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Simple-cubic-lattice spin-1/2 Heisenberg model within Green-
function method

Oleg Menchyshyn, Taras Krokhmalskii, Oleg Derzhko

Abstract. We consider the spin-1/2 Heisenberg model on a simple cu-
bic lattice with ferromagnetic or antiferromagnetic nearest-neighbor in-
teraction within the spin-rotation-invariant second-order Green-function
method. We focus on the high-temperature behavior of the static suscep-
tibility which can be used to determine the critical temperature of the
model. We compare the Green-function results with the quantum Monte
Carlo simulation data. We discuss perspectives for application of the
Green-function method for the study of the high-temperature properties
of frustrated quantum spin models.
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1. Introduction

Competing interactions are known to have a drastic influence on the
ground-state/low-temperature properties of lattice spin systems [I]. On
the other hand, they can influence the finite-temperature properties
too, in particular, the critical temperature 7, which separates a low-
temperature ordered phase (T < T.) and the high-temperature disor-
dered phase (T > T;). There are only a few methods which can be used
to examine this issue. One among them is a two-time Green-function
method. The two-time Green-function method is well known in the quan-
tum spin system theory for more than fifty years due to seminal stud-
ies by N. N. Bogolyubov, S. V. Tyablikov, D. N. Zubarev and other
researches [2H7]. Many further developments of the method as well as
various specific applications have been reported until now. One special
version of the Green-function approach which is applicable to quantum
spin systems with frustration was suggested by Kondo and Yamaji [§].
Two-time Green functions can be found from the equation of motion
after introducing some decoupling scheme [2H4[7]. The Tyablikov decou-
pling [3] is used at the first stage but it is not a good one if the model does
not have a long-range order. The Kondo-Yamaji decoupling [8] is used at
the second stage of the equation of motion and it certainly improves the
description. This so-called spin-rotation-invariant second-order Green-
function method introduced in 1972 [8] was further developed and ap-
plied to Heisenberg magnets by several groups, see Refs. [9-HI3] and ref-
erences therein

We intend to discuss the effect of frustration on the critical tempera-
ture of quantum Heisenberg magnets using the spin-rotation-invariant
second-order Green-function method and begin with a test example.
Namely, in the present study we exploit the Green-function method for
studying the high-temperature properties and determining the critical
temperature of the spin-1/2 Heisenberg magnet on a simple cubic lattice
with ferro- or antiferromagnetic nearest-neighbor interaction. The idea
of our calculations is as follows. We consider thermodynamic quantities
in the region without long-range order, i.e., T' > T,, and calculate the
Green function ((s§;sq))w- In the case of the ferromagnet, we define

1Here we need to comment shortly on the terminology we use. Namely, “second-
order Green-function method” simply means that decoupling procedure is made on
the second round of the equations of motion for the Green functions. “Proper” second-
order theory for Green functions would mean a correct renormalization of the mass
operator, leading to magnon decay. There was also a modification of the famous Callen
decoupling from Yu. A. Tserkovnikov in [I4] which keeps a spin-rotation invariance
in the high-temperature region.
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Table 1. The Curie temperature T¢ of the simple-cubic-lattice spin-1/2
Heisenberg ferromagnet (in units of |J|/kp, kg = 1) obtained within
different methods.

QMC [18] || Tyablikov [3] | Kondo-Yamaji [12] | Kondo-Yamaji

(present paper)

0.839(1) 0.989 0.926 0.926
100% 118% 110% 110%

the critical temperature for the ferromagnetic ordering 7. = T¢ (the
Curie temperature) as the temperature of the divergence of the uniform
static susceptibility X:;:_O,wzo- In the case of the antiferromagnet, we look
for the temperature T, = Tx (the Néel temperature) of the divergence
of the staggered static susceptibility X;r;(w,ﬂ,w),w:O' Since the model is
unfrustrated we can compare our findings with quantum Monte Carlo
simulations [I5HI8] which we perform for completeness using the ALPS
package [19].

The paper is organized as follows. In Sec. 2] we introduce the model
and notations. In Sec. [B] we briefly illustrate the Tyablikov approxima-
tion, whereas in Sec. Ml and Appendices [A]l and [B] we explain in some
detail how to obtain the high-temperature thermodynamics within the
Kondo-Yamaji approximation. In Sec. Ml we also compare our findings
with the results of various authors as well as with the high-temperature
expansions and the quantum Monte Carlo data. We make a summary and
sketch perspectives for further studies in Sec.[Bl Our conclusions concern-

ing the critical temperatures are conveniently summarized in Tables [Tl
and 21

2. The model. Green-function method

In this section, we introduce the model under consideration and nota-
tions for the Green-function technique. The Hamiltonian of the spin-1/2
isotropic Heisenberg model on a simple cubic lattice reads

H:sti'sj
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Table 2. The Néel temperature Tx of the simple-cubic-lattice spin-1,/2
Heisenberg antiferromagnet (in units of J/kp, kg = 1) obtained within
different methods.

QMC [18§] || Tyablikov [3] | Kondo-Yamaji [12] | Kondo-Yamaji
(present paper)

0.946(1) In =1c¢ 1.079 1.041
100% 105% 114% 110%
N, Ny N
=J Z Z Z (Sm * Sma+1+Sm *Sm, 41+ Sm *Sm.41) . (2.1)
me=1my=1m.=1
Here J = —|J| < 0 corresponds to the ferromagnetic interaction and

J = |J| > 0 corresponds to the antiferromagnetic interaction, the first
sum in Eq. () runs over all nearest-neighbor bonds on the simple cu-
bic lattice of N = NN, N, sites, and periodic boundary conditions are
implied. In the second line of Eq. (2)) we write down the sum over the
nearest-neighbor bonds explicitly introducing convenient shorthand no-
tations for further calculations. Furthermore, spin-1/2 operators satisfy
the standard on-site commutation rules, [sT,s7]_ = 2s%, [s*,sT]_ = sT,
[s,87]- = —s".

We introduce

1 .
+ _ Figm +
Sq E e Spas (2.2)
VN

where the sum runs over all N lattice sites. The (retarded) Green func-
tion is defined according to the following equations:

((5q35q Nw = /OO dtei“’t<<s:lr;s;>>t,
(35530t = o /Oo dwe™ (583 5q ) uwtic, € = +0, (2.3)

Here ((...)) means the standard statistical mechanics average of (...),
ie., ((..)) =Tr(e H/T(...))/Tr(e” H/T).
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Two-time Green functions can be found from the equation of mo-
tion after introducing some decoupling scheme [2H4[7]. The equation of
motion at the first stage reads:

P55 5o = o S () + {01053 5 e (24)

with (sZ,) = 0 (rotational symmetry in spin space) in the disordered
phase. The equation of motion for the Green function in the r.h.s. of

Eq. (Z4) reads
hw<<1h5q7 q>>w _1h<[ q7 q] > h2<< q7 q>> (25)

We will use in the Green function in the r.h.s. of Eq. (2.) the Kondo-
Yamaji decoupling [8]:

— ot ot + +
545556 = N1aBCaBSS +1M4cCacsy,

1
sis%sg — gnABCABsg, (2.6)
where we introduce the notation Cap = (s;sj;) and the relation

(sa5h) = 2(shsp)-
If the Green function ((s&;sq))w is known, the correlation function
(8454 follows from the relation:

<5 5+> ih lim e dw<<5g;sa>>w+is_<<S;r;sa>>w7i€7 (27)

a4 27 40 | e —1

see Ref. [2]. Thus, Eq. [27) gives the correlation function (sgsg) and
therefore the correlation functions

<Sm8m+a - Zelqa (28)

ie.,

q
1 .
Cro0 = D (sgsg),
q
1 .
Ciio = ~ Zel(QI+Qy)<S sT),
q
1 ; _
Ca00 = ~ Z A (5. 58) (2.9)
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etc.. As a result, all thermodynamic quantities can be found. For exam-
ple, the internal energy (per site) reads

9
e(T)=3J ((sﬂlsfnﬁﬁ + <3‘11}n=92u+1> + <Sznr187znz+1>) = §J0100' (2.10)

On the other hand, the Green function ((s3;sg4))w is directly related to

the (isolated) dynamic transverse spin susceptibility le‘_’;,

—((sq3 59 ))ws (2.11)

see Ref. [2], bearing in such a way also nonequilibrium properties of the
model at hand within a linear response theory.

Xeo

W

3. Tyablikov decoupling: Approaching 7, from below

Consider at first the ferromagnetic case J = —|J| < 0. Within the Tyab-

likov approximation s% s}, — (s%)s5 resulting in

_ 2(s%)
hw —6[J[ (1 = 7q) (%)

(58559 ))w (3.1)

where 74 = (cos gy + cosgy + cosq,) /3 and (s*) = 1/2 — Cooo satisfies
the following equation:

11 2(s%)
5~ ) =% D ST =T (3.2)
q

(s*) equals zero in the high-temperature phase and starts to deviate from
zero at T, which therefore satisfies the equation

317 _ 1
2T, 1—7,
1 ™ ™ ™ 3
=—3/ d:v/ dy/ dz
m™ Jo 0 0 3 —COST — COSY — COS 2
~ 1.516 386, (3.3)

see Ref. [20]. From this equation we get for the Curie temperature T ~
0.989]|.J|, see Ref. [3]. In the high-temperature phase the Green function
((sd;54))w is zero that indicates that the Tyablikov approximation is
too crude and violates ergodicity [4]. (However, it is still possible to get

(5454), see Ref. [4].)
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In the antiferromagnetic case J = |J| > 0, one may perform a 7-
rotation over y-axis in the spin space for one of two sublattices of the
simple-cubic lattice arriving at the simple-cubic-lattice spin-1/2 Hamil-
tonian with the ferromagnetic but anisotropic interaction

H= —|J|Z(sfsf —sls¥ 4+ 5757). (3.4)

Introducing in addition to the Green function (23] the Green function
((sZq3 8¢ ))t, within the Tyablikov approximation we may find

2(5%) (o + 611(5))
(o)? = 361 (1= 12) (57)2
_ hw +6]J|(s%)

67\ /1 =4

({545 5q ))w =

1 1
hw —6]J]/1 —~2(s*)  hw+6]J[\/1—~3(s%)

As a result, we arrive at the following equation for (s*)

5—<Sz>
B 1 (\/1—7q+1)< ®)
m( 61J1\/T=73(s7)/T _ )
(/ia-1) )
F( ST ) (3.6)

and the following formula for the Néel temperature T = T¢:

3|J|_1Z 1
2T, ~ N 4=1-93

1 n 1 1
1—vq 2N . 14+ vq

1
N
1 ™ ™ U 3
:_/ dx/ dy/ dz
213 Jo 0 0 3 —cosx —cosy — Cos z

1 T T us 3
— d d d
+27r3/0 :c/o y/o Z3+cosx+cosy+cosz

~ 1.516 386 (3.7)
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since the second integral transforms into the first one after the change of
the variables ¢’ =1 —z, ¥y =7 —y, 2/ = 7 — 2. Thus, Ty = T¢ [3]. For
further details concerning the Tyablikov approximation see Refs. [3L[4]
and references therein.

In summary, the high-temperature quantities within the Tyablikov
approximation are hard to calculate straightforwardly and therefore this
decoupling in the equation of motion for ((si;sy))w is hard to use
for pinning down the critical temperature T, coming from the high-
temperature limit. Besides the fact that the Tyablikov approximation is
not straightforward in the high-temperature phase, after all, the Kondo-
Yamaji decoupling is the next step after the Tyablikov decoupling.
Therefore the Kondo-Yamaji decoupling is expected to provide a better
description. However, the Tyablikov approximation may be used while
studying T, approaching it from below.

4. Kondo-Yamaji decoupling in the disordered phase

4.1. Analytical results

Within the Kondo-Yamaji approximation (2.6) we have the following
result for the Green function:
M,
ooV a
Waisalhe = G~ (hig)?

My 1 _ 1
o 2hwg \ hw — hwg  hw + hwq ’
Mq = —12J0100 (1 — ’yq) 5

fiwg 2
(Tq) =3(1—7q) (1 +10n100C100

+81110C110 + 21200C200 — 120100C100 (1 +7q)) 5 (4.1)

where 74 = (cosq, + cosgq, + cosq.) /3, see Appendix [A] for details of
calculations.

The obtained result contains three unknown correlation functions
C100, Ci10, C200 and the corresponding parameters 1100, 7110, 7200-
We assume that 7100 = 7110 = 7200 = 7 [these parameters (for the
antiferromagnetic case at low temperatures) can be determined using
some additional conditions beyond the standard prescriptions, see, e.g.,
Refs. [12)13] and references therein|. From Eq. (1] we find the imagi-
nary part of the Green function

<<S<J:1r> S;>>w+ie - <<5;r> S;>>w—ie
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. My
= _27T12fbwq (0(hw — hwg) — 0 (hw + hwg)) (4.2)

and evaluate the r.h.s. in Eq. Z71)

ﬁ lim > dw <<S<J1r; S;>>w+i§w— <<Sf{; 5;>>w715
27T e—+0 oo o
_ My 1 B 1
RV S
M 2
= a 1+ — . (43)
2hwg ooy

Thus, we have obtained the correlation function

M, 2
—ot\ — a
<Sq Sq> 27qu <1 + ﬁ) (44)

which, according to Eq. (Z2), is related to the site-site correlation func-
tions

LS ) = e s (09

mj; ms

Inverting the latter formula we get

1 1
<Sm8;+a> = N Zeqa<8q Sj;_> (4 6)
q
[cf. Eq. 2:8)] and in particular
_ 1.1 1 _
Cooo = (s7s7) = 589 =35 Cooo= NZ@qS:{%
q
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[cf. Eq. 29)], where in the thermodynamic limit the sum should be
replaced by the three-fold integral

%zq:(...)a ﬁ/:dqz/:dqy/:dqz(---)- (4.8)

These equations for 17, C100, C110, C200 [i-€., Eqs. (&), (@&38), (£4), @E10)]

will be solved numerically starting from the high-temperature limit.
Let us discuss how to determine the critical temperature 7. Consider

the ferromagnetic case J = —|J| < 0. To find T¢, we may examine the

behavior of the uniform static susceptibility X:;;O,w:() as temperature

decreases starting from infinite value. If X;r:_o,wzo — 0o that would mean
that T — T, = T¢. From Eq. [@J) we have

4C100
Xamow=0 = 1 —147Cho0 + é]770110 + 2nC200 (4.9)
and X;ZO)W:O diverges when
1 = 14n9C1o0 + 81C110 + 21C200 — 0. (4.10)
For the antiferromagnetic case J = |J| > 0, we have to examine the
staggered static susceptibility
4C100
Xa=(nimm =0 = 1+ 10nChoo + é3]770110 + 2nCa00 (4.11)
which diverges when
1 4+ 10nCho0 + 8nC110 + 217C200 — 0 (4.12)

in this way giving the critical temperature T, = Tn.
The magnetic correlation length & above T, may be calculated by
expanding x o in the neighborhood of the vector q =

(0’ 0’ O) or Xq:(ﬂ'Jrkz,TrJrkerJrkz),w:O
q = (m,m, 7). For the ferromagnet the expansion yields

=(04ka,0+ky 04k, ),w=
in the neighborhood of the vector

+_
L _ Xq=(0,0,0),w=0
Xq=(0+ky,0+ky,04k2),w=0 — 1+ &2k2 )
¢ = 2nChoo .
1 = 141Ch00 + 8nC110 + 21C200

(4.13)
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For the antiferromagnet the expansion yields

+7
4— Xq:(ﬂ',w,ﬂ'),w:O
Xa=(n+ke,mtky,mtks)w=0 — 1+ &2k2 7

¢ = —21C100

1+ 10nChoo + 8nC110 + 27Ca00

(4.14)

We may also examine the temperature dependence of the specific
heat (per site)

o(T) = ;T (3J cmo) = gJa%?O, (4.15)

which should signalize the approach to T, from above.

4.2. Numerical results. Critical temperature

To solve the equations for n, C199, C110, C200, We begin with analytical
results in the high-temperature limit, see Appendix [Bl It can be shown
that the first nonvanishing terms for the unknown quantities n, Cigo,
C110, Capp in the series with respect to J/T behave as follows:

n=1+o0(1),

Can =12 +0(L) =i +o(2),
cna=5(3) +o((3)) -t ( (7))
can=35 (1) +o((3)) et ro( (7)) a0

We use these formulas in a numerical solution described below.
More specific, first of all we introduce the notations Cogy = 7Cas,
and notice that the latter three equations in Eq. ) do not con-
tain 7, i.e., they are equations for C,g,, whereas 7 follows from the
first equation in Eq. [@1) after C’aﬁ,y are found. Furthermore, us-
ing the high-temperature results Caﬁ,y( ) (I6) we obtain the ini-
tial point C*ﬁ,y(T = 5) = aﬁ,y( = 5). Then we consider a cube

[C’*ﬁ,y - C’aﬁ,y/2 e aﬁ,y + C’*ﬁ,y/Q] and calculate the value of the ob-

o

jective (goal) function F = (Cwq_ N(1/N) Y €% (sqgsi))? + (Cr1o —
n(1/N) Zq ei(qurqy)(s;s;r))Q + (Ca00 — n(1/N) Zq e (s Sq q>) which
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follows from Eqs. ([&7) within this cube with the step (Aéaﬁv)(l) =

Oéﬁ,y/m m = 50 or 100. We determine the values of C" 5 for which
the objective function attains its minimum. Then we con51der a cube

[C(ilﬁ,y —2(ACu5,) M ... C'(ilﬁ),y 4+ 2(AC4p,)M] and calculate the value of

the objective function F with the step (ACap,)? = 4(ACus,) ™" /m,
obtaining as a result the values of C'(g?ﬁ),y for which the objective function
attains its minimum. We repeat this procedure k times (k = {10,12,15}).
As a result, we obtain the solutions of Egs. (7)) at T = 5, say,

Copy(T = 5) = Calfi)(T = 5). Similarly, we obtain the solutions of

Eqs. @1) at T = 5+ 0.1, Capy (T = 5+ 0.1). Using these two points
for linear extrapolation we obtain the initial point O;B’Y(T =5-0.1).
[Note that we do not use the high-temperature results to obtain the
initial point C';‘éﬁ,y(T = 5—0.1). In fact, it is indeed impossible to use
the high-temperature results for getting the initial point at, say, T = 2.|
We repeat the procedure of seeking for the minimum of the objective
function F starting from the cube [CZﬂV —2AC,p, - 'é;ﬂv +2AC,],
where AC, 5, = C’;ﬂv(T =5-0.1) = Cop (T = 5). Proceeding in such a
way with gradual decrease of the temperature T', we find all solutions of
Egs. (). Moreover, after reaching T' = 2 we decrease the temperature
step from 0.1 to 0.02 (and to 0.01 for lower temperatures).

For the ferromagnetic case J = —|J| < 0, we report the obtained
results for 1, Cigo, Ci10, Ca0o along with the susceptibility (@3]) and
the denominator in Eq. (@3] which is given in the Lh.s. of Eq. ([{I0) in
Fig.[[l The denominator vanishes at T, = T¢ = 0.926]J].

For the antiferromagnetic case J = |.J| > 0, the obtained results for 7,
C100, C110, Ca0o along with the susceptibility (£11)) and the denominator
in Eq. (£I1)) which is given in the Lh.s. of Eq. ([@I2) are reported in
Fig. 2l The denominator vanishes at T, = T =~ 1.041J.

Knowing the correlation functions, one can find, e.g., the magnetic
correlation length &(T), see Eqs. (E13), ([@I4)), or the specific heat ¢(T),
see Eq. ([TI3). The results for the specific heat are shown in the corre-
sponding panels in Figs. Bland @ and in Fig.

4.3. Comparison with another Green-function papers

Similar problems were studied within the Green-function method in the
past [I22128].
In particular, A. F. Barabanov with coauthors [25] obtained the fol-
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Figure 1. (Color online) Temperature dependence (T = 0.8...5) of cor-
relation functions Chgg, C110, Ca00, and 7 for the case J = —|J| < 0
(|J] = 1) obtained numerically (circles). Curves correspond to the high-
temperature asymptotics given in Eq. (£16) (solid, short-dashed, dotted,
and dash-dotted curves correspond to 7, Cigp, C110, and Cogg, respec-
tively). In the high-temperature limit the asymptotics and the numerical
solutions coincide. We also show the susceptibility X:;rgo,wzo #39) [long-
dashed green curve with (without) up-triangles correspond to the numer-
ical solution (high-temperature asymptotic)] and the Lh.s. of Eq. (@I0)
[dash-dashed black curve with (without) circles correspond to the nu-
merical solution (high-temperature asymptotic)|]. The denominator in
Eq. (£39)) vanishes at T, ~ 0.926.

lowing expression for Green’s function and spin excitation spectrum:

. —12/Kg (1= 1q)
wa\? _ g1 L
(J) =601 vq)<6aKg+2 1+67q>
=3(1 —7q) 1+ 120Kz — aKg (2 + 1274))
=3(1—q) (1+ 220K, — 12aKg (14 7q)) (4.17)

[see Egs. (5) and (6) of this paper in the case Jo = 0]. This result
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Figure 2. (Color online) Temperature dependence (T'= 0.8...5) of cor-
relation functions Cigo, Ci10, Co200, and n for the case J = |J| > 0
(|J] = 1) obtained numerically (circles). Curves correspond to the high-
temperature asymptotics given in Eq. (18] (solid, short-dashed, dotted,
and dash-dotted curves correspond to n, Cigg, Ci10, and Cagg, respec-
tively). In the high-temperature limit the asymptotics and the numer-
ical solutions coincide. We also show the susceptibility X (ﬂ 1) w0=0
(&11) [long-dashed green curve with (without) up- trlangles correspond
to the numerical solution (high-temperature asymptotic)| and the Lh.s.
of Eq. (@I2)) [dash-dashed black curve with (without) circles correspond
to the numerical solution (high-temperature asymptotic)|]. The denomi-
nator in Eq. (@I1]) vanishes at T, ~ 1.041.

correspond to our findings given in Eq. @) if
101C100 + 81C110 + 21Ca00 — 220 K. (4.18)

Note, that the result of A. F. Barabanov with coauthors [25] does not
contain Ci19 and Caygp.

Later on, in Ref. [12] the thermodynamics of layered Heisenberg
magnets with arbitrary spin was investigated within the second-order
Green-function technique. The authors consider an arbitrary spin value
s > 1/2 and two different bonds, the in-plane bonds J|| and the inter-
plane bonds J . In their study, they introduce several different vertex
parameters 1 (denoted a,, ag, with g =||, L) and find for s = 1/2 and
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Ji/Jy =1 the Curie temperature Tc ~ 0.926].J)| and the Néel temper-
ature Ty =~ 1.079.J)|, see Table II of Ref. [I2]. The obtained in Ref. [12]
Green function is given in Egs. (5), (2), (6) — (9) of this paper. For the
case s = 1/2, when the vertex parameter A, = 0, it can be written as

Mq

((sgs5 qlhe = .

COS @z + COS qy

Wa
5 ) —4J1Cyo1 (1 —cosq.),

My = —8JC1oo (1 -

wq

" (AI N 16J|\2a1|\0100 (1 _ cosqy +cosqy>)
+ (1 —cosq.) (AL +4J7 a11 Coor (1 — cos q:))

#8 (1 SO (- cong) (429

(1 COS qz + COS gz + COSqy

with
A= 2J|\2 (14 2ag) (2C110 + Ca00) — 10a1C100)
+8J1J1 (21 Cro1 — o1 Co0) 5
AL =J? (1+ 2a21Coo2 — 6a11Coot)
+8J)J1L (21 Cro1 — @11 Coo1)
A =8JyJ1 (a1 Cro0 + 11 Coor) - (4.20)

For the case JH = Jl = J we have to put 0001 = ClOO; 0101 = 0110,
0002 = CQOO and 041” = 1| = (7, a2H = Q] — Q9. Therefore instead of

Eq. (£20) we have
Ay =2J7 (1 — 141 Cro0 + 8a2Ch1o + 2a2Ca00)
Ay = J? (1 — 1401 Cigo + 8aaChio + 2a2Ca0)
A =16.J%a1C1go. (4.21)

As a result,

(ﬂ)2 _(i_ COS Gy + COS gy
J/) 2

% (2(1 = 14a1C1o0 + 8a2Ch10 + 2a2Cs00)

+1601C100 (1 _ S0%4s T COR Gy ;L 054y ))

ICMP-14-01E 15

+ (1 — cosq;
X (1 = 14a1Choo + 8c2Ch10 + 2a2C200 + 41 Cigo (1 — cos qz)

)
)

xr +
+16a1C100 (1 — 7(308(1 5 cos qy> ( — COS q,z)
)
)

= (1 — 14a1Ch0 + 8a2C110 + 202C200
X (2 —cosgy —cosqy +1—cosq,

COS @z + COS qy

2
2 > —+ 40&10100 (1 — COS Qz)2

+160&10100 (1 —

+mmqw@_@ﬂ;;ﬁ@yLW%m

=3(1 —7q) (1 = 1401C100 + 8a2C110 + 202C200)
+4a1C1oo ((2 — COS @y — COS qy)2

+2(2 —cosgy —cosgy) (1 —cosq,) + (1 —cosg) )

=3 (1 - Vq)
x (1 = 1401 Choo 4 8aaClhio + 202C500) + 3601 Choo (1 — 7q)”
=3(1—"q)

X (1 + 101 Cigo + 8aaCiig + 2a9Co0 — 121 Chgo (1 + ’Yq)) . (422)
Comparing Eqs. (@) and (£22) we see that they coincide if

7100 — @1, M110 — @2, 7200 — Q2. (4.23)

Within the simplest assumption about the vertex parameters, nipo =
M10 = N200 = 1, Eq. 1) corresponds to the result of Ref. [12] with the
same assumption about the vertex parameters: a3 = s = a. We notice
that this simple assumption yields Tx ~ 1.041 whereas more sophisti-
cated manipulation with the vertex parameters gives Ty = 1.079 [12].

4.4. Comparison with high-temperature expansions and quan-
tum Monte Carlo simulations

Simple cubic Heisenberg ferromagnet for arbitrary spin values s > 1/2
has been studied within high-temperature extrapolation techniques since
the early sixties and a lot of results are available (see, e.g., Refs. [29/30]).
Even more sophisticated high-temperature-series techniques, which are
also applicable for more complicated quantum spin models, have been
reported recently in Ref. [31]. The Curie temperature was estimated as
0.84|J|/kp already in 1967 [29] and confirmed later, e.g., in Ref. [30].
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Quantum Monte Carlo simulations started in the late eighties. The
simple-cubic-lattice spin-1/2 Heisenberg ferromagnet and antiferromag-
net were examined many times in the past. The most recent data for the
Curie temperature and the Néel temperature are:

ksTc = 0.839(1)]J),
kpTx = 0.946(1)J, (4.24)

see Refs. [I6HI8]. This result agrees with earlier data from high-
temperature expansions [291[30].

We perform quantum Monte Carlo simulations using the ALPS pack-
age [19], namely, utilizing the application called the directed loop al-
gorithm in the stochastic series expansion (SSE) representation (the
dirloop_sse package). Using the directed loop SSE application we il-
lustrate the temperature dependencies of various quantities. For the fer-
romagnetic case we examine the magnetization (per site) m, the static
uniform susceptibility (per site) x = X;r:_o,wzo = 2X¢Z0.w—0, and the spe-
cific heat (per site) c. We set J = —1 and take N = L3 sites with L =
10, 20, 40, 80, 120. We put small symmetry-breaking uniform magnetic
field h = 10~%. Our findings are collected in Fig. Bl For the antiferro-
magnetic case we examine the temperature dependencies of the staggered
(i.e., sublattice) magnetization (per site) mg, the staggered static uni-
form susceptibility (per site) xs = X:l_:_(ﬂ',ﬂ,w),w:O = 2xéi(ﬂ7w)ﬂ)7w:0, and
the specific heat (per site) c. We set J = 1 and take N = L? sites with
L = 20, 40, 80. Again we put small symmetry-breaking staggered (i.e.,
which has different signs on different sublattices) magnetic field hy =
10~%. Since the employed ALPS package does not yield Xé‘;(mw)ﬂ)wzo,
we find this quantity as the ratio (ms(hsy) — ms(hs1))/(hso — hsy) with
hes = 107% and hg; = 0.5-10~%. Our findings are collected in Fig. @l

If one plots the thermodynamic quantities against T/T. with the
value of T, as it is determined by the specific method, a discrepancy be-
tween the Green-function results and quantum Monte Carlo data (con-
ditioned by different predictions for T.) becomes hidden, see Fig. [l [The
quantum Monte Carlo estimate for 7. is obtained from the magnetiza-
tion curve for the largest system size: We get T &~ 0.845 and Ty ~ 0.975
that is not far from more precise quantum Monte Carlo results, 0.839(1)
and 0.946(1), reported in Tables [l and 2] see also Eq. [@24])].

In Fig. [6] we present the results for the magnetization as it follows af-
ter the Tyablikov approximation, see Eq. (8:2)) (the ferromagnetic case)
and Eq. (38) (the antiferromagnetic case). As Fig. [l shows, the Tyab-
likov decoupling leads to reasonably good predictions for the magneti-
zation, especially in the antiferromagnetic case.
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Figure 3. (Color online) Temperature dependence of the magnetization
m, the static susceptibility x, and the specific heat ¢ for the spin-1,/2
Heisenberg ferromagnet on a simple cubic lattice. Quantum Monte Carlo
data are obtained for the system of different sizes 103, 203, 402, 803, 1203
with J = —1 and h = 10~* (curves with circles). Green-function results
are shown by (green) curves with up-triangles. The Curie temperature
according to the reported quantum Monte Carlo simulations for magne-
tization curve of largest sizes is 0.845, whereas according to the Green-
function method it is 0.926.
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Figure 4. (Color online) Temperature dependence of the staggered mag-
netization mg, the staggered static susceptibility xs, and the specific heat
¢ for the spin-1/2 Heisenberg antiferromagnet on a simple cubic lattice.
Quantum Monte Carlo data are obtained for the system of different sizes
203, 403, 80% with J = 1 and hy = 10~* (curves with circles). Green-
function results are shown by (green) curves with up-triangles. The Néel
temperature according to the reported quantum Monte Carlo simula-
tions for magnetization curve of largest sizes is 0.975, whereas according
to the Green-function method it is 1.041.
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Figure 5. (Color online) Temperature dependence of the specific heat
¢ for the spin-1/2 Heisenberg ferromagnet (left) and antiferromagnet
(right) on a simple cubic lattice. These results were reported already in
the corresponding panels of Figs. Bl and @l Now we use for the quan-
tum Monte Carlo simulations T, = 0.845 (ferromagnet) and T, = 0.975
(antiferromagnet), whereas for the Green-function results 7, = 0.926
(ferromagnet) and T, = 1.041 (antiferromagnet).
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Figure 6. (Color online) Temperature dependence of the magnetization
m for the spin-1/2 Heisenberg ferromagnet on a simple cubic lattice
(left) and of the staggered magnetization mg for the spin-1/2 Heisenberg
antiferromagnet on a simple cubic lattice (right). Quantum Monte Carlo
results were reported already in the corresponding panels of Figs. [3] and
@ Now we compare them to the results which follow after the Tyablikov
approximation.
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Let us make a few comments on the obtained temperature depen-
dences. All approaches yield the value of mg(0) = 0.42, see the corre-
sponding panels in Fig. 4l and Fig. 6l which agrees with previous studies
see, e.g., Ref. [32]. We notice that numerical differentiation in Eq. (£13])
produces a noise in the Green-function predictions for the dependence
¢(T') while approaching T, see the corresponding panels in Figs. [ and
[ and Fig. Bl Therefore, the Green-function predictions for the specific
heat become less reliable around 7.

Comparing the Green-function results with the benchmark quantum
Monte Carlo data in Figs. Bland 4] and in Fig. Bl one may conclude that
in general, the agreement between both findings is quite reasonable.

5. Conclusions

To summarize, we have illustrated an application of the spin-rotation-
invariant second-order Green-function method for studying the high-
temperature properties of the spin-1/2 Heisenberg magnet on a simple
cubic lattice with ferro- or antiferromagnetic nearest-neighbor interac-
tion The critical temperature T, as it follows from the divergence of
XaZo.w—o (for J = —|J| <0) OTOqu [P (for J=|J|>0)isina
reasonable agreement with quantum Monte Carlo and high-temperature
expansions data. We intend to apply this approach for studying high-
temperature properties in the presence of competing interaction (frus-
tration).

Although we do not report new results, we believe the paper is valu-
able from methodological point of view, since it presents all details of
calculations as well as comparisons with some other Green-function pa-
pers and numerics. Therefore it may be a good starting point for further
attack of the high-temperature properties of frustrated quantum Heisen-
berg magnets.
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A. Green function ((sf;s;)), within the Kondo-
Yamaji approximation

Let us elaborate in detail each term in Eqgs. (24) and (23).

Consider the term ih([$], s4]-). Since

ihs& = \/_Z elamgt ) (A1)

and

[SavH] ‘]( m 715 +Sm 715 +Sm 715

z + z + z +
_szflsm - Smyflsm - szflsm

z _+ z _+ z _+
+Sm8mz+l + Smsmy-i-l + Smsmz—i-l
+ .z + .z + .z
SmSmIJrl Smsmerl - SmSmZJrl) ) (AQ)

we get

([ihsg: sq]-)

J
e Y e
- N <_Smm—lsm_Smy—lsm_smz—lsm

m

z z z z z z
=28, _18m — 2smy713m — 28, _15m

~°m j;zm-‘rl ~ Sm S;tly"'l n SI;S;;ZJ'J
=258, +1 — 25mSm, 41 ~ 25mSm. 41
+2e*inanz—1an + 2e*i‘1y812ny—15 +2¢7 Str.—15m
te s skt e s, sk e s, sh
+2eM % sk s, o+ 2 sk sh, L+ 26 T shsT,

i o+ +
+e s S, 11+ el W S Sm. 41 T el msm 1) (A.3)

Because of translational invariance we have m e .) = N and Cig0 =
+ -\ _ _ + — _ z z _ _
(Smo—15m) = Cowo = (55, _15m) etc., Bioo = (s, _150) = Bowo =

<sfnyflszm) etc.. Because of rotational invariance we have B = C/2.
Therefore
<[1ﬁ5q7 q] > = Mcb

Mg = 4JChoo (cos gz + cosqy + cosq, — 3). (A4)
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epa’ss t: tllf term —h << q>>w E:l m 5‘111:2

1
X (—((s:; LSS 1 =
z—1°m mm—|-17sg>>(—d - §<<87J7rzm—18m8:7rz +1 S_>>
x ) g

X 3+ z m
(bt i+ bt
. n Y m> — [sz_lsm,H]_
(551w - = (550, 150 H]- — (55,153 1
y—1°m> _ —|s z
an H] -+ [sms, H]_ I 2 38 N)w ({5, 28 s _
+ oz vl + [Smsm +15H]* e m’Sg>>W
_[Smsmz+17H]— - [S:’;lsz H] + .z ’ —l<<5 g
my+ b S [SmSmZHaH]—) , (A.5) 1 4 ma—13 Sg Mo = (S, —25m,—15mi 55 ))
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alculate first [s},s2,, H]_. We get +2<<Sm1*15:’;15m 415g Ve — l<< + .
1 1 w1 %g e T 5 ma 1 S Pm +135g )
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+Sm/s+ + 1 8l sz_l’my_lsj;bzflsmv 7>>
o +15m T Sims 15t S += (s _iSthSm. 115 1 i
(o 5k st 5 e — 5 (e
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m’ m’y+15m—5fn/71s+,sz Kondo-Yamaii de —st/2, and s7s* = 1/4. N atet =0, 578" =
L 1 —15m’Sm -Yamaji decoupling ([2.6). As a . Next we have to use the
+§ (Sm/Ser; 41 st s st result, Eq. (AT) becomes
1 * m’Tm mz+1)
4= (=st,sF - + - J? i
2 ( +mz sz:lsm + Sm,smzfls:’;l) N Z Zelq'(g_m)
S S. SZ + 1 m g
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of the ﬁi:‘sst:en the PE.S' of Eq. (A.). Let ug?ji)te\zi begtlﬁl with the first +Z<<Sm? Sg )w
rm in the r.h.s. of E . wn the contributi 1
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1 _ 1 _
+§771000100<<5;271,my+1§ Sg )w + 5771000100“5;,71,%71; Sg )w

1 1

—5771100110<<5:2171; Sg ) )w — 5771100110“8;271; Sg ))w

1 _ 1 _
+=7101C101 ({573 55 e — 51100C100{(SF,. 11355 )

2 2
1 _ 1 _
—5771000100<<S;fl; Sg))w T 5771010101<<S:§,; Sg))w
+ 2 1100C00 {55 550w + 2m100C100( (57 55))
277100 100\\Sm, —1,m,+1>5g ) /w 277100 100848 m, —1,m, -1 Sg ) w
1 _ 1 _
—5771010101“8;271; Sg ) )w — 5771010101<<S,T121;Sg>>w> (A.8)

We have to do similar calculations for the second and the third terms
in the r.h.s. of Eq. (AJ). Combining these findings, we get for the first
three terms in the r.h.s. of Eq. (A3) the following result:

(343 5))w
T ({545 5q) e

1 1
= 5772000200 + 1 + 1110C110 + M01C101

1 1
+1m110C110 + 5770200020 + 1 + 1011 Con1

1 1
+1101C101 + 1011Co11 + 5770020002 + 1

— (1010Co10 + 1001 Coo1) €OS G

1

—57710001006"1m

4 2

+1100C100 €08 gy + 1M100C100 COS g2 ) €%

— (1100C100 + 1001 Co01) €OS Gy

1 1
+ (—— — =1200C200 — M10C110 — M101C101

i
—57701000106 i

4 2
+1010C010 €08 ¢ + 1010C010 COS @2 ) €
— (1100C100 + 1M010Co10) COS ¢

1 1
+ (—771100110 — — — =1020C020 — 1M011Co11

iq.
—57700100016 1
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1 1
+ <—771010101 —1011Co11 — 1 5770020002

+1001Co01 €08 gz + 1001 Coo1 €OS gy ) €%

1 1 1 .
+§7710001006 Hga 57701000106 Hay 4 5770010001e 2z (A.9)

Next three terms (the second three terms) in the r.h.s. of Eq. (A8 give
the same result as in Eq. (A.9). Furthermore, the third three terms and
the fourth three terms in the r.h.s. of Eq. (A.5]) yield complex conjugate
expression of that one which is given in Eq. (A9). We can simplify
our formulas using the consequences of translational invariance: Cgg =
Co10 = Coo1, Ci10 = Cp11 = Cio1 ete. Therefore, after tedious but doable
calculations we have arrived at the final formula for the Green function
({5 53w

The final result for the Green function ((s{; s )). within the adopted
approximation (2.06]) reads:

Mq

<<5§§5;>>w = m, (A.10)

where
Mg = 4JChoo (cos gz + cosqy + cosq, — 3) (A.11)

and

J
— (14 101100C100 + 8m110C110 + 27200C200)
X (cos qg + cos gy + cosq;)
+8n100C100
X (COS gy COS Gy + COS ¢y COS ¢, + COS gy COS G)
+21100C100 (cos(2¢z) + cos(2gy) + cos(2g.)) . (A.12)

g \ 2
(—q> = 3+ 241110C110 + 61200C200

We may rewrite to obtained result even in a more convenient form.
After introducing

1
—1< g = 3 (cosqy + cosqy +cosq,) <1, (A.13)

we have instead of Eqs. (A1) and (AI2) the following formulas

Mq = —12J0100 (1 — ’}/q) (A14)
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and

hwa )
(Tq> =3(1=7q) (1 + 109100C100
+81110C110 + 2m200C200 — 120100C100 (1 +74q)) (A.15)

respectively [cf. Eq. (&II)].

B. n, Cig, Ci10, and Cygg in the high-temperature limit

In the high-temperature limit T — oo, Eq. (£4) becomes

M, 2
<quq> 27—qu < +eh%_1>
M, 2
2hwq< 1+h%+...—1>
M,
— L1
(hwq)

—12C100 (1 — 7q) T

3 (1 — ’yq) (1 + 10770100 + 8770110 + 2770200 — 12770100 (1 + ")/q)) J
_ —4C100 T

1+ 10nC100 + 817C110 + 217Ca00 — 127C100 (1 + 7q) J

(B.1)

and the equations to be solved [see Eqs. (@), (£8)] read:

1 1 ™ ™ us
_ — ot
5 - (27T)3 /;ﬂ dQCE /;W de /;W dQZ <Sq Sq >

1 iy iy iy
dg, d dg,
(27)3 / 4 / q/ b

X -, B.2
14 101nC100 + 8nC110 + 21nCa00 — 127C100 (1 + ) J (B.2)

Cuoo= —— [ dg [ dq, [ 4 e (s sd)

100 = 2n3 ). qz . dy . qz€ " \Sq 5q

B 1 s s s

“@r ) dg, B dg, B dgq. cos gz

—4C T
x 100 ~,  (B3)

1+ 10nChoo + 8nC1h10 + 2nCo00 — 12nC100 (1 + ’}/q) J

ICMP-14-01E 27

1 s s s . B
Ciio = @n)? Lﬂ dge Lﬁ dgy Lﬂ dqzel(q’”Jrqy)(sqs;r)

1 s T T
= (271')3 /_ﬂ- dq;ﬂ ‘/_ﬂ- dq1j ‘/_ﬂ— dQZ Cos q:E COS QU
—4Cho0 T

X -, B4
1 4+ 101nCho0 + 8nChio0 + 21nCa00 — 120C100 (1 4+ 7q) J (B-4)
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0= Gy | e | [ A0 et
1 s s s
= (271')3 ‘/_ﬂ- dq;ﬂ ‘/_ﬂ- dq1j ‘/_ﬂ— dqz COS(2QLE)
—4C T
x 100 ~.  (B5)
1 4+ 101nC1o0 + 8nCh10 + 21nCa00 — 120C100 (1 4+ 7q) J
We look for the first nonvanishing terms in |J|/T. Assume that
A B C
Cloo—ﬁ, Cllo—ﬁ, Czoo—ﬁa n=D. (B.6)
Then Eq. (B.2) immediately yields
1J
S B.
Cio0 = —3 7 (B.7)

Furthermore, Eq. (B.3)) reads

1 ™ ™ ™
1= W/ dqx/ dqy/ dg, cos q; X
—4 T

127C100(1+7q) J
(14 101C1r00 + 8nCh10 + 21nCa00) (1 - 1+1oncmof§(r)70m+2nczoo)

1 ™ ™ ™
= (271_)3 /_ﬂ-dqw /_quU /_ﬂ-dqz COSqﬂc

—4
X
1 + 10770100 + 8770110 + 2770200
12nC' 1 T
x (1 + nC100 (1 £ 7g) ) ~ (BS)
1 + 10770100 + 87’]0110 + 27’]0200 J

We have used already the assumptions (B.G): The term which contains
(14 7q) is small with respect to 1. Furthermore,

1 ™ ™ ™ T
1= G /_quw/_ﬂdqy/_ﬂdqzcosqmj X
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—48nC1o0 (1 COS ¢y + COS qy + COS ¢ )
(1 + 10nC1o0 + 87C110 + 27C200)° 3
_ —481nC100 1 /7r % T
(14 109Ci00 + 87C110 + 27Cago)” 27 E
_ —161C1o0 1 /7r 1+ cos(2qy)
(1 + 10nCho0 + 87Ci10 + 27Ca0o)” 27 ’ 2
_ —8nC1o0
(14 1097C100 4 817C110 + 27Cano)’

= ! ~ = 1.(B.9)
(1 + 10770100 + 8770110 + 2770200)

SN NN W

Hence
n=1. (B.10)

In fact, owing to Eq. (B7), we were considering the following equation:

1 ™ ™ ™ 1
2C100 = W/ sz/ de/ dg. cos Qz § 7 (1 n Vq)
-7 -7 -7 2 T

/ dqz/ dqy/ dq, cos q,

3 J 9 ,(J
1—= 1 2 1
( 2 e+ 0 () (407 + )
_ L Wd cos —§ icosqw
Top ) (R TR
3 J11 1 J
= _Opooc - B.11
1735~ 1" B

which gives n = 1.
Similarly for Cy19 and Cagp (and another correlation functions) we
should rewrite Eqs. (B4) and (B.A) as follows:

1
2C / / dg / dq, cos g, cos q
110 = o I y1+%%(1+”yq)
/ dq, / dgy / dg. cos g cos gy
X <1 —

(2m)®
%(1+~yq)+%<%) (1+~yq) +>

N W

ICMP-14-01E 29

1" B ) s 9T\ 2
= )2 Lﬂdqxlﬂdqycos gz COS qu <T> 9

19 /J\?2 1/J\?
_M(T) §‘§(T) (B.12)

hence

1 ()"
Ciio = 6 (T) ; (B.13)

1 us us us 1
20500 = (27r)3/ dqz/ dqy/ dg; cos (2qz)m
- - -7 2T q

1 ™ ™
= e /_7r dg, /_7r dqy/_ dq. cos (2¢,)

\_/ | ©

)

1 [T\
Ca00 = D) <T> (B.15)

Thus, in the high-temperature limit the unknown quantities should
behave as follows:

hence

Caoo = 3% (%)2 +o <(%>2> , (B.16)

cf. Eq. (£I6).
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