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ized Fokker-Planck equation. The method of non-equilibrium statistical
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distribution function of hydrodynamic collective variables and their hy-
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generalized Fokker-Planck equation for the non-equilibrium distribution
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1. Introduction

The study of nonlinear kinetic and hydrodynamic fluctuations in dense
gases, liquids and plasma, in turbulence phenomena and dynamics of
phase transitions, in chemical reactions and self-organizing processes are
relevant both on kinetic and hydrodynamic levels of description in sta-
tistical theory of non-equilibrium processes [IHI8]. The non-equilibrium
states of such systems are far from equilibrium. Therefore the study of
both the processes establishing the stationary states with characteris-
tic times of life and the relaxation processes to the known equilibrium
states, that are described by means of molecular hydrodynamics [T9H23],
is of great importance. An important feature of theoretical modeling
of non-equilibrium phenomena in dense gases, liquids, dense plasmas
(dusty plasmas) is a consistent description of kinetic and hydrodynamic
processes [23H27] and taking into account the characteristic short and
long-range interactions between the particles of the systems. In partic-
ular, the non-equilibrium gas-liquid phase transition is characterized by
nonlinear hydrodynamic fluctuations of mass, momentum and particle
energy, which describe a collective nature of the process and define the
spatial and temporal behavior of the transport coefficients (viscosity,
thermal conductivity), time correlation functions and dynamic structure
factor. At the same time, due to heterogeneity in collective dynamics
of these fluctuations, liquid drops emerge in the gas phase (in case of
transition from the gas phase to the liquid phase), or the gas bubbles
emerge in the liquid phase (in case of transition from the liquid phase
to the gas phase), formation of which has a kinetic nature described
by a redistribution of momentum and energy, i.e. when a certain group
of particles in the system receives a significant decrease (in the case of
drops), or increase (in the case of bubbles) of kinetic energy. The par-
ticles, that form bubbles or droplets, diffuse out of their phases in the
liquid or the gas and vice versa. They have different values of momentum,
energy and pressure in different phases. All these features are related to
the non-equilibrium unary, binary and s-particle distribution functions
(which depend on coordinate, momentum and time) that satisfy the
BBGKY chain of equations. Therefore, the construction of kinetic equa-
tions that take into account nonlinear hydrodynamic fluctuations [28H32]
is an important problem in the theory of transport processes in dense
gases and liquids. In particular, this problem arises in the description of
low-frequency anomalies in the kinetic equations and related "long tail"
correlation functions [33H35].

The main difficulty of the problem is that the kinetics and hydrody-
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namics of these processes are strongly related and should be considered
simultaneously. Zubarev, Morozov, Omelyan and Tokarchuk [23]361137]
proposed the consistent description of kinetic and hydrodynamic pro-
cesses in dense gases and liquids on the basis of Zubarev non-equilibrium
statistical operator [38[39]. In particular, this approach was used to ob-
tain the kinetic equation of the revised Enskog theory [37140] for a system
of hard spheres and kinetic Enskog-Landau equations for one-component
system of charged hard spheres from the BBGKY chain of equations.

Zubarev et al [23] obtained the generalized hydrodynamic equations
for the hydrodynamic variables (densities of the particle, momentum
and the total energy) connected with the kinetic equation for the non-
equilibrium one-particle distribution function. Later [24126], these equa-
tions were used to study time correlation functions and the collective
excitation spectrum of the weakly non-equilibrium processes in liquids.

Obviously, the approach proposed by Zubarev et al [23,[36,[37] and
Tokarchuk et al [2426] can be used to describe both weakly and strongly
non-equilibrium systems. At the same time, in order to consistently de-
scribe kinetic processes and nonlinear hydrodynamic fluctuations it is
convenient to reformulate this theory so that a set of equations for non-
equilibrium one-particle distribution function and the distribution func-
tional of hydrodynamic variables, particle number densities as well as
momentum and energy densities could be obtained.

In this contribution we will develop an approach for consistent de-
scription of kinetic and hydrodynamic processes that are characterized
by non-linear fluctuations and are especially important for the descrip-
tion of non-equilibrium gas-liquid phase transition. In the second sec-
tion we will obtain the non-equilibrium statistical operator for non-
equilibrium state of the system when the parameters of the reduced de-
scription are a non-equilibrium one-particle distribution function and the
distribution function of non-equilibrium nonlinear hydrodynamic vari-
ables. Using this operator we construct the kinetic equations for the non-
equilibrium single, double, s-particle distribution functions which take
into account nonlinear hydrodynamic fluctuations, for which the non-
equilibrium distribution function satisfies a generalized Fokker-Planck
equation. In the third section, we will consider one of the ways to cal-
culate the structural distribution function of hydrodynamic collective
variables and their hydrodynamic velocities (in higher than Gaussian ap-
proximation), which enter the generalized Fokker-Planck equation for the
non-equilibrium distribution function of hydrodynamic collective vari-
ables.
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2. Non-equilibrium distribution function

For a consistent description of kinetic and hydrodynamic fluctuations in
a classical one-component fluid it is necessary to select the description
parameters for one-particle and collective processes. As these param-
eters we choose the non-equilibrium one-particle distribution function
fi(z;t) = (R1(z))t and distribution function of hydrodynamic variables
f(a;t) = (6(a — a))*. Here the phase function

N N
ai(x) =Y 6(x—x;) =Y 6(r—r;)5(p — p;) (2.1)

Jj=

j=1 1

is the microscopic particle number density. z; = (rj, p;) is the set of
phase variables (coordinates and momentums), N is the total number of
particles in a volume V. A microscopic phase distribution of hydrody-
namic variables is given by

m=1

3
fla)y=6(a—a) =[] I 6(ame— am), (2.2)
k

where a1x = Nk, Gox = Jk, a3k = €k are the Fourier components of the
densities of particle number, momentum and energy:

N N
Nk = Ze*ik”, Je = ije*ik”, (2.3)

7j=1 Jj=1
N 2 N
N b 1 —ik
=) (5545 D @lmyhle,
j=1 I#j=1

and amk = (nk, Jk, k) are the corresponding collective variables. ®(|r;;])
®(|r; — r;|) is the pair interaction potential between particles. The av-
erage values (f;(z))! and (6(a — a))! are calculated by means of the
non-equilibrium N-particle distribution function o(xV;t), that satisfies
the Liouville equation. In line with the idea of reduced description of
non-equilibrium states this function is the functional

o(x™Nit) = o(..., filz;t), fla;t),...). (2.4)

In order to find a non-equilibrium distribution function o(x™V;t) we
use Zubarev’s method [38[39)41], in which a general solution of Liouville
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equation taking into account a projection procedure can be presented in
the form:

¢
o(z™;t) = gy (zN5t) — / dt'ee(t/_t)Tq(t, (1 — Py(t"))iLyog(z™; 1),

—00
(2.5)
where € — +0 after thermodynamic limiting transition. The source se-
lects the retarded solutions of Liouville equation with operator iLy.
Ty(t,t') = exp(— f; dt'(1 — P,(¢'))iLy) is the generalized time evolu-
tion operator taking into account Kawasaki-Gunton projection P,(t').
The structure of P,(t') depends on the quasi-equilibrium distribution
function g,(z™;t), which in method by Zubarev is determined from ex-
tremum of the information entropy at simultaneous conservation of nor-
malization condition
(dz)N  (dx1, ...,dxN)

[ rwea¥in) =1, ary = o 100N g,
(2.6)

and the fact that the parameters of the reduced description, f1(z;t) and
f(a;t) are fixed. Then quasi-equilibrium distribution function can be
written as

0qg(z™;t) = exp { — ®(t) — /d:m(x;t)ﬁl (x) — /daF(a; t)f(a)}, (2.7)

where da = {dny, dJx, dex}. The Massieu-Planck functional ®(t) is de-
termined from the normalization condition for the quasi-equilibrium dis-
tribution function

D(t) zln/dI‘N exp{ —/d:m(x;t)ﬁl(:v) —/daF(a;t)f(a)}.

The functions y(z;t) and F(a;t) are the Lagrange multipliers and are
determined from the consistency conditions:

filast) = (i (2))" = ((@))g, (2.8)

flast) = (3(a —a))' = (3(a — a))y,
where (...)! = [dly...o(z";t) and (...)! = [dTn...0q(x";t). To
find the explicit form of non-equilibrium distribution function o(x'V;t)

we exclude the factor F(a;t) in quasi-equilibrium distribution function
and thereafter, by means of consistency conditions ([2.8]), we have

Qq(:Z?N;t) kin(xN;t) f(a;t) (29)

~ G W(a;t)

a=a

ICMP-14-05E 5

Here

W(a;t) = /dl"Ne_q’km(t)_fdmwtml(w)f(a) (2.10)

_ / dT 0 (25 1) f(a)

is the structure distribution function of hydrodynamic variables, which
could be also considered as a Jacobian for transition from f (a) into
space of collective variables ny, Jx, ex averaged with the "kinetic" quasi-
equilibrium distribution function

ok (@) = exp { — P (t) — / day(z;t)hn (z) }, (2.11)
ok () = In / dly exp { — / dzy(z;t)in () }.
Here the entropy
S(t) = —(Ingg(z™; 1))} (2.12)

— (1) +/dm(a¢;t)<ﬁ1(x)>t +/daf(“?t> In v{/(&tt))

corresponds to the quasi-equilibrium distribution (2.9]). In combination
with the self-consistency conditions (2.8)), it can be considered as entropy
of non-equilibrium state. In accordance with (ZH]), in order to obtain
the explicit form of non-equilibrium distribution function, it is necessary
to disclose the action of Liouville operator on g,(z";t) and action of
the Kawasaki-Gunton projection operator, which in our case has the
following structure according to (Z.9):

Pq(f)g’=Qq(wN;t)/dFNQ'+/d$%
x(/dPNﬁl(x)g’ - <ﬁ1(:v)>t/szvg’)
+f da%iﬁ? e ([ i@ = pao) [ arve)

W (a;t)

Dog(zN5t) flast) dInW (a;t)
+/dx/da (L) Wait) O (2))*

(2.13)

x(/der(:c)g’ - (ﬁl(x)>t/dI‘Ng’).
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Next, we consider the action of Liouville operator on quasi-equilibrium
distribution function (Z.9)):

iLNQq(xN;t) = —/dwv(m;t)ﬁl (x)gq(xN;t) (2.14)
e R !

where iy () = iLy#y(x). Having used thereafter the relation
il f(a) = iLNf(nkaJkagk)
9 4 \:
—Z [—f a)ik + =— 8.] f(a )Jk+— (a)&k},

Kk Oex

where ﬁk = 1L N7y, jk = iLNjk, ék = 1L Nék, the last expression in
2I4) can be rewritten in following form:

) a;t in .0 a;t
|:ZLN V{/((a;t)) G_J g]; (zNit) = /daZW(a;t) [nka—mVJ[c/((a;t))
+jk£ f(( >)+é a(z f(fatt))}gL(xN;t). (2.15)

Here we introduced new quasi-equilibrium distribution function oy, (zV, a; t)
with the microscopic distribution of large-scale collective variables

or (@, a;t) = o (x N;t)Wf ((;)t). (2.16)

This quasi-equilibrium distribution function is connected with g, (z™V;t)
by the relation

04(z™V5t) = /daf(a;t)gL(:vN,a;t) (2.17)
and is obviously normalized to unity
/dPNQL(UCN,G;f) =1. (2.18)

Using then the relation (2I6]), the average values with quasi-equilibrium
distribution is convenient to represent in following form:

(- )h :/da<...)th(a;t), (...)% :/dI‘N...QL(xN,a;t). (2.19)
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Now in accordance with (ZI5) and ([2ZI6) we can rewrite the action of
the Liouville operator on g,(xV;t) as follows

iLnog(z™ 5t /da/d:m (z; )01 (x)or (2N, ast) f(ast)  (2.20)
a0 flat) 50 flat)
+/da¥W(a,t){ Wia )—i—Jk 93 W(a )
+"‘a§ I/JIC/'((a 3)}9 (", ait).

Substituting this expression into (2.1, one obtains for non-equilibrium
distribution function the following result:

oz 1) :/daf(a;t)gL(:er,a;t) (2.21)
/da/dw/ at'e 0T, (¢, ) (1 - Py(t))
><n1( Jor (@™, a;t) f(a; t")y(w; 1)
o o e s )
I, AN A3 N S A G )}QL(xNva;t/)'

AT W (a ) " Ko W(art)
and the corresponding generalized transport equations:
0 P 0 , 0 , 0 0 ‘.
|+ = =] falast) - /d:z: S 0(r 1)) [% - 6—1),}92(:1:,1: 1)
~ [ [ aa / 4t =Dy (0,2 a1, 8) f(a )y (' )

t
- E /da/ dt/eé(tlft){gbnj(:zr,k,a;t,t/) . ﬂ (2.22)
k —o0 a']k

9 } f(a;t)

+¢n5(a:katt)ak W)’
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% (ast) = zk: {ainkvn,k(a;t) (2.23)

X¢in(z', k,a,a'; tt)f(at)’y(a: t')
_Zagk/da’ /da/ dt/e<(t' =1
Xpen (2, k,a,a’;t, ) fa;t")y(a'; 1)
+Z/da / de e t_t) 8 ¢Ja(k a0,d5t, ) %V{/((Cs;tt/’))

+Z/da/ dt'ect' =) —(bag(k q,a,ad; tt)(?(zq f(( t’))

/ 0 0
z : I 1 e(t'—t) L /. AV
—I—kq/da /_Oodte {aJk Q/)Js(kvq,avaatvt)agq

0 } fla;t))
3.] Wa;t')

The generalized transport equations (222), ([223) include the quasi-
equilibrium binary distribution function of particles go(z, z’';t) :

g2(w,a'5t) = (Ga(x,2"))g = (fu ()i (2'))g (2.24)
= /dI‘N_ggq(xN;t) = /dagQL(:C,:v';a;t)f(a;t),

¢€](k q,a,a’;t,t') -

where

g (x, 2’ a;t) = /dl—‘N—sz(xN;a;t)

is the binary quasi-equilibrium distribution function of large-scale collec-
tive variables. The generalized transport kernels ¢og (o, 8 = {n,j,€}),
that describe non-Markovian kinetic and hydrodynamic processes, are
non-equilibrium correlation functions of generalized fluxes I, Ig:

Gap(t,t') = (I () Ty(t,t) ()Y, (2.25)

I(z;t) = (1= P(t))in (), (2.26)
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L(kit) = (1— P(t)d, (2.27)
I.(k;t) = (1 — P(t))éx. (2.28)

Here P(t) is the generalized Mori operator related to Kawasaki-Gunton
projection operator P,(t) by following relation

Py(t)a(x)oq(z;t) = 0q(a™ ;1) P(t)a(x).

It should be emphasized that in (Z25]) the averages are calculated with
distribution function oz (2", a;t) I9), so that the transport kernels are
some functions of collective variables ax. In equation ([2:23)) the functions
(called hydrodynamic velocities) vy, x(a;t), v;x(a;t), ve k(a;t) represent
the fluxes in the space of collective variables and are defined as:

onacast) = [ dUinon ™, ait) = (in.
vik(at) = /dl“Njk@L(:vN,a;t) = (J)%, (2.29)

vex(ast) = /dFNékQL(wNaa;t) = (¢}

The presented system of transport equations gives consistent descrip-
tion of kinetic and hydrodynamic processes of classical fluids which take
into account long-living fluctuations.

The system of transport equations (Z.22)), (Z23) is a not closed due
to Lagrange parameter y(x;t), which is determined from the correspond-
ing self-consistent conditions. From the kinetic processes standpoint, we
must supplement this system of transport equations with the kinetic
equation fa(x,a’;t), and hence for fq(zq...x5;t), s < N:

0
gfg((b, 2'5t) +ilofo(x, 2’ t) (2.30)
— / da" {iL(z,z") +iL(2',2")} fa(x, 2, 2”5 ¢)

= Lol 'it) = [ A L) LG VA S (a5
¢
t [ar [aa [ dret D06, o ait. ) flat ")
t
—Z/da/ dt’eé(tlft){gbgj(:zr,x’,k,a;t,t’) . ﬂ
* S OJx

0
/ gl
+¢GE(I5I akva’atvt)agk}
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0

Efs(xl...:vs;t)—i—iLsfs(:vl...:Cs;t) (2.31)

— Z / dzsi1iL(zj, 2s11) fsr1(21
J

T, Tst1;t)

=1L Afs(xq T, Tst1;t)

ST t) — Z/dIS+1iL(xj,IS+1)AfS+1(x1
J
t
—i—/d:v”/da/ dt’eé(tbt)qﬁgsn(x,x’,:C”,a;t,t’)f(a;t’)w(:v”;t’)

ot 0

9 } fla;t')

+ ¢c,e(z, 2’ Kk, a;t, t)ask W@t

where

Afa(z,2';t) = faz,2';t) — ga(z, 25 1),
Afs(xy ... xgt) = fo(r. .. 255t) — gs(T1 ... 255 1).

In Eq.([Z30) the two-particle Liouville operator
iLy = iLo(z) +iLo(x") + iL(x, )

was introduced. It contains one-particle operator

. p 0 B
iLo@) = 2. = o= {r.p},
and also a potential part
0 , 0 0

Accordingly, in Eq.(231), iLs is the s-particle Liouville operator, and

) = [ daghor

gSL(:vl S Tgiazt) = /dFNés(xl

gs(x1 .. 253 t) = (Gy(21 .z a;t) fast),

where

cxg)or(xN;a;t)
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is the s-particle quasi-equilibrium distribution function of large-scale
variables and Gy (2°) = iy (21)....71 ().

Thus we obtained a system of equations for non-equilibrium single,
double, s-particle distribution functions which take into account nonlin-
ear hydrodynamic fluctuations.

We now discuss the equation (Z23) that is of Fokker-Planck type
one for non-equilibrium distribution function of collective variables which
take into account the kinetic processes. The transport kernel in this equa-
tion ¢n, (2, 2’5 t, ') describes a dissipation of kinetic processes, while the
kernels ¢n; (2, k, a;t, ), dne(x, k, 058, 1), djn(x, k, a8, 1), den(z, k, a;t, 1)
describe a dissipation of correlations between kinetic and hydrodynamic
processes. To uncover more detailed a structure of transport kernels
Onn (@527, a58,1), don(z; 2", 2", a; t,t') we consider action of Liouville op-
erator on 71 (z) and G(z, z'):

o 0 1, )
iLyin(z) = “or EJ(IUP) + 5= op -F(r,p), (2.32)
. A ’ 6 1 N A 2 ~ 6 1 oy /
iLNG(7,2") = o EJ(IEP)M(ZC ) — nl(iﬁ)@ : EJ(T ,P’)
0 - R o .,
—l—% F(r,p)ai(2') + nl(x)a—p/ -F(r',p), (2.33)
where
j(r,p) =Y p;d(r—r;)d(p — p;) (2.34)

is the microscopic density of momentum vector in coordinate-momentum
space,
Z ar; O(|rj —ri])o(r —r;)0(p — p;) (2.35)
I#j
is the microscopic density of force vector in coordinate-momentum space.

Taking into account equations ([2.32)-(2.35), for the kinetic transport
kernels, we obtain:

0 0
Gnn(zT; 2 ast,t') = — [5 -Djj(z, 2’ a;t,t') - a (2.36)
0 ;o 0
~op -Dpj(z,z' a5 t,t") - o
0 0 0

0
'DFF(ZC,ZCI,G/;t,tI) R E

o /
—— - Djp(z, 2’ a;t,t) - =— + op

or op’ %
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where

Djj(x,a’,a:t,t) = /dFNj(I)Tq(t,t')(l - P()j(a")pr(a"; 1),

Drpp(z, 2 a;t,t') = / AU NF ()T, (¢, ') (1 — P )F () pr (a5 t)

are the generalized diffusion and the particle friction coefficients in the
coordinate-momentum space. Moreover,

/dp/dp'Djj(:v,:v';t,t') = Dj;(r,r';t,t"),

/dp/dp'DFF(:v,:v';t,t') = Dpp(r,v';t,t")

are the generalized coefficients of diffusion and friction. Similarly, we
obtain the expression for the transport kernel ¢g, (x; 2, z";t,t'):

don(z; 2 2" ast,t) = — [% Djjn(z, 2" 2" a;t,t') - % (2.37)
+§ “Djnj(z, 2’ 2" a;t,t") - 8(3”
—% - Dpjn(z, 2’ 2" a;t,t') - % - % Dppj(z, 2’ 2" a;t,t') - 8(3”
—g Djpp(z,2’ 2" a;t,t') - % - % “Djpp(z,2’ 2" a;t,t') - %

9 ) 9
+% . DFFn(I;I/;INva’;tvt/) : a_p/ + % : DF’n.F(I;I/v'IHva’;t?t/) ! ap/1:|7

It is remarkable that expression
t ’
/dw'/da/ dt' e =D g, (z, 2 ast, ) fla; t)y(a's 1)
in equation (2.23) with (236) is the generalized collision integral of

Fokker-Planck type in the coordinate-momentum space. That is, tak-
ing into account (2:23) and (236]), the kinetic equation ([222) can be
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written as follows:

{at-i-—— f1 x;t) /d:v /da— (v =) (2.38)
[ 8p}92<x o', a;t)f(a;t) =

/dx /da/ dt’ect' =1

= ,7(55 t") fla;t)

e — 8 8
/d:z: /da/ dt’ s’ t{a Dpj(ar,x’,a;t,t’)-g

D”(xx a;t,t’) -

0 0 b
“l‘a DJF(ZZ?ZZ? att) %—%'DFF(x,x,Q,t,t) a7
t
, 0
r.qt AN /1 e(t'—t) ) . N .
xy(z';t") f(a;t") ;/da/mdte {(bm(a:,k,a,t,t) 73,
9\ fla;t')
—i—gbns(:z:katt)agk}w(a;t/).

In the equation ([@223) the quantities ¢;;(k,q,q,a’;t,t'),
dje(k,q,a,a’;t,t"), ¢ (k,q,a,a’;t,t"), dee(k,q,a,a’;t,t’) correspond to
the dissipative processes connected with the correlations between vis-
cous and heat hydrodynamic processes. The set of equations (2:22)),
223), 30), [Z31) allows two limiting cases. First, if the description of
non-equilibrium processes does not take into account nonlinear hydro-
dynamic fluctuations, we will obtain generalized kinetic equation for the
non-equilibrium distribution function of the particles [43]:

[2+P a}fl(m) /d:v—fb(lr—rl) [6

0
; 2 - D pinain

z/d:v' / dt'e D (x, a5t )y (25 ). (2.39)

Second, if we do not take into account kinetic processes then we will ob-
tain generalized (non-Markov) Fokker-Planck equation for non-equilibr-
ium distribution function of collective variables, which can be obtained
by the method of Zwanzig projection operators or by the method of




14 IIpenpunt

Zubarev non-equilibrium statistical operator [43]:
0 0
' L o wlast 2.4
= flait) = ;{ankv x(ait) (2:40)

P 0
+Wk . Vj7k(a7 t) + 8—61(1)8,1((@7 t)}f(% t)

t
D 9 fla;t)
_ / 1oet'—t) 9 )
kZ/da /dte Al ~¢ji(k,q,a,a’;t,t') - DT W (@ t)
_ 9 [flast)
d dtrett—0 9 - (k ot ’
kz/ a/ el ) 5

+Z/da/dt/et7t

+ a—Ek(bEJ(k, q, a, a/;ta t/) '

0
(bjs(k q,a, a/; ta t/)a_&'q

0 } flast)
0TI W(a;t))’

The hard problem for analyzing of the transport equations (222)),
223)) and transport kernels ([2.23)) is calculation of structure function
W (a;t) of collective variables and of the hydrodynamic velocities vy, k (a; t),

vik(a;t), vex(a;t).

3. Calculation of structure function W(a;t) and hy-
drodynamical velocities v x(a;t)

In the Kawasaki theory [44] of non-linear fluctuations, the structure func-
tion is approximated by a gaussian dependence on collective variables.
In this case, as it can be seen, the hydrodynamic velocities v; k(a;t),
l =n,j, e are the linear function of a. Other approach for calculation of
hydrodynamical velocities v; k(a;t) was proposed on the basis of local
thermodynamics [43]. The resulting expressions are valid obviously at
low frequencies and for small values of the wave vector, when the ratios
of the local thermodynamics are valid. Structure function W(a;t) and
hydrodynamical velocities v k(a;t) in a case of study of hydrodynamic
fluctuations were calculated in [45,47] using the method of collective
variables [46]. The basic idea of this approach is that the structure func-
tion W(a;t) and hydrodynamic velocities v k(a;t) can be calculated in
approximations higher than Gaussian. Next, we apply the method of
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collective variables [45H47] for calculating the structure function W(a;t)
and hydrodynamic velocities vy k(a; ).

First, we calculate the structure function W (a;t) for collective vari-
ables. To do this, we use the integral representation for §-functions:

fla) = /dw exp{ - inka(dhk - al)k)}, l=n,j,e. (3.1)

I,k

Next, using a cumulant expansion [47] for W (a;t) one obtains:

Wiait) = [ dtwe™(@5t)f(a) (3.2)
= /dw exp{ — T Zwl,kdl,k
1,k
2
™ Iy,l
5 DS (K, ko; t)Wll,klwlg,kg} exp { > Dn(w; f)}7
1,02 ki,ko n>3
where
e = ark — (@) hins dw = [ [ dofsedewiy,
1,k
Wik = W] — W}, Wi,—k = wzk,
D, (w;t) = zmlh kg, .. ks t) (3.3)
coln K1y
lelykl c W, ks
ML (et K 8) = (s - 1,10, ) (3.4)

are the non-equilibrium cumulant averages in approximations of the n-
order, which are calculated using distribution " (zV;t) @II). We
present the structure function Wi(a;t) for further calculations in fol-
lowing form:

W(ast) = /dw exp{ - inwlﬂkELLk (3.5)

Lk

2
_% 0> G (ka kai B, g, Wi e }

ll;l2 ki,ko

1
(1+B+ B4 'B3 '+EBH+"')’

3!
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where B = > . D,(w;t). If in series of exponent (B.5), namely,

eXnzs Pn(@it) " one retains only the first term equal to unity, one will
obtain the Gaussian approximation for W(a;t):

WY (a;t) = /dw exp{inwhkdl’k (3.6)

I,k

2
™
—5 D D I (ks ), ey s ko

l1,l2 k1,ko

where 9.7&;712 (k1, ko;t) are the matrix elements of non-equilibrium corre-
lation functions:

(AR5 (A (RE)4
mQ(khk?;t) = <J >kzn <J'A]>zzn <Jé>zzn ) (37)
<é >k1n <é']>kzn <éé>gzn (ki1,k2)

and the non-equilibrium cumulant average

(M1 g = (PP i — (Mae)him (At} i - (3.8)

For integrating over dw in ([3.3]) we should transform the quadratic form
in exponential expression into a diagonal form with respect to w; k. To
this end it is necessary to find the eigenvalues of the matrix (3.7) by
solving the equation

det| My (k1 kost) — E(ky, kost)| = 0,

( ,ko; ) is the diagonal matrix. Further, obtained eigenvalues E;(k; t),

I=1,...,5 of the expression (B0 are as follows:
WY (a;t) = / d detW exp{ — Ty ancii (3.9)
1k

2
_ % Z Z E;(k; t)wlk(:)l,fk}v
Ik

where new variables a;x, Wik are connected with the old variables by

ratio:
3
ank = E AkWin, wix = E WimWmk
l m=1
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w11 ... Wi1s
and wy,,, are matrix elements W = . Integrand in B9 is
Ws1 Ws5 | (1)
a quadratic function W,k and after integrating over dw,x we will obtain

following structural function in Gaussian approximation W (a;t):

w¢ (a;t) —exp{ — —ZE (k; t)aa, k} (3.10)
x exp { — §Zln T detE(k;t)}exp{Zln detW(k;t)},
k k

or through variables ax:

1

WG(a;t) exp{ > Zk k t) alkal k} (3.11)

where

= Z wu B (ks ),
l/

Z(t)=exp{ - %Zln T detE(k;t)}exp{Zln detW(k;t)}.
k k

The structure function W (a;t) gives a possibility to calculate (B.3) in
higher approximations over Gaussian moments [47]:

W(a;t) = W a;t)exp { Y _(Dnla;t))c}, (3.12)
n>3

where one presents <Dn(a; t))¢ approximately as:

(Ds(a;t))e = (Ds(a;t))a,
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" 1 o
(im)™ dau, k, ---0d1, k,

W ast).

OMLiobn (ky, ..., ky,;t) are the renormalized non-equilibrium cumulant
averages of order n for the variables aj. In expression ([B.I2)) the sum-
mands are with only even degrees over a since all odd Gaussian moments
vanish.

The method of calculation of the structure function W(a;t) can be
applied for approximate calculations of hydrodynamic velocities vy x (a; t).
We present general formula of velocities consistent with (2:29) in follow-
ing form:

uk(a;t) = /dFNal kam( ;t)f(a)

and introduce function W(a, A;t):
W(a, \jt) = /dFN o™i B Akdnie ghin (N ) (),

so that

InWi(a, \; t)|.

3.13
A a0 (3.13)

v x(ast) =

O(—imix)

We calculate the function W (a, A;t) using the preliminary results of the
calculation of the structural function W (a;t), and rewrite W(a, A;t) as

W(a, \;t) = /dFN/dw exp{ — in)\lﬂkéLLk} (3.14)
Lk
X exp{ — iﬂ'Zwl’k(dlyk — alyk)}g];m( N, t).

Lk

Now we carry out an averaging in (314 with ka( N 1) using following
cumulant expansion:

W(a, /\;t) = /dw exp{ - iwzwl,kdl,k (3.15)

1k

+ 3 Dalwst) + Du(Xit) + Dafw, 1) },

n>1
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where

D, (w;t) = ﬂ Z Z Sﬁgl" (k1,. . knst)wi, kg - - - Wi, ks

Dn(Ajt) = SN etk K DA e - A s

Dy(w, \st) = S> 0 Pk, k)

MLt (K, K ) = (s - - G k) K

Mt (kg K t) = <dll,k17--- b Jen Vi

mg)ll)m)ln (k17 P t) = n[(n - ]) + (] —n+ 1)5l17~~~,l7171]
~ ~ I3 A t,c

X <al17k17 s Al kg s Ay K g1 s aln7kn>km'

First, we consider a Gaussian approximation for W(a, \; t), namely we
leave in the exponent of an integrand only the summands with n = 2
and linear over A\; k:

WG(CL, A t) = /dw exp {’L'ﬂ' Zwl_’kalyk — in(éLl,kﬁanl,k (316)
Lk Ik

2
s
N 7 Z Z ml?l.h (kla kQ; t)wh-,klwlz,kz

1,02 ki,ko
w2 (2)14,1
1,02 .
- 7 E E 9ﬁ2 (k17k27t)wl17k1)\l2;k2}'
l1,l2 k1,ko

Then, transforming this expression in the exponent to diagonal quadratic
form over variables wj k, similarly as for W (a;t), after integrating with
respect to the new variables &; ik, one obtains:

VVG((L7 At) = /dw exp{ —am Z<él,k>§cm)‘l,k (3.17)

Ik

_%ZEl L k t blkbl k——Zhlﬂ'detE(k t)
I,k

+ Z In detW (k; t) },
k
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where

bk = Zwlj {aj,k + — Zgﬁ (2)3.7° (k t))\J k
J

and wj, mtéz)j’j/(k;t) and Ej(k;t) do not dependent on A, k. Here the

cumulant Smg)j 7' (k; t) has the following structure:

2)4,3" A P P
MG (13 ) = (550,10 ki = (@0 ki (37,1 i (3.18)

Now we calculate the hydrodynamic velocities v x(a;t) in Gaussian ap-
proximation according to the formula (B.I3)) :

In W€ (a, \; t) (3.19)

(050) = 5
ULk ) = 8(—i7T/\l k) A,k=0

= (1) bim — ZE (k; )y VDT (ks ),

Specifically, we consider the particular case when one can divide the
longitudinal and transverse fluctuations for collective variables. That is,
we choose the direction of the wave vector k along the axis of 0z. Thus,
one obtains:

WY (a;t) = /dwexp{iﬂ'Zwl,k&lyk (3.20)

Lk

3
§ § : JLiyla .
mg (kla kQa t)wll,k1w127k2
l1,l2=1ki,ko
7T2 4
sLolasle .
-5 S S ) (k1 ko; )wiy e, Wi ko )

l1,l2=1ki,ko

where Sﬁg’ll’l? (k1,ko;t) are the matrix elements of the non-equilibrium
correlation functions of longitudinal fluctuations

()5 (AN, (RE)4,

0ty (ke Jey: 1) = | (I >z @1l (@le);
(

N kin |

(3.21)

22\ C
55>kz‘n (k1,k2)

and Sﬁé‘ fite (k1,ko;t) are the matrix elements of the non-equilibrium
correlation functions of transverse and transverse-longitudinal fluctua-
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tions
JL > <JLJL>C. <JLJL>C. <JL >
m”’L(kl,kQ;t) _ < kzn Nx [ kin "zt y lkin kzn
O <€Jz >2m <‘€J;_>zm O (k1,k2)

(3.22)
In this case, the hydrodynamic velocities in the Gaussian approximation
are as follows:

ol (ast) = (i + By ) (@i + war Iy + w3102, (ks 1),
v!l]i( t)=( L>kzn (k' t)(wi2nx + w22.j” + w328Kk) Qs (k; ), (3.23)
Wl (@3t) = (Bilin + E3 Lk 0) (i + wasd. + wazdi) 2 (ks 1),

where

(k) = win (i) oy, + war (Thia) e, + wat Exio)

(k1) = winlind | )5e, +wn (I8 +wn@d ke, (3.24)
Q. (ki t) = wis{é )y, + W23<Jl57k>1§m + w33 (Bl 1) i

and wy; are the elements of matrix W(k; t). As one can be see, the hydro-
dynamic velocities (3.23) in the Gaussian approximation for W% (a, ;1)
are the linear functions of collective variables ny, Jx and k. It is re-
markable that if the kinetic processes are not taken into account, then
gf;m( Net) =1 (.0t — (...)o is an averaging over a microscopic
ensemble W(a); in this case the expressions ([823]) for hydrodynamic
velocities transform into the results of previous work [47], in which the
nonlinear hydrodynamic fluctuations in simple fluids were investigated.
The collective variable method [45H47] give a possibility to calculate the
hydrodynamic velocities in approximations higher than the Gaussian
one. In particular, the approximation for the Gaussian, based on (B3]
and hydrodynamic velocities ([3.23)) will be proportional to @; k@ x, and
transport kernels in the Fokker-Planck equation will be the fourth-order
correlation functions over the variables a; k.

It is important that in Gaussian approximation for WG(k; t) and
vP (a;t), the Fokker-Planck equation leads to the transport equations
for (a;x)*, which are similar in structure to the case of the molecular

hydrodynamics, averaged only over or(zV,a;t) = ka( Nt WG((aa) -
The proposed approach makes possible to go beyond the Gaussian ap-
proximation for W (k;¢) and v; k(a;t), and hence to do the same in the
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transport kernels in Foker-Planck equation. This allows us to obtain a
nonlinear equation system for (a; k)" .

It is noteworthy that kinetic equation (Z23]) contains a generalized
integral of Fokker-Planck type with generalized coefficients of diffusion
and particle friction in the phase space (r,p,t). This region of changes
|r| is limited by values |k|,;yldr, that correspond to collective nonlinear

hydrodynamic processes. This means that in regions of limited |k|,;y1 dr
the processes are described by the generalized coefficients of diffusion
and friction, and at small |k|;yldr they are described by generalized vis-
cosity, thermal conductivity and by cross coefficients ¢;; (k, q, a,d’;t,t'),
dje(k,q,a,a’;t, '), ¢k, q,a,a’;t,t"), ¢ (k,q,a,a’;t,t"). Correlations
between these regions are described by cross kernels ¢,;(x,q,a,a’;t,t'),
One(z,q,a,a"; 8, ), pen(k, 2’ a,a'5 8, ), djn(k,2', a,a’;t,t'), that are pre-
sent both in the kinetic equation and in the Fokker-Planck equation. The
calculations of these kernels is very important because they describe the
cross-correlations between kinetic and hydrodynamic processes.

4. Conclusions

Using the method of Zubarev non-equilibrium statistical operator, we
have developed an approach [421[43] for consistent description of kinetic
and hydrodynamic processes, that are characterized by non-linear fluctu-
ations. We have obtained the non-equilibrium statistical operator of non-
equilibrium state of the system when the parameters of the reduced de-
scription are a non-equilibrium one-particle distribution function and the
non-equilibrium distribution function of the non-linear hydrodynamic
variables (densities of mass, momentum and energy). By using this op-
erator we constructed a chain of kinetic equations (of BBGKY type) for
non-equilibrium single, double, s-particle distribution functions of par-
ticles that take into account the nonlinear hydrodynamic fluctuations.
At the same time the non-equilibrium distribution function of hydrody-
namic fluctuations satisfy a generalized Fokker-Planck equation.

We proposed a method to calculate the structural distribution func-
tion of hydrodynamic collective variables and their hydrodynamic veloc-
ities (above Gaussian approximation) contained in a generalized Fokker-
Planck equation for the non-equilibrium distribution function of hydro-
dynamic collective variables. In the future studies, we will go beyond
the Gaussian approximation and carry out approximate calculations of
kinetic transport coefficients for a specific system of interacting particles.
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