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AHOTaIJ;iH. Posrsinaerbes Buio3Mminena nactka [lenuinra ge omHopigHe MarHiTae
nosie B € naxusene 1o oci cumerpiil esniekrpoxis. Kyt naxuiy mosinbHuit. 3HaiiaeHe
KAHOHIYHE IIEPETBOPEHHS [0 3MIHHAX Yy SKHX T[aMiJIbTOHIaH € CyMOIO TpPbOX
HE3B’sI3aHUX FAPMOHIYHUX OCIUJISITOPIB. Y IPOCTOPi ImapaMerpiB, 0 KOHTPOJIIOIOTH
auHaMiky (yTpuMyloumii mapaMmerp Kk Ta KBaJpaT CHHyca KyTa Haxuiy ¥g), IO-
OynoBana obsacts crabinbHocTi. Ko kyT Y9 He mepeBuimiye 54 rpajiycu 3apsi
JIOKaJTI30BaHuil BcepeauHi pob6odol Kamepu nacrku. Komm kyT Haxwiay 3-BekTopa B
HabyJle KPUTUYHOIO 3HAYEHHS CIIOCTEPIraeThbCsl PE30HAHC: MArHETPOHHA YaCTOTa CTAE€
PIBHOIO IMKJIOTPOHHIN a akciajbHa TX 060x mepepunrye. [Ipu npoMy opbita 3apsimgy
nepectae OyTu 3aMKHYTOIO. B obsiacTi cTablibHOCTI BUSIBJIEHO HU3KY DPE30HAHTHUX
KPHUBHX, 110 ONKUCYIOTH OOMeXKeHi opOiTH.

B obsiacTi pesiiTUBICTCHKUX €Hepriil cucrema nepecrae OyTu JiHifiHOO. Mu mokazaamn
110 BOHa HeiHTerpoBHa B ceHci JliyBijuis. YcepenHuBIIn 3a MOIOIO 3 HaNOGIIBIIOO
YaCTOTOK OTPUMYEMO JIMHAMIYHY CHCTEMY 3 JIBOMa CTYIIEHSIMU BLIBHOCTI. AHaJI3
nepepiziB [lyankape ycepelHeHUX CUCTEM MOKa3ye 06/1acTh e(peKTUBHOIO yTPUMAaHHS
3apsily BCEPEIUHI MaCTKU.

Penning trap with an inclined magnetic field
Yu. Yaremko, M. Przybylska, A.J. Maciejewski

Abstract. Modified Penning trap with a spatially uniform magnetic field B inclined
with respect to the axis of rotational symmetry of the electrodes is considered. The
inclination angle can be arbitrary. Canonical transformation of phase variables trans-
forming Hamiltonian of considered system into a sum of three uncoupled harmonic
oscillators is found. We determine the region of stability in space of two parameters
controlling the dynamics: the trapping parameter x and the squared sine of the in-
clination angle ¥g. If the angle ¥¢ is smaller than 54 degrees, a charge occupies finite
spatial volume within processing chamber. A rigid hierarchy of trapping frequencies
is broken if B is inclined at the critical angle: the magnetron frequency reaches the
corrected cyclotron frequency while the axial frequency exceeds them. Apart from
this resonance we reveal the family of resonant curves in the region of stability.

In the relativistic regime the system is not linear. We show that it is not integrable in
the Liouville sense. The averaging over the fast variable allows to reduce the system
to two degrees of freedom. An analysis of the Poincaré cross-section of the averaged
systems shows the regions of effective stability of the trap.
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1. Introduction

Cylindrical Penning trap was used in Harvard experiment [I] where the
electron magnetic moment and the fine structure constant have been
measured with unprecedent level of accuracy: fourteen decimal places.
Elimination of possible systematic errors caused by trap imperfections [2]
Sec.3.3-3.5] is one of sources of such extraordinary precision. The other
imperfection is the inherent anharmonicity caused by special relativ-
ity [3, Sec.VII DJ]. Recently [4] quasirelativistic corrections to the trap’s
eigenfrequencies are calculated by means of the perturbation theory de-
veloped in Ref. [5]. In Ref. [6] we study the dynamics of a single charge
in an ideal Penning trap in the relativistic domain. The special relativity
produces the quartic terms in effective potential which are analogous to
those caused by octupolar electrostatic perturbations [§] to the quadru-
ple potential. Because of the axial symmetry, the dynamical system has
two degrees of freedom and it is simply and convenient to use it for
studying non-linear phenomena in classical mechanics. Poincaré sections
describing evolution of phase space reveal quasiperiodic and periodic or-
bits among mainly chaotic motions. If the total energy of a charge is well
outside the realm of special relativity, the Poincaré sections show that
the orbits are periodic (see [6], Fig.11]). This circumstance illustrates that
the relativistic frequency shifts [4] are of true physical meaning.

The other well-studied imperfection is a misalignment of the mag-
netic field 3-vector B [2] Sec.3.4.3], see also [7]. Since the misalignment
is experimentally inevitable, it should be made negligible by means of
a careful design. But even tiny inclination of B from vertical direction
yields shifts of the trap’s eigenfrequencies. Brown and Gabrielse in [3]
calculated these eigenfrequencies solving the characteristic polynomial
under assumption that the inclination angle is very small. Independently
Kretzschmar in [9] determined theses eigenvalues using perturbation the-
ory. In this paper we consider the misalignment not as an undesirable
perturbation, but we incline the magnetic field intentionally. We suppose
that the angle at which the magnetic field slopes to the axis of symmetry
of quadruple potential changes from 0 to 7/2. Our objective is to study
of the particle’s dynamics at regimes which are sensitive to very small
disturbances such as relativistic effects which can not be eliminated by
means of improvement of the geometry of electrodes and so on.

The paper is organized as follows. In Sec. 2 we formulate non-
relativistic Hamiltonian description of dynamics of a charge in the pro-
cessing chamber of a modified Penning trap where B is not parallel to
the axis of rotational symmetry of electrodes. In Sec. 2] we find the
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eigenfrequencies of the system as functions of the trapping parameter
k= 2w?/w? and the squared sine o = sin®9y of the misalignment angle
Jg. In Sec. we define the region of stability in (k, o) plane where
condition of stability of the equation of motion is satisfied. A charged
particle is trapped if the magnetic field slopes to a fixed vertical direc-
tion at the acute angle smaller than specific critical value 9.(k). If the
trapping parameter x is much smaller than 1, the critical angle is asymp-
totically equal to 54 degrees. If the angle of inclination reaches ¥.(k),
the motion becomes unstable. In Sec. Blwe perform the normalization of
Hamiltonian governing the dynamics in the Penning trap with inclined
magnetic field. In new canonical variables the Hamiltonian is the sum of
three uncoupled harmonic oscillators. The main result of Sec. @ are the
Hamilton equations of motion for relativistic particle in the trap with
inclined magnetic field. Their non-integrability is proved in Sec. Bl In
Sec. [6l we normalize quadratic part of the relativistic Hamiltonian and
we reobtain three characteristic frequencies. Under the usual operating
conditions of a Penning trap [IH3] one of frequencies is much greater
than the others and we make averaging over corresponding fast angle
variable. Obtained averaged Hamiltonian with two degrees of freedom is
analyzed by means of the Poincaré sections.

2. Dynamics

In an ideal Penning trap [23] a strong homogeneous magnetic field B is
perfectly aligned along the axis of symmetry of quadruple potential

2 2 2
+
ed(r) = m;“’z (_”3 . i —|—22>, (2.1)

i.e., B = (0,0, B). In this paper we assume the magnetic field is directed
arbitrarily:

eB = muw. (cos ¢g sin Yy, sin ¢ sinJg, cos ) . (2.2)

Here ¥y is the angle between vector B and the axis of symmetry of
potential (21]), i.e., e, = (0,0, 1); ¢ is the angle between the = axis and
the projection of B onto (z,y) plane. The positively defined cyclotron
frequency

c— — B:B, 2.3
we= B (23)

characterizes the intensity of magnetic trapping of a charge e with rest
mass m.
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Behavior of a charged particle moving in this electromagnetic field
is governed by the standard Lorentz force equation. The system of the
second order differential equations can be put into Lagrangian framework

L:Jg@9+f+¢%_eyﬂ+EQqufy (2.4)
Here, r = (z,y,2) is the radius vector of the charged particle in the
rectangular coordinate system with the origin (0, 0, 0) at the saddle point
of electrostatic potential (2I)). The magnetic field is included as the
contraction A;v* where the magnetic vector potential is introduced as

1
A=3Bxr, (2.5)

and v' = 7', We use a natural gauge which yields a vanishing vector
potential for a vanishing magnetic field.

Following Ref. [9], we rotate the coordinate frame till new z axis be
aligned the magnetic field 3-vector ([2:2)):

T cos¢g —singy 0 costly 0 sindg T’
y | = | singg cosgg O 0 1 0 y'
z 0 0 1 —sindg 0 cosvy Z

So, in new coordinate frame the magnetic field 3-vector looks like that
in an ideal Penning trap, i.e. either B’ = (0,0, B) for positive charge, or
B’ = (0,0, —B) for negative one. The “primed” vector potential simplifies

1
eA' = 3Mee (—y',2',0), (2.7)

and Lagrangian (24) takes the form

L= % (:c"2 +y’2 +é’2) —ed(r') + %wc (a'y' —y'a’).

In new coordinates the quadruple potential (2] is more complicated:

2
1
6@($I,y/,zl) _ m;‘)z [_%xﬂ . 5y/2 +ﬁzl2 il (2.8)
3
a = 1-3sin?dy, f=1-— 3 sin® g, v = 3sindgcosty. (2.9)

Constants «, 8 and -y do not depend on angle ¢g.
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It is straightforward to perform the Legendre transformation to de-
rive the Hamiltonian H (r’, p’). To simplify it we introduce dimensionless
canonical variables

a=ymor, p=-——. (2.10)

MW

In terms of these variables the Hamiltonian takes the form H = w.Hs,
where

1 1
Hy, = 5( ?+p§+p§)+§(p1q2—pzth) (2.11)
K « 1 1
+ 3 (—gqf - 5(13 + Bq3 — vq1q3> +3 (i +a3), (2.12)

and k = 2w?/w? is the trapping parameter [2,BLI0]. If « = 8 = 1 and
v = 0 we restore Hamiltonian of an ideal Penning trap.

After rescaling of time 7 = w.t we obtain the “dimensionless” Hamil-
tonian Hy = H/w,

1
Hy = 5xTHx, (2.13)
where xT = (q1, q2,q3,p1,D2,p3) and H is the symmetric 6 x 6 matrix

of coefficients of quadratic form (ZTII)). The corresponding Hamilton’s
equations are linear

dx

prie Ax, where matrix (2.14)
0 i 0 1 00
-3 0 0 0 1 0
0 0 0 0 0 1
A= —1(1 — ar) 0 v 0 10 (2.15)
0 -311-x) 0 -1 0 0
3K 0 -8k 0 0 0

is the product JH of six dimensional symplectic unit matrix J and Hamil-
tonian matrix H.

2.1. Frequencies

Characteristic polynomial det [A — All] of matrix [2I5) takes the form

p(\) = X0+ \* + im (25 — %) oLl (2.16)
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The equilibrium = = 0 of the system of linear equation (2.14) is stable if
and only if all eigenvalues of this polynomial are pure imaginary. Substi-
tuting A = iQ2 where © € R and introducing the variable w = Q2 = — )2
we obtain ) )

w3—w2+1n (26——/{)10——&3:0, (2.17)
see e.g. [3, egs. (2.75)-(2.79)]. According to the Vieta formulae, the sum
of roots wy + we + w3z = 1 while the product of roots wiwsws = /13/32.
Restoring dimensions, we arrive at the so-called “invariance theorem” [3|

Sec. II D]
QF + 03+ QF = w2, (2.18)

which allows to derive the cyclotron frequency from measurable eigen-
frequencies of an imperfect trap where B is not parallel to the axis of
symmetry of electrodes.

Standard substitution w = z+ 1/3 transforms polynomial (2I7) into
reduced cubic 23 4+ a1z + ag = 0 where polynomial coeflicients

(2.19)

are negative real numbers. We are interested in three distinct real and
positive roots which satisfy the condition of stability and yield periodic
orbits. They can be obtained using the cosine and arccosine functions

2k = Acos <1/) + 2§I€> , (2.20)

for £k = 0,1, 2.The amplitude is

2 k)2 .
A = \/<§—§> + rsin? 9y . (2.21)

The argument of cosine function is ¢ = % arccos ¥(k, o) where

1 4 K3
U(k,0) = = (A2 5t §> : (2.22)

Both the amplitude [221) and phase ([2.22) depend on the trapping
parameter s and o = sin® .
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Therefore, the roots of polynomial (2.17) are
wi(k,0) =1/3+ zK_1(kK, 0). (2.23)

In the specific case 0 = 0 (ideal Penning trap) the roots become the
corrected cyclotron frequency wy = 1/2 (1 +v1 - K), magnetron fre-
quency w_ = 1/2 (1 — /1 — k), and axial frequency w, = \/x/2 [3]. The
argument ¥ (k, 0) of arccosine function (Z22) decreases from ¥(0,0) =1
to its minimal value ¥(8/9,0) = —1 and then increases to 1 when the
parameter « rises from 8/9 to 1. For x > 8/9 instead of phase 1 we have
to take ¢’ = 27/3 — 4. Therefore, we have the following correspondence
in intervals x €]0,8/9] and « € [8/9, 1]:

o x€]0,8/9]: wy = w1, w_ = Jws, w, = /W3 ;

e £ €[8/9,1[: wy = w3, w- = /w2, w, = Jwr.

At point (8/9,0) the resonance (2,1, 2) is observed [I1]: wy =2/3, w_ =
1/3, w, = 2/3.

Figure 1: Curves defined by Eq. (Z23) represent changes of squared frequen-
cies when k increases from 0 to 1 for fixed o. Primed numbers denote the
graphs of spectral curves for inclined magnetic field. Continuous curves de-
scribe the spectrum of an ideal Penning trap. Point P indicates the resonance
(2,1,2). The corrected cyclotron frequency decreases (curves 1 and 1’) while
the others, magnetron frequency (curves 2 and 2’) and axial frequency (curves
3 and 3') increase.

If o # 0 the minimal value of argument of arccosine function ¥(x, o)
is larger than —1. To find the extreme curve on the plane (k, o) we equate
to zero the partial derivatives of this function. The equation ¥ /do = 0
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defines the curve at which the function exceeds 1. The equation 0¥ /0k =
0 gives the curve at which the argument of arccosine function takes
minimal value which is smaller than 1. The curve can be expressed in
the form either

() = 10/9—0_\/(10/9—(;) _8(2/3-0)? (2.24)

1—0 1—0 3 1—-0
or

3 23
i) = g5 (1= 7+ 5

oo+ 3T -6 (-

At this minimum the squared cyclotron frequency wi(m,a) and the
squared axial frequency w?(k, o) interrupt (see Fig. []).

(2.25)

2.2. Region of stability

In original variables the electromagnetic field is described by the quadru-
ple potential (2.1)) and magnetic field 3-vector ([2.2]), so it depends on four
parameters (we, w», ¢, Jo). After rotation (2.6) and rescaling of variables
(210), we obtain the dimensionless equations of motion (2I4) depending
on two parameters k and o. Let us define the stability region in (k, o)
space where trap confines a charge.

The region of stability is defined by the condition of stability of the
system of linear equations (ZI4)). To fulfill the condition, the roots ws,
ws, and ws of the spectral polynomial (ZI7T) should be distinct, real and
positive. Thus the Cardano’s discriminant should be positive:

ai a3
D—=_—(20 41
(4 +27>

4 LB (2.26)
=|A3 - [A%? - — + = A A% — 0.
[ ( 27+8>}{ + 27+8 ”
Vieta’s formula gives the second condition:
3
Q = wiws + wiws + wowsz = g (2—30— Zn) > 0. (2.27)

Region in (k,0) space where both the conditions D > 0 and @ > 0 are
fulfilled is

S={(k,0) ER*|0< Kk <1,0<0<0c(r)} (2.28)
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The upper limiting curve is the appropriate root of algebraic equation
D=0

2
o.(k) =Kk~ | A2~ <g - E) ] , where (2.29)
3 2
1 2 An 1 27 .
A, = 3 + 3 cos ((b—i— ?) , O = 3 arccos (1—6,% — 1) . (2.30)

It divide (k, o) space into regions of stability and instability. For a point
inside the deformed triangle with boundary o.(x) and segment [0,2/3]
(see Fig. 2)), the motion of the charge is bounded.

o |

0.8
0.6-
04

02

H;
x

0 0.2 0.4 0.6 0.8

Figure 2: Range of parameters for that necessary conditions (2:26]) and (2:27))
of stability are satisfied is marked in gray. The straight line is defined by the
equality Q = 0 while the curve by D = 0. Curves D = 0 and @ = 0 intersect
in the point (k,0) = (0,2/3). Thus, for Yo > arcsin(1/2/3) ~ 0.95532 rad
= 54.735° the motion is unstable for arbitrary .

3. Normalization of non-relativistic Hamiltonian

In this Section we perform the normalization of Hamiltonian @2IT]).

By this we mean the transformation of canonical variables x! =

ICMP-15-10E 9

(Q1a q2, q37p17p27p3) - yT = (le Q27 Q3; Pl; P27 P3) such that trans-
formed Hamiltonian is the sum of three uncoupled harmonic oscillators.
According to [12], the canonical transformation x = By diagonalizing
matrix H is given by B = CD where

[l I
o[ 8] o)

and columns of matrix C are eigenvectors of the initial matrix (ZI5]) cor-
responding to eigenvalues +i{2;, ¢ = 1,2,3. We look for a real matrix B
satisfying BT JB = J. To fulfil this condition we fix the following order of
eigenvalues (121, —i€,1Q3, —i€21,1Q9, —i23). It is convenient to present
the transformation x = By as the combination of canonical transforma-
tion

et 1 1 1 Atz
wA 1 w41 kAL
p2| = by 2 b 2 bs 2 Az ma| (32)
vk /4 vk /4 vk /4
qs3 c1 C2 c3 AS T3
1 1 1
1—-— 1—=— 1-— WA
P 2b 262 26 LA
Q2| = a E E QQAQ 2| , (33)
Kk/4 Kk/4 Kk/4
, K/ K/ K/ Qs As s
Cc1 C2 C3

and rotations

[z ] - [ singy coSs ¢1 Q1
| ™ | | —cos¢r sing P
[ 2y ] o [ cosge  sings Q2 (3.4)
| ™ | | —sings cosd P | '
[ T3 | o [ Sind)g COS¢3 Qg
L ™3 ] - L —COng)g Sind)g P3 ’
We used the notations
b =k/4+w;, ¢ =pKr/2—w;, (3.5)

where 8 = 1 — 30/2. Phases ¢1, ¢2, and ¢3 are completely arbitrary,
while the squared amplitudes are as follows:

(w1 — BK/2) (w1 + K/4)
D (w1 — wa) (w1 —ws)

42 =
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(BK/2 — wa) (wey + K/4)
Q2(11)1 - w2)(w3 - w2) ’

o _ (Br/2—ws) (ws + K/4)
A3 N Qg(’wl — wg)(w3 — ’wg) ' (36)

A =

Normalized Hamiltonian takes the form:
1 1 1
H=0 (PP +Q7) = 5% (B +Q5) + 5% (P +Q3) . (37)

The determinant of transformation to normal coordinates is the product
of determinants A; and A of the respective 3 x 3 matrices (8.2) and
B3). Straightforward calculations yield

2
Al = AlAQAg’}/%T, AQ = nggggAlAQAg”ygT, (38)
e (= 1) 10, — ) (5= )
_E W2 — W) (W1 — W3 ) (W3 — W2
T o 4 (26 + 1) b1b2b3016203 ’ (39)

We recall that functions 8 and «y are given by Eqs. (2.9). One can directly
check that A = A1A, = 1.

3.1. Limit 9y — 0

Now we study the limit ¢ — 0 of transformation to normal coordinates
B2)-@5). If the angle of inclination of B is very small the phase 1)
slightly differs from that of ideal Penning trap: ¢» = ¢y —J. We expand the
argument of arccosine function (Z.22) in power series of small parameter
o and equate it to the expression

cos [3 (Y9 — 0)] = cos(3tg) (1 — 96%/2) + sin(3¢)36,
K2 (1 — k)
443 7

sinavo) = 77 (5~ ) VAT,

where Ag = A(k,0) := 2/3 — k/2. We truncate the series at 4% term
because sin(3t)y) vanishes at point x = 8/9 where resonance (2,1,2) is
observed. Solving the quadratic polynomial we obtain

o R R N
5 = 3{tan(3w0) [tan (3%0) A3 (Cos(;),%) 2Ao)

3K202 1 5 1/2
AF <cos<3wo) _ZAO)] } (310

cos(31h) =1 —
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The expression is valid for any fixed 0 < k < 1.
If k differs from 8/9 substantially we restrict ourselves to linear ap-
proximations in small parameter o:

_ RO :‘i(l—ﬁ)
ST v (” 242 ) (3.11)

Similarly we develop the matrices (3.2) and (B.3]). Calculations are cum-
bersome but trivial and we do not bother with details. Passing to the
limit ¢ — 0 we obtain the following canonical transformation

® 1L 1
v2Q V20
D2 == —\/% \/% 0 T2 ) (312)
1
q3 0 0 Wy T3
b1 Q Q 0 T
17 - 1 2 ( )
Q@ | =| — —— 0 z2 |, 3.13
\/39 \/39

b3 VW2 3

which normalizes the Hamiltonian governing dynamics in an ideal Pen-
ning trap. We denote 2 = /1 — k/2.

If & slightly differs from 8/9 we expand the function ([Z24]) in power
series of small parameter ¢ and truncate it at the second order term
o?. We insert it into Eq. ([BI0). Applying the resulting expression in
matrices (8:2) and ([B3]) and passing to the limit ¢ — 0 we obtain the
canonical transformation

q1 V6 Ve ][ =
SRR
- 6 V3 6
Do -y ¥ -3 m |, (3.14)
V3, V3
Las ] L2 o 1L s
;] [ V6 VB V6 |[m ]
12 G 12
e |=| ¥ 3 B |||, (3.15)
VB, V3
L P3| L~ 3 3 1 LT

which normalizes the Hamiltonian governing dynamics in an ideal Pen-
ning trap at the resonance (2,1, 2).
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3.2. Resonance w; = wo

In this paragraph we look at the critical curve o.(x) limiting the stability
region pictured in Fig.[2l The boundary of this region consists of points
in the plane (k, o) at which the argument of arcosine function ([2.22)) is
equal to 1. It means that two roots of the spectral equation ([ZI7) are
equal to each other: w1 = wy := wy. The situation is illustrated in Fig.
[ where the resonance is indicated by the capital letter A’.

Vieta’s theorem yields the following polynomials:

2
wi — SWo+ (B——)-O, (3.16)
3 1 3
wp = 5 0+64 0, (3.17)

which define the critical curve ([2:29). Appropriate root of the quadratic

polynomial [3IG)) is
wo(k) = % - %Ac(m), (3.18)

where function A.(k) is the critical amplitude (230) presented previ-
ously. Indeed, substituting the right hand side expression for wg in the
cubic polynomial [BI7) we obtain the cubic polynomial contained in the
first square brackets of the Cardano’s discriminant (2.26]).

The squared axial frequency can be written either ws = 1 — 2w or
ws = K3 /(32wd).

The canonical transformation to coordinates which normalize the
Hamiltonian (ZI1)) at this resonance is very cumbersome and we do not
present it in the present paper. In normal coordinates this Hamiltonian
takes the form

H, = % (PP -+ PR) + Vil (Pi@s — PaQu)
(3.19)
VI —=2wp (P} +Q3) .

Particle’s orbit is the combination of axial harmonic oscillation and
parabola in perpendicular plane.

Cylindrical coordinates @1 = r cos ¢ and Q2 = rsin ¢ are convenient
to present the parabolic motion. In terms of this coordinates the “in-
plane” part of Hamiltonian written in the first line of Eq. (319) takes
the simplified form:

N)I)—l

1 P2
H' = 5 <p$ + r—ﬁ) — VWoPy - (3.20)
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The angular momentum p,, is conserved as well as the energy E. The
parabola which satisfies equations of motion has the form:

2 2
+T T
2= Pe , = arctan — + \/wg (t — to) + o ,

ICENT) P

where T' = 2 (E + ,/wopg,) (t — to) . The orbits become unbounded and
a Penning trap loses a charged particle if the angle of inclination of the
magnetic field 3-vector reaches the critical value.

4. Relativistic dynamics

Variation of the action S = [ dAL based on the Lagrangian

L=—-my (i) —ex’®(r') + L

2 c (ZCIQI - ylil) ) (41)

produces the Lorentz force equation ma® = eF'® ﬁuﬁ which governs the
particle’s dynamics in relativistic domain. Electromagnetic field tensor
F' is the combination of constant magnetic field and electric field de-
rived from the “inclined” potential ([2.8)). As coordinate 2° is cyclic one,
the zeroth momentum is the first integral. We choose the proper time

parametrization dr = \/(3':0)2 — (@)* — () = (¢)°d\ such that

po = —mu’ — ed(r'). (4.2)

Obviously, pg is the sum of kinetic energy and potential energy taken
with opposite sign, i.e., pg = —F. We express the zeroth component u°
of the particle four-velocity in the form
E
0 !
u =E—-0x"), &=—. 4.3
(), €=~ (43)
By ®(r’) we denote the potential (2.8) rescaled by the factor e/m.
Inserting this into the Lorentz force equation we obtain the system
of differential equations

. 0

’LLl = (5 (I)) ? =+ Wel ,

w? = — (£ - D) % — weul,
0d

.3

w=—(E-®)— 5
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These equations can be put into Hamiltonian framework. Moreover, it is
convenient to introduce the dimensionless variables
2w
t= WeT, ('rlv ylv Z/) = w—; (qla q2, QS) . (44)

z

The Hamiltonian is quadratic in momenta

1 1
H(q,p) = 3 (pf + p3 +p§) + = (P1g2 — p2q1) + V(q), (4.5)

2 2
with potential
1—an 1—n Bn v
V(q) = qi+ B+ —aq — —qg
8 8 4 4
) (4.6)
1 1 2 1 2 2
—3 | T3 5% +Be5 — gz |

where 1 = €x, q = (q1, g2, q3) and p = (p1,p2, p3).
The unit norm 4-velocity condition (u°)? — (i")? — (¢')? — ()2 =1
after this rescaling takes the form H(q,p) = ¢’ where

5’22—14(1—17)2 <5—2 3(127i77)>’ (4.7)

and € and X are parameters defining the trap introduced in [6].

5. Integrability analysis

The main result of this section is following

Theorem 1 The Hamilton equations of relativistic Penning trap with
an inclined magnetic field are non-integrable in the Liouville sense in the
class of polynomial functions of coordinates and momenta.

In order to prove it at first we use the relation between integrability
of full Hamiltonian and the integrability of its quasi-homogeneous parts.
Let us fix certain weights for coordinates and momenta. Then a polyno-
mial Hamiltonian can be written as a sum of weight homogeneous terms
H = Hupin + -+ + Hupax- If we look for a first integral F' which have
the decomposition F' = Fiyin + -+ + Finax, then Fiiy, is a first integral
of Hpin, as well as Fiax is a first integral of Hyyax. Moreover, thanks
to the Ziglin Lemma [13], we can assume that Fini, and Hpin (0 Fiax
and Hy,ax) are functionally independent. This reasoning can be extend
to the integrability in the Liouville sense. Namely we have the following
implication.
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Lemma 1 If the weight homogeneous system given by Hamiltonian
H = Hpin + - -+ + Huax is integrable in Liouville sense with first inte-
grals admaitting decomposition F' = Fiin + - - - + Finax, then Hamailtonian
systems defined by Hyin and Hpax are integrable in the Liouville sense.

The above implies the following.

Lemma 2 If relativistic Hamiltonian H given in ({35, admits an
additional polynomial first integral, then system given by Hamilton

2
Hy= %(pf + 5+ p3) + % (%a(ﬁ + %qg - 843 +7q1q3) , (51)
admits an additional first integral polynomial in variables.

Proof. We put weights: 1 for coordinates and 2 for the momenta.
Then Hamiltonian (@3] has decomposition H = Ha + Hs + Ha, where
‘H; are its quasi-homogeneous parts of degrees 2,3 and 4 and explicit
form of H, is given by (G.). O

One can prove non-integrability (£5]) using the implication concern-
ing Hamiltonian #4 contained in Lemma 2. Now we will show non-
integrability of H4. It is a natural Hamiltonian with standard kinetic
energy and with homogeneous potential V; of degree 4 in the usual sense
i.e. when standard weight 1 for coordinates are used. For natural Hamil-
tonians with homogeneous potentials V' of integer degree k very strong
necessary conditions of integrability are known. They were obtained from
analysis of properties of differential Galois group of variational equa-
tions obtained by a linearisation of Hamilton equations along straight
line particular solutions constructed by means of non-zero solutions of
the system of algebraic equations

V/(d) = d, (5.2)

for details see [I4]. For a homogeneous potential V' of degree 4 these
conditions state that all eigenvalues of Hessian V" (d) must belong to
the following set

3
M4—{p(2p—1)|p€Z}U{§+2p(p+1)|peZ}
1 2
U< ==+ =(1+3p)? Zs.
{-3+3a+nripez)
For V =V} equation (5:2) has the following solutions

g i,/2+3q%+45 iql\/z—w
1,2 = | 91, m ) m ’
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ds = (% 35—3,0,%#—125—6) ,

where in d; o variable ¢; is arbitrary.

Spectra of Hessian V, at these points are the following:
spect (V'(dy)) = spect (V' (d2)) = {—2,1,3}, and spect (V,'(d3)) =
{—%,—%,3}. In spectra of Hessians V' (d;), for ¢ = 1,2 eigenvalues
1,3 € My but =2 ¢ My. Hessian V”(d3) has double eigenvalue
—-1/2 ¢ My and 3 € M, and is diagonalisable. Since not all eigen-
values belong to M, thus Hamiltonian #, is nonintegrable in the Li-
ouville sense. Non-integrability of Hamiltonian H, immediately implies
non-integrability of H for all values of . This is in accordance with
non-integrability result for classical Penning trap given in [6].

We can also ask about existence of just one additional first integral
of H4. Necessary conditions for the existence of additional first integrals
for Hamiltonian systems with homogeneous potentials are formulated
in [I5]. These conditions for H,4 say that at each point d; apart from A3 =
3 € My one more eigenvalue of V" (d;) must belong to My or difference
% (\/1 + 8A\1 — V14 8)2) must be integer. We note that these conditions
are satisfied. It also means that necessary conditions for additional first
integral of whole relativistic system are satisfied. We know that such
additional first integral exists for 99 = 0, namely z-th component of
angular momentum.

6. Averaging of the relativistic Hamiltonian

The relativistic Hamiltonian system given by (&3H]) is non-integrable. In
order to investigate general features of its dynamics we transform it to a
simpler form called a normal form. Non-dimensional Hamiltonian (Z.3])
can be decomposed into homogeneous parts with respect of variables

X = (Q1,(J2,Q3,p17p27p3)
H = H2 + I{47 (6'1)

where

1 1
Hy = 5(1?% +p3 +p3) + §(P1Q2 — p2q1)

1—an 1—n Bn T
3 @+ 2 q§+Iq§—Zq1q3, and

(6.2)
+

1 1 2 1 2 2 ?
Hy= 5|3 — 36t Bas —vq1q3 | - (6.3)
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Figure 3: Dependence of Q1,2 and Q3 on 7 and o. For almost all values od
parameters €23 is much greater than ; and Q2. When we cut this plot with
plane o = const, then we obtain primed curves of Fig. [Il

Normalization starts from lowest order parts of Hamiltonian, i.e.
from quadratic part Hy. But we note that Hy coincides with the non-
relativistic Hamiltonian given in (ZI1]) provided we substitute k — n =
Ek. Normalization of the non-relativistic Hamiltonian was made in Sec.
and we only recall final result

3
My = TP QY 2P QD)+ (B @) = Yl (64)
i=1
where Il = %(PE + Q?) and w1 = Ql, Wy = —QQ, w3 = Qg. Plots of
Q; = \/w; as functions of parameters o and 7 are given in Fig. Bl For
generic values of parameters these three frequencies are different, see
Fig. Bl but for some specific values of parameters (o,7) they become lin-
early dependent on Z. The eigenfrequencies 21, €22, 23 satisfy a resonance
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- 30,-50,=0

Figure 4: Resonance curves of various orders plotted in parameter’s plane

relation of order [ > 0 if there exist integers k; such that
k191+l€292+1€393:0 and |I€1|+|I€2|+|I€3| = 1. (65)

Since for most of values of parameters Q1 > Q5 and Q7 > Q3, in
Fig. [ we only present resonances of orders 2-8 with k1 = 0 involving
only frequencies {22 and 3.

Considerations of Sec. [3] enable to plot immediately region of linear
stability of equilibrium as in Fig. 2l with only changed label k — n = €.
After normalization of quadratic part of Hamiltonian the higher order
parts of H can be normalized (simplified) by means of sequence of non-
linear canonical transformations. However for the considered system an-
other analysis is more useful. Since one of frequencies, namely €; is
significantly greater than others averaging over corresponding fast vari-
able ¢1 is very natural. To this aim we make a linear transformation
of variables (q1, ¢2, 3, p1,P2,03) — (Q1,Q2,Q3, P1, P2, P3) in Hamilto-
nian H (6] given by (32), B3) and [B4]) that gives new Hamiltonian
EI(Ql ,Q2,Qs, Pi, Pa, Ps). Its quadratic part is normalized as in (G.4]) but
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this transformation enables to identify in whole Hamiltonian H terms
depending on fast oscillations defined by angle variable ¢, as

le 2[18111@1, P1: 2[1COSQ01.

The explicit form of the average Hamiltonian Hyer(Q2, @3, P2, Ps, I1)
is given in Eq. (6:6). Quantities b;, ¢; and A; are given in ([B35]) and (30)
and in these formulae substitution x — 1 = k&€ is made. For simplicity
we chose identity rotations transformations in [B.4) i.e. ¢1 = ¢3 = 7/2
and ¢ = 0.

1 27 - .
Haver = %/ H( 25 S P71, 20 COS(PlaQZaQBaP%PB)d(Pl
0

1 1
= Uh = 50(Q5 + P5) + 5%(Q5 + FY)
ot
256b1babicicscs

+ 43 (A3(PEOE - D3QR)D + 240 Agby (P Q20202 — babaPaQa)bo

[21;4 (8b2b3c2(A2P2 + A3Q3)?Bc}

+ ABVR(Q303 — B3P})) 3 + 203b3ea(Aa Py + A3Qs) (Azca Py
1 2
+ A3c2Q3)7*nes — §b§b§(f4203p2 + A302Q3)2ﬁ72772) cf
+ 4A2b2b253¢2¢§-’1 (Agbg((%a ( (28 - 1)01 + 4’? ney — 5’?2772)9:2),

— —b2Q§ (317476 + 658(8¢c1 + 8¢s — 77)77374 — 6772(8c§ + 32c3c1 + 80§

16 °
+0?)y* — 768cic3(cr + e3) By + 32((24c§ +12ncs +n%)c?
+degn(3es + m)es + i )7? — 23043 + 1536¢138) )03 + 4cF 0 x
x (513(8028 ~ )& + dr7nes — P @ +1263P503) ) 3
4 245 Agbobscs ((2c2c3P3Q2( (28 — 1) + 472ne1 — B2y )9293
— %bzbgPQQg (317476 +68(8cy + 4cg + 4ez — )Pyt — 612 (80
+16(co + c3)er + 0% + 80203)7 — 384c1(2c2¢3 + c1(co + ¢3))Bny?
+ 32 ((602(403 +1) +n(6cz +n))e? + 2n(czn + ca(6ez +1))er + 0203172)72

— 2304030203 + 15360?0203B)) + 20192 (begPQQg( — anfyz
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4 2(ca + 3)17? — 8cacs + 160203[3) + 240203P3Q292(23))02

1
+ A30363 (26303 (8(28 — )k + 49%mer — B )23 —

+ 653(8c1 + 8ca — n)n*y* — 612 (8¢f + 32¢2¢1 + 8¢5 + 1?)y* — T68cicax

b3 P3 (377476

x (c1 + c2) By + 32((240% + 12nc2 +n?)et + 4ean(3ea + n)ey + c§n2)72
1

— 2304cics + 15360fcgﬂ))b§ + 4103 (Ebg (8(2[3 —1)c3 + 4v*nco

— By ) PE + 1263303 ) ) o + Atbsbichedi? (3((4 - 88)c — 29%ner

1 2
+ §ﬂ72n2) bt + 4¢3 (8(2[3 — 1) + dy2ner — m?n?)gfbf n 485{9‘{)]
(6.6)

We note that one can use averaging procedure for values of param-
eters for that there is no resonance relations (6.5]), otherwise errors are
significant. After averaging Hamiltonian system with two degrees of free-
dom is obtained for which one can easily check qualitatively its dynamics
by means of Poincaré sections. In particular we are interested in regions
near origin where the trap is centered and checking whether in this region
phase curves moves along quasi-periodic orbits.

Below we present plots for a trap characterized by parameters \ =
0.0082, ¢’ = 0.00475635, n = k&€ = 0.393323, that corresponds to pa-
rameters o = 0.648324 and ¢ = 0.5 analyzed for ideal trap in paper [6].
Figures Bl show time evolution of variables @2, @3, P2, P3 governed by
non-averaged Hamiltonian (plotted in gray) and after averaging (plot-
ted in black dotted) for trap inclined under angle ¥y = 25°. As initial
conditions were taken @1(0) = —0.09234498, Q2(0) = —0.01282565,
Qs3(0) = —0.0113905, P;(0) = —0.04068128, P»(0) = 0.005233979,
P;(0) = —0.007263822. For variables Q2 and P, averaging gives quite
good approximation of full dynamics, for variables Q3 and Ps; about
t = 400 averaged and described by non-averaged Hamiltonian curves
start to diverge. If we make similar plots with the same initial conditions
for almost ideal trap with ¥y = 1°, then we obtain good accordance for
almost twice longer time.

Let us note that average Hamiltonian is not natural one i.e. it is
not the sum of kinetic and potential energy but is a polynomial of the
fourth order in the momenta. Regions of possible motions are obtained
from conditions that H,yer = &', where &’ is defined in (£7]), has a real
solution for Ps. Polynomial of fourth order can possess four of two real
roots. Regions of possible motions for inclination angles Y9 = 15° and
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Figure 5: Comparision of time evolution for phase variables before averaging
(in grey) with corresponding variables after averaging (in black and dotted).
Inclination angle is Yo = 25°

I; = 0.00551846, and ¥y = 25° and I; = 0.0050913 are given in Figs.
and [7al respectively. Regions of four real roots are denoted by dark gray
and of two roots by light gray. Figs.[6bland [fhlshows branches of algebraic
function for P; when we move along axis Q2 and Figs. [6d and [Td when
we move along axis P, respectively.

Figure 6: a) Region of possible motions on section Q3 = 0 for inclination
angle J9 = 15° and I1 = 0.00551846. b) Solutions for Ps as a function of Q2
for Q3 = P> = 0. ¢) Solutions for Pz as a function of P> for Q3 = Q2 = 0.
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Figure 7: a) Region of possible motions on section Q3 = 0 for inclination
angle Yo = 25° and I; = 0.0050913. b) Solutions for P; as a function of Q2 for
Q3 = P> = 0. ¢) Solutions for P; as a function of P, for Q3 = Q2 = 0.

In Fig. [l one can note a region near the origin when only two real
roots exist (in light gray) that is surrounded by greater region with four
real roots (in dark gray) and for sufficiently big absolute values of Q2
rest only two real roots (in light gray). These small regions with two
roods near the origin are radii about 0.075, 0.1 and 0.055 for inclinations
angles 1°, 5° and 15° and disappear for 25°. Let us note that solutions
with smaller values of magnitudes of Ps; disappear. Fact that in the
neighbourhood of origin rest only solutions with higher magnitude of
P5 implies that solutions escapes from this area that is really visible on
Poincaré sections in Fig.RB—[@ In contrary for trap with inclination angle
Yo = 25° trajectories pass through this neighbourhood, see Fig.

0.001

0.002

Py

—0.002

0.004

—— /

> ~0.006 .
1 05 0 0.5 1 13335 L33 13345 1335

Q2 Q2
(a) region of regular behaviour near origin (b) magnification of chaotic region

Figure 8: Poincaré sections for trap with inclination angle ¥ = 1°.
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Figure 9: Regions of regular behavior near origin for traps with inclination
angles 5 and 15 degrees
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Figure 10: Poincaré sections for trap with inclination angle ¥ = 25°

7. Conclusions

In this paper we propose the new design of the Penning trap and de-
scribe unique possibility of the wide-range tuning and control the rele-
vant modes’ characteristics. Indeed, even very small misalignment of the
magnetic field 3-vector yields shifts in the trap’s eigenfrequencies [231[9].
We propose non-relativistic as well as relativistic description of a charged
particle in such a trap. For non-relativistic description we we found char-
acteristic frequencies of linear system for an arbitrary angle of inclination
and we determine the region of stability in space of controlling parame-
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ters. We show that if 9y exceeds the specific critical value ¥, for a fixed &,
the charge’s motion becomes unstable. Relativistic description leads to
non-linear equations of motion that are non-integrable. However, analysis
of its averaged Hamiltonians shows macroscopic regions neighborhoods
near origins that behavior of trajectories of charged particles is regular.

Besides, if the misalignment angle reaches a specific value before
the critical angle, the corrected cyclotron frequency and axial frequency
change abruptly. We can imagine the experiment when the trapping pa-
rameter x and inclination angle ¥y change continuously and pass through
extreme curve in the region of stability. The experiment should answer
the question whether the frequencies’ “‘jumps” result a broken phase tra-
jectory or not.
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