — (TXH(r) X (7))o
—(TX )X () — (TX () X (7)) (4.1)

ICMP-11-21E )

Here
— (XX o = —gflr - XXM (42)

Where in the frequency representation gi*(w,) = —(iw, — Aa1)71, ete.
(Apg = €p — €4). In this case

_<TCT(T)C+(T)>0 = g5 (T — 7YX + XM)o +
+g0 (r = )X+ X ) + gbt (r — ) (X T+ X M) +

g5t — )X+ XM, (4.3)
Now, using Wick’s theorem for Hubbard operators we can see that:

<+

XU ()X (r) = —gp* (r =) (XM + XM),
——

X41(T/)X14(7') =0

— ~

X ()X (7) = —gb' (r — )X (7))
——— _

X)X M(7) = —g5*(r — 7)X(7)

As the result of such a procedure the X-operators of Bose-type appear.
The next step is to introduce alloy-analogy approximation (see [6L[7]).

In this case this means neglecting all non-diagonal Hubbard operators

in the Wick’s pairing. Such an approximation leads to the next result

= —g5*(r = 7) (X" + X0 cos du
= g5 (r =) (X + X ™) cos
= g (r =) (X + X" sin o

0

= —964( - TI)(XH + X44)7./ sin @41
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And now using (2.9) we have:

i (1)er(r) = —964( =7 (XM + X M) cos® pay —

—geMr — ) (X? X44)T/ cos? a1 —
—go* (T — T/)( + X4 sin? gy —
_9(1)4(T — (XM + X44)T/ sin® éy; (4.5)

This result shows us that in the case of alloy-analogy approximation
the Fermi-operators pairing decomposes into the sum of terms, that are
projections on single-site states (because of X" operators action). And
this is main difference from ideal fermions case, where we have a Green’s
functions as the result of pairing.

Now we can rewrite

(N (T/)CT(T —[gd4(r—7") cos® dur + g8 (T —7') (sin g ] X (')
—[ga (r—7") cos? par + g3t (r—7") (sin g ] X L (7') (4.6)
—[go* (r—7") cos® ¢41+9 Hr—7)(sin ga1 ] XM (7)

1

—[g0 (1—7") cos® ¢41+g (t— T)(Sin(b“]XZZ(T/) =
_ (1)X11( ) _ (1)X11(7‘ ) (() )X44( ) g(()?XZZ(T/)

— Zg(T)XTT

5. Expansions in terms of coherent potential.

In general, for electron Green’s function of effective one-site problem we
have:

Fotr - 7y = _ATeoDIE ) Herr) (TeolD)er (7B (o )
(e=FHers) (@(B))o

Numerator and denominator in this expression will be calculated sepa-

rately using an expansion in terms of coherent potential J, (7 — 7). The

first step is to calculate the second order in this expansion - with four

operators of creation and annihilation of electrons:

(Tey ()t (7)et (m)en(r2))o = — (Tt (Per(r)et (r)er(r2))o +

T et (r)er(T)e (7)e (r2))o =

ICMP-11-21E 7

=20 (7 =gy (= )Xo
+ ng gm)( T2 — T/)<XTT>0 (5'2)

and

<TCT(7')C$(T/)cj(7’1)c¢(7’2)>o = —<T|c;r(r’)lc¢(7—)lcj(Tl)ci(72)>0 =
= =067 (7 =g (2 = ) (X" o (5.3)

Here pairing of Fermi-operators is performed according to (4.6). The
diagonal X-operators, which appear along this procedure, we multiply
using the rule X" XPP = X""§,,. As the result - only averages (X" )
are present.

We can also consider third order in our expansion - with six operators
of creation and annihilation of electrons:

(Ter(r)ef (7)ef (T)er(T2) ey (3)er(4))o =

|
S
o

+
~
R I e e e

x
N
o

S A

|
R
o

X
~
o

-4

|
S
o

And finally
(Ter(r)ef (7 el (T)er(ro)ef (13)er(74))o =
= Z 9(()?(7’ - 7'/)96? (T2 — 7'1)9(()?(7’4 — 1) (X0 —

T
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=g (7 = g (= g (ra = ) (XN —
—}jﬁ?g—#m@v—nmﬁvrwwa"m+
+ Z goT Q(ST)( Tl)g(g?(ﬁ - T3)<XTT>0 -
S O TV Y It

+3 g5 (r2 = T)gs (1 = 73)g ) (74 — (XY (5.5)

T

The similar procedure is also actual in the case of higher order terms.
Using the diagrammatic series we can separate connected and discon-
nected "vacuum” (without external verteces) parts of diagrams. First of
them are create geometric progression in the frequency representation.
Second ones, after infinite series summation, give exponential contribu-
tions from diagrams in subspaces |r). The latter look like closed rings of
different length (created by unperturbed Green’s function and coherent
potential lines).

So, for numerator in Green’s function (T'cy (7')c;r (7"))num we will have
after calculation

(Ter (1) (7)) num = Z [gé? (wn) — gé? (wn)JT(wn)gé? (wn) +

T

-+gé;>@un>J¢aun>gé;’@un>J¢@un>gé;>@un><—...}<JzTr>err::

_ gOT (wn) Ty Q@
ZlJrg(r)(wn)JT(w")W )o (5.6)

Here, @, in analytical form is

=Xl Tolen) = 5[ 3 ) @) o)+
%[ZZg )]3—... (5.7)
and using —In(14+2) = -z + % — ””—; + % — ... we have

Qr = (1 + gl (wn)Jo(wn) (5.8)

ICMP-11-21E 9

This means:

=" (1 + g5 (wn) It (wn)) + > (1 + g8} (@n) Ty (wn)

Qr =Y (1 + g @n) Ty (@n) + 3 (1 + g} (@), (wn)
%=imuﬁwmwm n

Q5 =Y (1 + g (@n)Jy(wn))
m:imu%%mm%»
@=imuﬁwmwm (5.9)

The next step is to calculate the denominator (7 (5))¢

B B
@B =1- [dn [dr2)  Jo(r — m2)(Tef(m1)eq(r2))o +
[ ]2
1 B B
+§/d71 ../dT4ZZJU(T1 —79)Jor (T3 — T4) X (5.10)
0 0 o o

x(Tek (m1)co(ma)cs (T3)cor (T4))o —

In diagrammatic representation this series is expressed through the set of

“vacuum” diagrams. And the number of such diagrams in the n-th order

of perturbation theory very fast increases with increasing of n. The final
result could be expressed as contributions @, of mentioned above ring
diagrams. In such a case, we have

1 1 o
(B0 =1+ 3 [@r + 5@ + @0+ .. [ (X 7)o =
=D e (X) (5.11)
Finally, our analytical result is

qu‘ (wn) er Q-
Z 1+q[();) (wn)JT(Wn)< >O€

Z e@p <pr> 0

<Tc¥'c¢> (5.12)
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and for spin o =]

Z —géz) (wn) <er>0eQT
(Tctey) = = 190 (wn) 4 (wn)
LS =

Z e@p <pr> 0

p

(5.13)

6. Electron energy spectrum

Now, we have the closed system of equations to solve our problem: to
calculate the Green’s function G%a) (w) and the coherent potential Jy(w)

Gi(w) =

O ey R DN (N CEY
(o8 (e k

(r)
9os (wn) r Qr
ZT: T80 (oo oy (X D0

Z e@p <pr> 0

ﬁ
To sum over the k we use the semi-elliptical density of states

po(t) = —a=VW?2 — 2. In this case J,(w) = WTZG((TG) (w) 5], and our
final equation for coherent potential J,(w) is the following

)
9oo (Wn) rr Q-
J o W2 Z,‘: 1+g(();)(wn)Jd(Wn) <X >Oe
olwn) == 3 €@ (XPP),
p

In a usual way we perform analytical continuation on real axis (iw, —
w —40) and only solutions with $J,(w) > 0 must be considered.

Possibility of existence of four, three or two separate subbands or
joining into the single one (when a gap in spectrum disappears) depends
on the model parameter values. All these cases are shown in the Figure 1.

Band boundaries are determined form the condition 3J,(w) — 0.
In figure 2 their dependence on coupling constant g are presented. And
in figure 3 the dependence electron band boundaries on tunneling level
splitting are presented.

At the regime of constant chemical potential we can calculate an
electron concentration mean value as:

() = 5 3 Grliom)e "0 (6.2)
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|p@) o] p(0)
3]
3 u=0.1, h=0.2
0=0.1, W=0.4
T=0.02, g=1.1
24 24
14 14
o o
0 T 1 0 T T T T
-1,0 05 1,0 2 1 0 1
. () u=0.1, h=0.52, 0=0.1, W=0.25
s Pl® T=0.02, g=0.9
(0]
] p(o)
5
5
o]
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ol 41=0.1, h=0.52 *7
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2 T=0.02, g=0.2 27
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Fig.1 Density of states p(w) at various values of the the tunneling-like
level splitting, the pseudospin-electron interaction and asymmetry of
the local anharmonic potential
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Fig.2 Electron band boundaries
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Fig.3 Electron band boundaries
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Fig.4 Electron concentration mean value

Several dependencies of electron mean value on chemical potential with
different values of the model parameters are presented on figure 4.

7. Conclusions

The electron energy spectrum of the pseudospin-electron model is consi-
dered. For this purpose the dynamical mean field method is applied. The
effective single-site problem is solved within original approach based on
use of diagrammatic series and Wick’s theorem are established; the alloy
analogy approximation is used.

The obtained results show that in the real system, which exhibit the
local anharmonicity of lattice vibrations, the metal-insulator transiti-
on, determined by the short-ranged electron correlation, is influenced by
that anharmonic subsystem. Changing the parameters of local anhar-
monicity (e.g, the shape of potential well), one can affect the conditions
of appearing a gap.
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The more complete analysis of reconstruction of energy spectrum will

be a subject of our subsequent consideration.
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