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1. Introduction

One of the main tasks of the quantum many-body theory is, on the one
hand, calculation of the observable quantities, which could be measured
directly by experiment, and, on the other hand, providing connections
between the measured quantities and microscopic properties of the sys-
tem. It was first noticed by Kubo [1] that linear transport coeflicients
are expressed in terms of the Fourier transforms of appropriate correla-
tion functions, which relate by spectral relations to the two-time Green’s
functions. Since that time the Green’s function method has been noticed
and extensively developed [2-4].

In his seminal article Kubo |1] had also pointed the difference between
the isothermal and adiabatic (isolated [3]) response of the many-body
system and its connection with the ergodic properties of the system. On
the other hand, later it was noticed by Stevens and Toombs [6] that
spectral relations must be completed by the special treatment of the
additional contribution at zero frequency connected with presence of the
conserved quantities |7, §].

In the Green’s function formalism the issue of ergodicity appears as
a difficulty in the determination of the zero-frequency bosonic propaga-
tors [6-14]. Tt states that the Fourier transform of the Green’s function
contains two terms

Gap(2) = Gap(z) — Capd(2), (1)

where the first ergodic (Kubo) contribution G aB(z) is defined by the
one-particle bosonic or fermionic density of states

- 1 _Be. _Be -
PAB(W)=§ZAjfoj (e7P% Fe 1) 6(@ — &) (2)
i

through the spectral relation

+oo 5
Gan(z) = / @7/);?(;) 3)

and the second nonergodic term represents the zero-frequency anomaly
with Cap = 0 for the fermionic functions and Cap # 0 for the bosonic
one. Here, the upper and lower signs correspond to the bosonic and
fermionic functions, respectively,

Ay = (GIAID (4)
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are matrix elements of operator A between the many-body states with
energy difference
Ejl = &5 — €1, (5)

and
Z =Tre PH = Zefﬁsj (6)
J
is partition function.
For the Matsubara Green’s function the complex argument z is
equal to the bosonic or fermionic Matsubara frequencies z = iwy,
0(z) = BA(iwy) with A(z = 0) = 1 and 0 in other cases, and for the

bosonic functions we have

1 Cae
CAB:E Z e BJAjfoj, (7)

where the summation is only over the many-body states with equal ener-
gies ¢; = € including nonergodic contributions and contributions from
the conserved quantities.

For the retarded and advanced Green’s function one have to replace z
by w+1407T, respectively, and to put §(z) = d(w). Now, the quantity Cap
is not well defined and different tricks are used for its calculation [7-
9, [11-17].

Nevertheless, even now many textbooks on the quantum statistics
and many-body theory do not provide complete discussion of the spectral
relations and special treatment of the zero-frequency anomalies. More-
over, because for the two-time Green’s functions such anomalies exist
only for the bosonic one, no one have even tried to address the prob-
lem of the zero-frequency anomalies for the multi-time fermionic Green’s
functions.

The Kubo’s transport theory |1] is not limited to the linear phenom-
ena and provides results to the arbitrary order of external perturbation.
Resulting multi-time correlation and Green’s functions represents dif-
ferent nonlinear transport phenomena and resonances [18-20]. Besides,
multi-time functions also appear as puzzles in different orders of the
perturbation theories for many-body systems, e.g., the four-time two-
particle one enters the Schwinger-Dyson equation for the one-particle
function [21]. Moreover, cross-sections of the inelastic scattering pro-
cesses can be expressed in terms of the multi-time correlation functions
too |22, 123], e.g., for the electronic inelastic light (Raman) scattering
the nonresonant, mixed, and resonant responses |24, [25] are connected
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with the two-time, three-time, and four-time Matsubara Green’s func-
tions [26-28], respectively, and can be rewritten in terms of the multi-
time correlation functions.

The spectral relations for the multi-time, i.e., three-time Green’s
functions of Kubo type were introduced for the first time by Bonch-
Bruevich [4, 29] before the zero-frequency anomaly problem was noticed.
The spectral relations for the three-time bosonic Matsubara Green’s
functions with taking into account zero-frequency anomalies were consid-
ered by Shvaika [30] and solutions of the reverse problem, i.e., finding of
the spectral densities from the known Green’s functions, were obtained.

In this article we consider the spectral relations for the four-time
fermionic Matsubara Green’s functions with special emphasis on the
zero-frequency anomalies. It will be shown that despite the obvious
statement that there are no zero-frequency anomalies for the separate
fermionic frequencies they could exist for the sums of two. In the next
section we introduce the four-time correlation functions and spectral den-
sities and separate the terms with different time and frequency depen-
dences. In section Bl we consider the four-time Matsubara Green’s func-
tions and show how the zero-frequency anomalies enter and how do they
modify the spectral relations. Connection with the generalized cumu-
lants will be considered too. In section [ we provide the high-frequency
asymptotics and in the last section we conclude.

2. Four-time correlation functions and spectral den-
sities

First of all we must introduce the four-time correlation functions. They
can be defined in a usual way as

Kapep(ti,ta,ta, ta) = (A(t1)B(t2)C(t3)D(t4)), (8)

where operators fl, B, C, and D are of the fermionic type, e.g., ordinary
creation and annihilation operators or operators with a more complex
commutation relations like the Hubbard one, and

(...):%TrefﬁH(...) (9)

is a thermodynamical averaging. Here, we consider only the case of the
equilibrium many-body systems for which correlation functions are time-
shift invariant

Kapep(tista,ts, ta) = Kapep(ti — t it —t,t3 —t,t4 — t). (10)
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Spectral density is defined as its Fourier transform

—+oo —+oo —+oo
1
Inpep(wi,ws, ws,ws) = W/d(tl - f4)/d(t2 - f4)/d(t3 —t4)

x Kapep(ty, ta, ts, tg)el@rtitwstatwstatont) A () 4+ wy + wg + wy).

(11)

Here symbol A(w; + we + w3 + wy) represents the conservation of the
total energy (frequency)

w1 +ws +wz+wg =0, (12)

which follows from the time-shift invariance ([I0). Below, in all equations
we shall keep all four frequencies in order to obtain simple rules for
constructing of different contributions, but one has to keep in mind that
according to (I2) only three of them are independent.

In the case of fermionic operators the spectral density ([I3]) includes
four different contributions

Ispep(wi,we,ws,wa) = [Tapep(wi,wa, ws,wy)

+ 5(&)1 + WQ)IE ﬁ(wh —Wi,Wws, —W3)

+ 0(wa + wg)jZBfCﬁ(Wla —Wws, w3, _wl)

+ 5(&)1 + wg)é(WQ + wg)Im(wl, —Ww1,wr, —wl)}
X A(wy + wa + w3 + wy). (13)

with different frequency dependences

- 1 —Be.

Lapep(wi,wz,ws,wi) = = > e P A B CrypDyid(es + w)
Jlfp
ejFes
EpFEL

X 5(Elf—|—w2)5(5fp—|—w3), (14)
_ 1 e
ap op (Wi, —wi, W, —ws) = — > e P 4B Cryp Db + wi)
Jlfp
Ej=€Ef
Ep?"é‘fl

X 6(efp + w3), (15)
_ 1 _ Be.
IZB_Cﬁ(wl’ —Ww3, w3, —wl) = z Z e 5E]Alelfoprj5(Ejl + wl)
Jlfp
E1=¢€p
ejFes
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X (e p + ws), (16)
= 1 )
Lipop(@n, —wnwr, —wn) = 2 3 e AuBiyCrp Dy;dl(egu +wi).
Jlfp
Ef:E]‘
E|=Ep
(17)

For bosonic operators an additional terms with §(w;) could appear [30].
Expression (I3)) already displays the zero-frequency anomaly — the pres-
ence of terms with J-function factors, which results in different time
dependences of the contributions in correlation function

Kapep(ti,ta,ts, ta) = Kapep(ti,ta, ta, ta) + Kggep(ts — ta,t3 — ta)
+KZchﬁ(t1 —tq,t3 — t2) +Km(t1 — 12+ 13 —t4) (18)
with different asymptotic behavior at large times t; — oo, to —
o0, t3 — oo, and t4 — oo. The first term always goes to zero
Kapcp(ti,ta,ts,ta) — 0, the next two terms K- o5 (t1 —to, t3—t4) and
K5 5ep(ti — ta,t3 — t2) are finite for finite differences [t — t2| < o0,
t3 — t4] < oo and [t — t4] < o0, |t3 — t2| < o0, respectively, and
the last term Km(tl — to + t3 — t4) is finite for finite values of
[t1 — ta + t3 — ta] < 0.
Besides, the total spectral density (I3) as well as each contribution
satisfy the following cyclic permutation identities (w1 +ws + w3 +ws = 0)

w
Iapep(wi,ws,ws,ws) = Ipcpa(wa,ws, ws, wr )e !

= Iopap(ws,wa, wi,w2)eP@192) = Tp 4 po(wy, wi, w2, wz)e P44 (19)

and for the given set of operators A, E, C, and D there are 4! = 24
different correlation functions ([I8]) but only 3! = 6 nonidentical spectral
densities ([I3)).

3. Four-time Matsubara Green’s function

Now we introduce four-time Matsubara Green’s function
KM (11,79, 73,74) = (TA(11)B(72)C(73)D(14)),
Kc4)(7'1,7'2,7'3,7'4) = K§4)(T1 — T, Ty — T, T3 — T, T4 —T). (20)

Due to the imaginary time ordering 7 its Fourier transform contains
4! = 24 terms which can be collected into 3! = 6 contributions

B B B

B
1
K (i, , iwn,, iwn,, iwn, ) = 3 / dr / drs / drs / dry
0

0 0 0
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~ e(iwnl‘r1+iwn2Tz+iwn373+iwn4‘r4)K(4)(7.1 To, T3, T4)
C 3 ) )

= RapoD (1Wny , Wny, Why,s 1Wn, ) + RDOBA(IWn, , Wiy, 1Why , (W, )
+ ﬁACDB (iwnl 3 iwn37 iwnu iw’ﬂg) + ﬁBDCA (iw’ﬂg 3 Z'(4‘)1147 iw’ﬂ;g 3 Z'Wnl)

+ ﬁADBC(iWnl 3 Z'(4‘)1147 iwnga iw’ﬂ;g) + ﬁCBDA (iw’ﬂ;g 3 iwn27 iwnu iwnl )7
21)

where

RKapop(iwn, , lwn,, iWng, iWn,)

1 . . . .
= EZAﬂBlfoPD:Djm(]v Wy, Ly iWny, [, 1Wng s Py iwn,) (22)
jlfp

collects terms connected by the cyclic permutations and iw, = i(2n +
1)7T are fermionic Matsubara frequencies which satisfies constrain

iWn, + twn, + twng + twy, = 0. (23)
In Eq. (22)) the cyclic permutations are included through quantity

(B(jv Why [ Wy, fv 1Wngs P Z.Wn4)

B 1 T2 T3 B T2 T3 T4
= % [e_ﬂaj /dT1 /dTQ/dT3 /dT4 — 6_651 /dTg/dTg/dT4/dT1
0 0 0 0 0 0 0 0
B T3 T4 T1 B T4 1 T2
+€_B€f/d7'3/d7'4/d7'1/d7'2 —G_ﬂap/d7’4/d7'1/d7’2/d7’3‘|
0 0 0 0 0 0 0 0

X expl(€j1+iwn, ) T1+ (€1 f+iwn, ) To+(€ pp+iwng ) T3+ (epj+iwn, ) 4], (24)

which satisfies the obvious relation

SB(.% iw’ﬂlvlu iwnz? f7 iwn?,?pu Z'(“)714) = _S:B(L iwnz? f7 iwn?,?p? iwn4,j, Zw’ﬂl)
(25)

In the general case, when all possible nontrivial sums of Matsubara fre-
quencies are nonzero or when there are no eigenstates with the same
energy values, function (24)) is equal

;B(jv iwnl ’ la iwnw fa Z.("}713 » Dy Z.wn4> = A(iwnl +iwn2 —I—an% +iwn4)

e~ Be;
X

(Elj - iwﬂl)(g.fj - iwﬂl - iwnz)(gpj + iwm)
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e—ﬂaz

(Efl - iwn2)(apl — W, — Z.Wn3)(‘€jl + iwnl)
e Pes

(Eif - iwns)(gjf - iwﬂs - iwn4)(€l.f + iwnz)
e*ﬁEP

- | (26)

(Ejp - iwm)(‘glp — W, — iwnl)(gfp + iw’ﬂ3)

Besides, we must consider several special cases, when we have levels
with the same energy value: case of €; = €¢ # €5, & and iwy, + iwy,, =
—iWng — twp, = 0. Now we have additional contribution

lim lim - lim lim | B, twn, , 1, iwny, [, iwng, D, iwn,)
Ef—E; iwn2~>7iwn1 ’L’u}n2~>7iwnl Ef—E;
. . . . Be=Pei
= A(iWn, + 1Wn, ) A(iWn, 4 iwny) A c; _ _ . (27)
(e1j — iwn, ) (epj — iwny)
Another case of €, = ¢; # ¢;,ef and iwy, + Wy, = —iwp, — Wy, = 0
produces different additional contribution
lim lim — lim lim | P4, iwn,, L, iwn,, [, iwns, D, iwn,)
Ep—rEL iwn4—>—iwn1 iwn4 _)_iwnl Ep—El ’
ﬁe—ﬂaz
= = A(iWn, +iwn, ) A(iWn, +iwn, ) A, ¢, _ - . (28)
(ef1 — twn, ) (€1 — iwn,)
The case of €; = € # €, = ¢ and iwy, = —iwy, = Wy, = —iwy, does

not introduce any additional contributions but it should be considered
separately to avoid double counting. Here

1, eg=¢5 . A
AEjvEf - { 0, gj» Fep AEJ%Ef =1- Asjﬁsf' (29)

Special consideration of such terms is required because in many cases,
e.g., in the numerical calculations, it is very difficult to tune up inde-
pendently the energies of each many body state e; in order to apply
tricks like (27) and (28) and they should be incorporated in the the-
ory explicitly. On the other hand, they correspond to the cases when
consequent action of two fermionic operators returns many-body system
back to the initial state or state with the same energy (true or acciden-
tal degeneracy) and represent the elastic scattering collisions and such
processes determine the difference between the isothermal (e.g., static)
and isolated (Kubo) susceptibilities [5].
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Finally, we get

;B(jv iwnl ) l5 iwnw f5 7;(’unmp’ Z.wn4) = m(]a iwnl 9 lv iwnzv fv iwnaapv iwn4)
Be~Pei

(Elj - iwnl)(gpj - iwns)
ﬁefﬁaz

(651 — iwny ) (€1 — iWn,)

+ Aiwn, + iwn, ) A(iwn, + iwm)Asj_,Ef

— A(iwn, 4 iwn, ) A(iwn, + iwn, ) Ac, o, (30)

or

B iwny, 1y iwny, foiWng, Py iwn,) = Aliwn, +iwn, +iwn, +iwn, )
—Be;
_ _ e J

x A

e A - . : i
EiEf TELED (e1j — iwn, )(€f5 — Wn, — Wny ) (Eps + iWn,)

6—581

(€51 — twny ) (Epr — Twny — twny ) (€51 + twn, )
e Pes
+

(pf — tWny) (€55 — Wny — iwn,)(E1f + iwn,)

e~ Per }
(Ejp - iwm;)(glp - iw’ﬂ4 - iwnl)(gfp + 2wn3)

— A(anl + iwn2 + ’L(A.)n.g + iwn4)Asj,szsl,€p

lermeranla )
X - - - + -
(€15 + iwn, ) (Epj + iwn,) [ €1 — 1wn,  Epj — iWny

g [T el
Epl _iwnz _iwns (Ejl _iwnz ) (Ejl +iwn1 ) (Ejp _iwﬂzx ) (Ejp—’—iwns)

+ A(iwn, + iwn, + iwn, + iwn4)Asj,szsl,sp

{ 1 { e~ Be; e~ Ber ]
x . . . e . .
€ f5—iWn, —iwn, [ (€1 —iwn, )(€1j+iwn,)  (€1f —iwn, ) (€1 +iwn,)

e~ Pe 1 1
+ - - - + -
(j1 +iwn, ) (Ef1 + iwng) |51 — iwn, €51 — iwn,
+ A(iwn, + twn, + iwn, + iwn4)Asj,szsl,sp

e~ P 4 =P 1 1
X - - - + -
(€1 — twn, ) (€1 — tWny) | Eji — Wny  Eji — Wy
Al ) A(i wn)Ae o A pePes
+ + + . . :
(s )i o) Beer Bt i, gy — o)
_ 66—581

= Al ) Alion, + i) Bey e Bey e (et — iwn, ) (€1 — iwn,)
n2 J s
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BAEJ' SEF Asp,sl
(EU - iwnl)(glj - iwns)
— A(iwn, + iwn, ) A(iwn, + iwn,)e 7] (31)

+

[A(iwn, + iwn, ) A(iwn, + iwn, e %

Now we can introduce spectral representations for the four time
fermionic Matsubara functions. For the first term in ([2I) we get (wy =
—Ww1 — Wz — ws3)

Rapop(twn, , iWny , Wy, 1Wn, ) = RABoD (1Wn, , Wny, Wiy, (Why, )

+oo  +oo _
_(wlv —Wi,Wws, _w3)

I_
Al N . N Ali N . N d d ABCD
+BA(iwn, +iwny ) A (fwn, Hiw 4)/ wl/ w3 (o1 — fom Y (@s — o)

+oo 4oo  _
s I ) T _
—ﬁA(iwm—l—in)A(iwn3+iwn2)/dwl/do.)3 A BC D(w1 w3, W3 wl)e Bwi

(w1 — iwn, ) (ws — twny)
-0 — 00

—+oo =

. . . . Ii(wl —W1, W1 —wl)
A n n A n n d ABCD ) ) )
+BA(lwn, +iwn, ) A(iwn, +iw 4)/ w1 (w1 — i) (w1 — iwn)

— 00
T Emopl )
. . . . ABCD\W1, —W1,W1, —W1) _
—_BA 4 A 4 /d ABCD. ’ ’ 7 ,Bo.q’
BA(iwn, Hiwn, ) A(iwn, +Hiwn, ) | dwr (01 — i (1 — doom) e
— 00

(32)
where
EABCD(iwm,iwm, Wy 1Wn, ) = A(twn, + twn, + iWn, + iwp,)

—+oo +oo +oo
X </dwl/dw2/dw3IABCD(w1,W2,W3,W4)
o0 — 00 — 00

1
X
[(wl — wn, (W1 + wWa — Wy, — 1Wn, ) (—ws + iwn,)

B

B (W2 — iWn, ) (wa + w3 — fwp, — twWny ) (—w1 + iWn, )
e~ Blwitwz)

+

(w3 — iwng ) (W3 + Wy — twpy — twp, ) (—wa + iwy,)

eﬁw4

(wg — dwn, ) (W + w1 — twp, — twp, ) (—ws + iwn,)
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+oo +oo
—/dwl/dngﬁﬁ(wla —Wi, w3, _w3)
—o0 —0o0

1 1 1

X - - - + -
{ (w1 + iwn, ) (w3 + fwp, ) lwl —iwp, w3 — zwnS]
1

W3 —W1 —1Wpy —IWpg

e Buw1 e~ Pws
(W1Fiwn, ) (W1 —iwn, ) (w3tiwn, ) (wz—iwn,)
+oo

/dwl/dw 450 p(Wi, —ws3, w3, —w1)

—pBw1 1 1
X - - - + -
(W1 — iwn, ) (W3 — twp,) | —ws — iwn,  —wi — lwny,

1

1 e 5(001 w%)

+ - - - - — - -

W1 —W3— W, —iWn, | (W1tiwn, ) (w1 —iwn,)  (ws+iwn, )(ws—iwn,)

—+oo

[ derFrnt ) Lret
— | dwi 545 (w1, —w1, w1, —W

1 ABCD 1, 1 1, 1 (wl _ iwnl)(W1 _ an,g)
1 1

) ) | ()

; + ;
W1 + W, w1 + 1wy,

Similar expressions can be written for other five contributions in (2I]).
One can see from ([B2) and (B3) that spectral densities (I4)) contribute
only in the normal components (B3], whereas the spectral densities ([3])—
(@) contribute in the both normal and anomalous one.

3.1. Zero-frequency anomaly and cumulants

It follows from Eq. ([B2) that there are two types of contributions: the
normal one EA BOD (1Wn, , iWn, , iWny, 1wy, ) With all frequencies being dif-
ferent and anomalous one with additional constrains on the frequencies.
Based on this one can rewrite the four-time Green’s function (2I)) in the
form

KW (itwn, ,iwn,  iwng s iwn,) = KW (iwn, , iwn, , iwng, iwn, )
+ BA(iwn, + iwny ) A(iwn, + iwn, ) KABCP (iwy,, , iwn,)
+ BA(iwn, + iwn, ) A(iwn, + iwn, ) KAPB (1w, , iwn,)

ICMP-15-07E 11

+ BA(iwn, + iwn, )A(iwn, + zwm)KAD Bc(zwm ,iWny ) (34)
where
~(4),- . . .
Kg )(zwm,zwnz,zwns,zwm) =
= ﬁABCD (iwnl 5 iwn27 iw’ﬂ37 iwm;) + ﬁDCBA (iwnu iwn37 iw’ﬂg 5 Z'Wnl)
+ RacpB(iWn, , Wny, iWn,, 1Wn,) + RBDCA(IWny s 1Wn, , Wy, 1w, )

+ ﬁADBC (iwnl 9 iwnu iw’ﬂg 3 iwng) + ﬁCBDA(iwnga iw’ﬂg 3 Z'(4‘)7147 iwnl) (35)

collects all normal contributions. The anomalous contribution has the
form

= . . 1 _Be, . .
RAPCD (i, i) = S ¢ P9 g i, )P (i), (36)
EjJZEf

where the quantities

) A By B A
P i) = 30 | Py B (37)

; W1 — €15 w1 + €5

could be considered as an unaveraged matrix elements of the two-time
Green’s function (3]

~ By BirAgs
G i, —Be; JfPfs I 1
ap(iwn) A Z [zwn +e€5f + T

~Z Z e 7% g (itwn). (38)
J

Anomalous term can be represented as a sum of two contributions

l_(fB’CD(iwnl,iwnS) = CNJAB(iwnl)écp(iwns) + KAB CD(zwm yiWns ),

(39)

where the reducible part [product of two two-time Green’s functions ()]
is separated and the irreducible one is equal

— AB,CD, .

Kc,irr (wn, , iwn,) = E [b Ojj Ofp — b( ' " 6Jf5] f
Jifi' f’
E]‘ZEf

X g3 (iwn, )95 (itwny ), (40)




12 IIpenpunt

where

(1) _ 9 _ 1 —Be;
by’ = =B InZ = 7€ (41)
could be considered as a first cumulant (Ursell function) [31433] of the
Boltzmann distribution.
Let us consider the case of the non-degenerate states, when there are
no different states with the same energy. In this case, expression (40])
takes more straight form

KA5OP (i, iwny) = 300 948 (i, )gSP (iwny), (42)
if
where
(1) e
yo _ 0 o, o) obS;
i 0(—Bej) O(—Bey) O(=Pey)  O(—PB¢y)
1 1 1
=015, — b (43)

is the second cumulant of the Boltzmann distribution. Based on this, one
can consider an expression in brackets in ([40) as a generalization of the
cumulant expansions for the case when a degenerate states are present
in the many-body system.

In the many-body theory cumulant contributions appear in a natural
way in the strong coupling approaches [34-40] and in some cases they
are the only contributions which enter an expressions for the dynami-
cal response, e.g., dynamical charge susceptibilities [41l, 42] and cross-
sections of the inelastic light (Raman) and x-ray scattering |26-28] for
the Falicov-Kimball model [|43].

3.2. Analytic continuation and reverse engineering problem

Next, we can perform an analytic continuation from the Matsubara fre-
quencies to the real one and for each term in (B2) we will get different
sets of the branch cuts as for single frequencies

iwn, = wa £i0%, a=1,2,3,4 (44)
as for sums of two frequencies
iwn, +iwn, — wo +wy £i07. (45)

Differences in the analytic properties of each term in ([B2) and, as a
result, in (22)) allow to solve the reverse engineering problem: extracting
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all spectral densities from the single Green’s function. To do this, one
have to extract consequently nonanalyticities at all brunch cuts of type
([#4) and ([@5) but in different order, which will produce a set of equations
for the unknown spectral densities. The procedure is very cumbersome
and will be not presented here, see for the details Ref. [30].

4. High frequency asymptotics

In many applications, e.g., for the correctness checking of analytic ap-
proximations or for the memory consumption limitations for storing of
the high frequency tails in numerical calculations, it is useful to have the
high frequency asymptotics of the four time fermionic Matsubara Green’s
functions. It is obvious that for different directions in the three-frequency
space defined by constrain (23]) one can observe different asymptotic be-
havior and below we shall present results for some cases.

4.1. |iw,| ~ Q, |iw, +iwm| ~Q, Q> E

First of all we consider the most general case when each Matsubara’s
frequency |iw,| ~ Q as well as each nontrivial sum of Matsubara fre-
quencies |iwy, + iwy,| ~ Q with taking into account constrain (23] are
much larger in modulus then possible many-body state energy differ-
ences ) > E = max|e; — g|. The first 1/Q% order terms in the high
frequency expansion of (2I)) using ([B0) are equal

4) /- . . .
K(E )(zwm,zwnz,zwns,zwm) —

{[{4, D}, B, C}) {4, {B, D}],C})

Wy i, ((Wny + iWng)  Wngiwn, (lwn, + iwng)

{[¢,{A, D}], B}) {4, [{B, D}, C1})

Wy i, ((Why + 1Wng ) iWn, Wn, (wn, + iwng)

{B,[{C, D}, A]}) {4, [B,{C, D}]})

Wy Wn, (IWn, + iWny)  1Wa, twn, (W, + twn, )

, (46)

where we have introduced anticommutators { X1, Xo} = X7 X5 + X0 X,
and commutators [X,Y] = XY — Y X of operators, and in the case of
the ordinary fermionic creation and annihilation operators it is equal to
zero (but it is not correct for the Hubbard operators).
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The next 1/92* order contributions are equal

1

twn, (Iwn, + twn, )iwn,

ﬁABCD (lwnl ) iwng 9 Z'(“)n:w Zw’ﬂ4)

" {<[A  HIBCD) | ([AB HICD) <ABC_7[D,H]>} (47)
Wy, Wh, + 1Wn, Wn,
where we have used identity
ey (iA1= (IIA, HIJD). (48)

The presence of different frequency denominators does not allow to col-
lapse the total expression (2I)) in a compact form like (46]).

4.2, |iwn, | ~ E, |iwn| ~ Q, liw, +iwm| ~ Q, Q> F

Next we consider the case of the finite frequency value |iw,,| ~ E. Other
Matsubara frequencies |iw,| ~ Q (n = 2,3,4) as well as each nontrivial
sum of Matsubara frequencies |iw,, + iw,| ~ € are much larger in mod-
ulus then possible energy differences Q2 > E = max|e; — ¢;]. The first
terms in the high frequency expansion of (2I)) using [30) are equal

1
(iwng +iwn, )iwn,
1

— <384, Wn, )+
o +an2)lwn2{ A,pCB(iwny)

SA,B[CD,H](iwm)+3A,BC[D,H](iwn1)}

Wng + twny Wny

{EA,BCD(iwm)'*‘

SA,D[CB,H](iwnl)+3A,DC[B,H](iwn1)

Wng + 1Wno Wy

A,cpB(iwn, )+— . .
Wny + 1Wny Wngo

Sa,BDC, H] (1Wn,) SA BD[C,H] (1Wn, )

Wny + iWng W

T a,BpC (twn, )+

* oty ¢
(fwny —Hwnz TWny

(sz—HwnS lwny
SA,D[BC,H](iwn1)+SA,DB (0, (twn, )

Wny + 1Wny Wy

SA,C[DB,H](WM)+3A,CD[B,H](W7L1)}

{EA pBc (iwn, )+

(twny —|—uung twng

Sa,cBD,H](iwn, ) +3A,CB[D,H] (iwnl)}

- { A,0BD (iwn, )+— - ;
Wny + Wny Wny

(iwny —me Twny

S[BC,H}D,A(—iwnl)+3[B,HJCDA —iwn,; )

BCD,A(—iwny )+

zwnz zwnz +zwn3 Wny + Wy Wy

S[DC,H]B,A(—iwnl)+3[D,H]CBA —iwn,; )

Wy sz —l—uung Wny + iWng Wy

cDB,A(—iwn, )+

Iy
{ peB,A(—iwn, )+
sl T

zwn3 zwn3 -me Wng + Wny Wng
3[BD,H]C,A(—iwn1)+3[B,H]DcA —iwn,; )

Wny + lwny iwn2

{EBDC A(—iwn, )+
zwnz zwnz -me

S[CD,H]B,A(—iwn1)+3[C,H 1DB,A(—iwn, }

SpB,H]C,A(—iWn, ) +3[D,H]Bc A(—iwn,)

DBC,A(—iwn, )+ - - -
Wny + 1Wno TWny

sz zwn4+zwn2 {
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S S SV, EPIEPC I FER ity
twn g (iwng +iwn, ) twny + twny twng
(CDAB) (DABC) (BADC)
wng (IWng + wny )iWn,  twny (IWny + Wny )iwn, Wiy (IwWny + twny )iwn,
(CBAD) (DBAC) (BACD)
twng (IWng + Wny )iwn,  twny (Wi, + Wny )iWng  tWny (Iwny + twn, )iwn,
(CABD) (DCAB) (BCAD)
+ wny (Iwng + fwny )iwn, twny (Iwn, + twng)iwn, twny (IwWngy + twny )iwn,
(CADB) (DACB) (BDAC)
twng (IWng + Wwn, )iwny  twny (twWn, + twn; )iwn, B Wy (wny + dwn, )iwng
(49)
Here we have introduced function
be +oo ( )
e; A4lAly gl i _ pPAX W
SA , X Zw?h Z Z anl - / dwn+( w) iwnl —
— 00
(50)

where pax(w) is fermionic density of states (2) which can be obtained
from the corresponding Green’s functions and

1

n4 (W) = m

is the Fermi distribution function. The spectral representation for func-
tion (B0)) differs from the one for the Matsubara and retarded (advanced)
Green’s functions (B]) by the Fermi factor ny (w) and is similar to the one
for the so-called “half” Green’s functions [44].

One can imagine that first terms in braces in ({@3]) produce contribu-
tions of the order 1/Q? whereas other one are of the order 1/Q3, but it
could be shown that in the case of ordinary creation and annihilation
fermionic operators the total contribution of these terms is of the order
liwn, | /€23, that is of the same order as other terms are.

The cases of |iwn,| ~ E, |iwn,| ~ E, or |iw,,| ~ E can be obtained
from the above expression by the corresponding permutation of operators
and frequencies.

Next we consider the cases of the finite values of the sums of two
Matsubara frequencies.

4.3. |iwn, +iwn,| ~ E, liwy| ~ Q, liw, +iwm| ~Q, Q> F

First we put that only one sum of two frequencies is finite |iwy,, +iwp, |
liwn, + twn,| ~ E, including the case of iwy,, + iwp, = —iwp, — iw,, =
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0. Single Matsubara frequencies |iw,| ~ € as well as other sums of
Matsubara frequencies |iw, + iwn,| ~ Q are much larger in modulus
then possible energy differences Q > E. The first 1/Q? order terms in
the high frequency expansion of (1) using ([3I)) are equal

B, AB (1Wny +iwn, ) n B aB,cD (1wWn, +iwn, )
Wz Wny Wny "Wny

. ) C
+BA (iwn, +Hiwn,) ﬂ

Wiy Wng

—+

Bpa,pc(iwny +iwn, ) . Bpe,Ba(iwn, +Hiwn,) Cpc,BA

5 2 ni 5 ng n . . 5
- - + - - 3 +BA (iwn, +iwn, ) ————
1Wny 1Wng 1Wn, HWn, 1Wn, Wy

Bpa,cD (1Wny+iwn,)  Bep,Ba(twng +iwn,) . . Ccp,BA

_ © n2 1 e 13 L+ BA (iwng +iwn, ) ——2——
1Wny tWn, 1Wng 1Wn, 1Wng 1Wngy

CaB,pc

Wy TWny

(51)

_ |:%DC,AB(ZWn4+ZWn3)+%AB,DC(ZWn1+ZWn2)+6A(iw”l Fiwn,)

Wy Wy Wy Wy

In this expression we have introduced the bosonic “half” Green’s func-
tion |44] using

—+o0
. PY1,Y- (w)
By, v, (iwy) = / dwn_(—w)ﬁ, (52)
where
no(w) = —
TV eBe

is the Bose distribution function, py;,y,(w) is bosonic density of states
@), and C4p is an anomalous contribution defined by ().

The cases of |iwn, + iwng| = |iwn, + iwn,| ~ E or |iw,, + iw,,| =
|iwn, + twn,| ~ E can be obtained from the above expressions by the
appropriate permutation of operators and frequencies.

4.4. |iwn, + iwn,| ~ E, |twn, + twns| ~ E, liw,| ~ Q, |iw, + iwn| ~ Q,
Q> F

The last case which we consider is the case of large frequencies |iw,| ~ 2
but finite sums |iw,, + iwn,| = |iwn, + iwn,| ~ F and |iw,, + iwp,| =
liwn, + iwn,| ~ E (Q > FE). The first 1/Q? order terms in the high
frequency expansion of (2] using (BI) are equal

%CD,AB (anr; +an4 ) + %AB,CD (anl +an2 )

) CaB,cD
Wy Wy Wy Wny

+BA (1wn, +Hiwn, ) - L
Wy Wny

%DA,BC(iwn4 +an1 ) + SBB’C,DA (ang +an,3)
Wy Wny Wy TWn

CBc,pa
Wy TWny

+BA(twn, +iwng )
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B pa,po(iwn, +iwn, ) n Bpc,Ba(iwn, +iwn,)

Wiy Wng

(B ap,cB (iwn, +iwn,)

Wy TWn,

n BB, AD (1Wng +iwn, )

. . C
+BA (it it ) o

Wn "Wy

Wz Wny

+/BA(iw7L3 +iw7lg ) -

Wz Wn |

CcB,AD

Wny W

Ccp,BA
Wy Wny |

Bpa,cD (1wWn, +iwn, ) n Bep,BA(1Wng +iwn, )
Wy WWny Wz Wn,y

+BA(iwn3 +iwn, )

[Bpo,aB(iwn, +iwns) | Bas,po(iwn, +iwn, ) . . Cag,pc |
- M 24 71 22+ BA (iwn, +iwn, ) ————
1Wny 1Wn,y 1Wny T iWny tWn, |
%BC,AD(iwn2+iw7L3)+%AD,BC(7:W7L1 +iwn, )

Wy WWny Wy Wng

Cap,BC
Wn Wy

+

+BA (it +iton,)

B pa,cr(iwn, +iwn, ) n Bep,pA(twn, +iwn,)
Wy TWno Wy TWn,

) . C
FBA(iwng +iwn, ) —o 2P

Wiz Wny

(53)

+

The other cases can be obtained by the appropriate permutation of
operators and frequencies.
The order of magnitude of the terms in high frequency expansion
strongly depends on the way how we increase the frequencies:

1. for the general case of |iw,| ~ Q and |iw, + iw,| ~ Q (Q > F) we
have contributions of the order 1/Q%;

2. for the case when one Matsubara’s frequency, e.g., |iw,,| ~ E, is
finite and all other are large |iw,| ~ Q and |iw, + iwp,| ~ Q we
have contributions of the order 1/Q3;

3. for the case when one or two sums of Matsubara frequencies are fi-
nite we have contributions of the order 1/Q? with additional spikes
when these sums of frequencies are equal to zero.

5. Summary

In conclusion, we have presented a general approach of derivation of the
spectral relations for the four-time fermionic Green’s functions completed
by the consideration of the zero-frequency anomalies. It is known that
for the two-time Green’s functions such anomalies contribute only in the
bosonic functions and does not exist for the fermionic one. Here we have
shown that zero-frequency anomalous terms are present in the spectral
representations for the multi-time fermionic Green’s functions when sum
of any two fermionic Matsubara frequencies is equal to zero.

Equation (2I)) together with [B2) and ([B3) gives spectral representa-
tion of the four-time fermionic Matsubara Green’s function in terms of
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the spectral densities ([4)—(IT). Special consideration of the processes
involving states with the same energy values (the same states or true
or accidental degeneracy) is required in order to get the correct spectral
representations and correct expressions of the anomalous nonergodic con-
tributions, which appear to be connected by Eq. [#0) with the second
cumulants of the Boltzmann distribution function.

An algorithm of analytic continuations for the solution of reverse
engineering problem: extracting of the spectral densities from the known
expressions for four-time Matsubara Green’s functions is described.

In addition, it is shown that high-frequency expansions for the four-
time fermionic Green’s functions demonstrate different asymptotic be-
havior and have different order of magnitude from Q=% to Q=2 for dif-
ferent directions in the frequency space.
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