HamionasbHa akajgemis HayK YKpainm

IHCTUTYT

PIZNKU
KOHAEHCOBAHUX
CUCTEM

ICMP-18-03E

0O.V. Velychko, I.V. Stasyuk

THERMODYNAMICS OF QUANTUM LATTICE SYSTEM
WITH LOCAL MULTI-WELL POTENTIALS:
DIPOLE ORDERING AND STRAIN EFFECTS IN
MODIFIED BLUME-EMERY-GRIFFITHS MODEL

\

~

/

JIbBIB

VIK: 53.072; 538.91
PACS: 75.10.Dg, 64.60.De, 77.84.-s, 77.80.B-, 77.80.bn
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Amnorariisi. PosristHeno gesiki aclieKTu TepMOUHAMIKH KBAHTOBO-TPAT-
KOBOI MOJIeJi 3 JIOKAJbHUM aHTapMOHIYHUM moTeHmiasoM. Jloctimkeno
edekTH, gKi MalOTh MICIe i/l BIJIMBOM 30BHINTHBOTO THUCKY, B pPaMKax
mozem Biroma—Emepi-T'piddirca, sika Biamosigae ToKaIbHOMY TOTEHITI-
aJly 3 TPhOMa MiHIMyMaMu. 3 I[I€I0 METOI0 3AIPOIOHOBAHO J1e(DOPMOBHY
mogzienib BEIL. I'pyuryrounch Ha 1iit Mosesti, po3paxoBaHO 3a/I€KHOCTI
o0’emuol BimHOocHOI nedopmanil v = AV/V Bin THCcKy Ha npuKiaii
kpucraiy SnsPsS¢. Bussiieno nHagsuicrs anomadiit Gyuknii u(p) B 06-
JIACTI CErHETOEIEKTPUIHUX (PA30BUX IEPEXOIiB, & TAKOK TPUKPATHIHOL
TOYKU; IIPOAHAJII30BAHO IOBEIIHKY 00’ €MHOI CTUC/IMBOCTI Y ITUX BUIIAIKAX.

Thermodynamics of quantum lattice system with local multi-
well potentials: dipole ordering and strain effects in modified
Blume—Emery—Griffiths model

0O.V. Velychko, I.V. Stasyuk

Abstract. Some aspects of thermodynamics of the quantum lattice
model with the local anharmonic potentials are considered for the case
of deformed lattice. The effects, taking place under external pressure,
are investigated in the framework of the Blume-Emery—Griffiths model
corresponding to the local potential with three minima. The deformable
BEG model is proposed for this purpose. Based on this model, the pres-
sure dependences of the u = AV/V volume deformation are calculated
on an example of the SnaP2Sg crystal. The presence of anomalies of u(p)
function in the regions of ferroelectric phase transitions as well as the tri-
critical point is established; the behaviour of the volume compressibility
in these cases is investigated.
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1. Introduction

Lattice models play an important role as one of extensions of statistical
physics on new objects and phenomena in the field of condensed matter
physics (especially, the physics of solid state). Relatively simple quantum
lattice models often demonstrate a variety of phase states and sophisti-
cated phase diagrams. As a widely used example, one can mention the
description of thermodynamics and study of the order-disorder phase
transitions in the crystals with locally anharmonic structure elements
by the quantum lattice models. Local anharmonic potentials with multi-
minima shapes commonly occur in this case. The various localizations of
particles correspond to different quantum states (configurations of struc-
ture elements). For systems with two-well local potentials (e.g. crystals
with hydrogen bonds) this approach leads to the transverse Ising model
(known in the theory of ferroelectrics as the de Gennes model [I]. In the
case of the three-well symmetrical potential and at the same conditions
an appropriate lattice model corresponds to the Blume-Emery—Griffiths
model [2]. The model can be applied to description of crystals belonging
to the SnaPoSg family (with the possible partial substitutions Sn — Pb
and S — Se, see [3]) which are an example of such objects.

The Blume—Emery—Griffiths model in its initial (pseudospin) formu-
lation is a generalization of the S = 1 Ising model. Alongside with the
bilinear (J) and biquadratic (V') pair interactions, the model takes into
account the single-ion anisotropy (A) describing the energy gap between
states with S7 = £1 and S7 = 0. A wide area of its application extends
from phase transitions in *He—*He mixtures [2] to binary alloys and
magnetic materials [4l5]. A special feature of the model manifests in the
possible switch of the phase transition order from the second to the first
one (a transition between phases with (S%) = 0 and (S?) # 0) and an
appearance of the respective tricritical point (depending on ratios J/A
and V/J of model parameters).

From this point of view, the application of the BEG model to the
SnyPoSg crystal proved to be perspective. Primarily, the performed ab
initio calculations [6] showed that ionic groups PS¢ exist in three config-
urations (determined by their form and distribution of electronic charge),
which in the paraelectric phase are described by a symmetrical three-
well potential in the energy space. In the absence of external influence,
the SnyPySg crystal exhibits the second order phase transition to the
ferroelectric phase at T, = 337 K due to a dipole ordering of the afore-
mentioned structure elements [7].

Secondarily, the thermodynamics of the SnaP2Sg crystal is sensitive
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to the external hydrostatic pressure and to the partial substitutions
Sn — Pb and S — Se. For example, at the increase of pressure the
temperature T, of the second order phase transition decreases, a tricriti-
cal point is achieved at Tprcp = 220 K and, finally, the ferroelectric state
is suppressed at p = p* = 1.5 GPa [3]. This effect can be explained by
the influence of the pressure on the A parameter value as it was done in
paper [8,9].

At the same time, such an effect needs a more detailed treatment.
From the microscopic point of view, an immediate factor of the pressure
influence is the induced deformation of the lattice. Respective changes
in the environment of the local anharmonic structure elements (groups
P2Se) affect the energy balance between various configurations. This is a
source of the interaction between the deformation and local energy states
(configurations of ionic groups). Such an interaction can be taken into
account in the framework of a more complete description of the strain
phenomena in the SnyP2Sg crystal, what is the goal of the present work.

We start from the BEG model supplementing it by the above-men-
tioned interaction with the lattice deformation (caused both by the ex-
ternal pressure and by the self-consistent changes of occupations of local
configurational states). In the framework of this generalization we con-
sider the strain effects appearing in the regions of the first and second
order phase transitions to the ferroelectric phase as well as in the vicin-
ity of the tricritical point. In particular, the behaviour of the volume
compressibility in the area of the mentioned transitions is analysed.

2. The model

Let us start from the Hamiltonian H of the Blume-Emery—-Griffiths
(BEG) model formulated as a lattice model where three states |1), |2),
and |3) with respective energies F1, Es and E3 are possible for each site.
In the representation of Hubbard operators (X = |i, ) (i, 8])

=Y H A 0
where the single-site part
R 3
H; =Y E.X{. (2)
a=1

Operators X* project on the states |i, &) so their average values (X **)
are equal to occupations of these states. States |¢, ) correspond to the
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Figure 1. A three-well local potential and a definition of the energy
parameter Ej.

equilibrium configurations of the structure elements (ionic groups) of
the crystal which are determined by the minima (a central one and two
displaced) of a local three-well anharmonic potential in the i-th lattice
site. States |2) and |3) transform into each other at inversion in the
symmetrical case. Local dipole and quadrupole moments are described
by operators

1
57 =5 (xX¥-XP),  ni=XP+ X7 (3)

respectively.
Thus the single-site Hamiltonian can be written down as

. h

H; = —§(Xi33 — X2)+ Bo(X3 + X?%) = —hS? + Eoni,  (4)
where h is the field conjugated to the dipole moment, Fy = éo) —
FE = Eéo) — FE; is the difference of energies of the side and central

configurations at i = 0 (see figure [I)). A
In this representation (see [10]) the interaction part H' of the Hamil-
tonian for the BEG model looks like

- 1 |
H/:_§ZJijSiSj _QZ‘/;jninja (5)
ij i

where J;; and V;; are parameters describing direct dipole and quadrupole
interactions between particles. It should be mentioned that for every
lattice site a condition ) _, X** =1 is fulfilled.

Let us further consider only the dipole interaction J;;. We also take
into account the possibility of variation of the energy gap Ey. In real
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locally anharmonic crystals one can achieve this effect applying the pres-
sure: external as well as internal one (caused by stoichiometric substi-
tution of atoms). For example, in the above mentioned crystals of the
SnyP2Sg family the shape of the local three-well potential for ionic groups
P2S¢ can be changed under the influence of these factors (see ab-initio
calculations [8]). Such a behaviour offers insight into the picture of phase
transitions to the ferroelectric state.

Taking this effect into account in the framework of the lattice version
of the BEG model, one should consider deformation of the crystal lattice
(caused by an external factor) as an immediate reason of variation of
local potentials (and, thus, the energy gap Ep). In this connection the
initial Hamiltonian () should be supplemented by a respective term

. N
H" =D (XP + XP)u+ 5 veou?, (6)

taking into account the renormalization of the energy gap Ey due to
deformation ~
Ey — Ey = Ey+ Du (7)

(here u = AV/V is a relative change of the volume) as well as the energy
of an elastic deformation (cy is the volume elastic constant, v is the
volume related to the one formula unit from the N structure elements
described by the locally anharmonic potentials and can be ordered),
while D is the constant of an electron-deformational interaction.

A condition of a mechanical equilibrium in the presence of the H”
interaction can be obtained starting from the condition of a thermody-
namic equilibrium dG/0u = 0, where G is the Gibbs free energy derived
from the Helmholtz free energy

G = F — Nvugo, (8)
where ¢ is a mechanical stress. Since
oG  OF OH
%—%—N’UO’—<%>—N’UU, (9)

the condition of a mechanical equilibrium is given by a relation
D
cou+ —(XB+X2) =0 (10)
v

assuming homogeneity of the system (an absence of a modulated order-
ing).
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Condition (I0) is an exact relation which can be considered as the
generalized Hooke’s law. According to relation (I0)), the role of the ex-
ternal stress o is not limited only to the deformation of the lattice; the
stress also affects the occupations of the side positions (7 = (X224 X33))
of local wells. As will be shown below, this results in a non-linear relation
between u and o what is especially important in the vicinity of the phase
transition to the ferroelectric state.

The deformation u can be eliminated using equation (I0]). As a result,
the Hamiltonian of our model can be rewritten as

. ; D 1 N
i ij i

(11)

where

U=—vo" — —on+ ——n". (12)

The third term in expression ([]) has a form corresponding to the energy
of a local quadrupole in the mean field Veg n, where the constant of the
effective quadrupole interaction equals to

D2

Vet = . 13
ft VCo ( )

Such an interaction is a long-range one (Vi‘;ff = Vg for arbitrary distance

|R; — R;|) and is mediated by the lattice deformation. However, Hamil-
tonian ([II]) is not equivalent to the BEG Hamiltonian with the effective
interaction of quadrupoles. The role of the stress o is not limited to the
appearance of the field (D/cg)o acting directly on quadrupoles. It is also
manifested in appearance of some additional terms in expression (I2]).
Equivalence to the BEG Hamiltonian is achieved only in the absence of
external stresses (at o = 0).

3. Thermodynamics in the mean field approximation

The model described by the Hamiltonian

H=Y H+H +H, (14)

can be named as the deformed BEG model (d-BEG). We will consider
its thermodynamics in the mean field approximation (MFA). Starting
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from definitions () and (@), at V;; = 0 one can obtain
N N N -
HMF = 5J’I72 + ?1}00’&2 + ; Hi, (15)

where

H; = (H + Eo)X? + (—H + Eo) X3 (16)
Here H = h/2 4 Jn/2 is the effective field acting on dipoles, n = (S?)
is the parameter of the dipole ordering that determines the polarization
of the system. Alongside of deformation wu, the “polarization” n belongs
to two self-consistency parameters determined by the minimum of the
Gibbs free energy (8]

Starting from the single-site partition function

Z; = Spe PHi = 1 4 2¢PFo cosh BH, (17)

we obtain the following expression for the Helmholtz free energy
N N D
Fur = 7J772+ 31)00”2 — NOIn (1+2675E0 coshﬁH) . (18)

Conditions of an extremum of the function Gmyp = Fur — Nouo

1 8GMF 1 aGMF

N opy =0 N du =0 (19)

result in this case in the equations

B e~PEoginh BH
1+ 2e—BEo cosh BH’
D 2e=PEocosh BH

cou + — - =0
0 v 1+ 2e~BEo cosh BH

n (20)

(21)

It is obvious that the second equation coincides with the earlier obtained
relation ([0 between the deformation u and the mechanical stress o thus
being the condition of mechanical equilibrium.

Solutions of equation set (20)—(Z1I)) for the self-consistency parameters
(at given external fields h and o) should also correspond to the absolute
minimum of the potential G. Such solutions describe thermodynamically
stable states (thus omitting metastable and unstable ones) what allows
to explore both first and second order phaseb transitions between various
phases.
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4. Phase diagrams of the deformed BEG model

Appearance and topology of phase diagrams for the BEG model (regions
of existence of the disordered phase, the phase with dipole ordering and
phases with various values of the average quadrupole moments) depend
substantially on numerical values of model parameters (see, e.g., [ITLIZ]
as well as [10]). In this connection, we will focus on the particular exam-
ple of the Sns PS¢ ferroelectric crystal. This crystal was chosen by us for
the following reasons: (a) there are attempts to describe thermodynamics
of the crystal in the framework of the BEG model [8]; (b) there are data
illustrating rearrangement of the local anharmonic potential for ionic
groups PoSg under the influence of an external uniform pressure [8.[9].

Starting from the known data for SnaP2Se [BLI3], we have fitted the
following values of parameters for the deformed BEG model (d-BEG):
v=023-10"2* cm?, ¢g = 5- 10" erg/cm?3, D = —1.1 eV, cov = 71.8 eV,
FEy = —-0.011¢eV, Vog = 0.017 eV. The parameter D was calculated using
the definition D = 9Fy/du based on the estimation of the derivative
OFy/dp = —Ey/d0 ~ 0.011...0.025 eV/GPa according to the results of
ab initio calculations [8] (here p = —o is a hydrostatic pressure). The
value of the parameter J is chosen from the condition of an optimal fit
of the critical temperature T, at p = 0, calculated in the framework of
the model, comparing to its experimental value (T¢|exp = 337 K). The
value of Ey = —0.011 €V corresponds to the data presented in paper []
for a zero pressure.

The phase diagram (T, Ey) (figure 2al) at a zero external pressure
illustrates a well-known decrease of the critical temperature T at the
decrease in absolute value and the subsequent increase in the positive
region of the energy parameter Fy. In the process, the order of the phase
transition changes at the tricritical point (Fo|rcp & 0.02 €V) from the
second to the first one and the ferroelectric (F) phase is suppressed at
Ey > 0.026 eV.

The dependence of the temperature of the phase transition between
the ferroelectric and paraelectric phases (F' <> P) on the applied pressure
is presented in figure 2Bl Values of the temperatures T.(p = 0) and
Trcp as well as the pressure p* (at which the temperature of the phase
transition tends to zero) are relatively close to the experimental data
(Telecare(p = 0) = 330 K, Trepleale = 203 K and p*|cae = 1.7 GPa
while Tglexp(p = 0) = 337 K, Trcplexp = 220 K and p*|exp = 1.5 GPa).
Hence, such a choice of model parameters can be used as a starting point
for a more detailed consideration of the effects induced by an external
pressure.
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(a) The phase diagram (T, Ep).

(b) The phase diagram (T, p).
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Figure 2. Dependence of the temperature of the ferroelectric-paraelectric
phase transition between the ferroelectric (F) and paraelectric (P) phases
(a) on the energy parameter Ey (at p = 0) and (b) on the applied pressure
p (at Eg = —0.011 eV) at the following values of other model parameters:
J=0.14¢eV, cov =T1.8¢eV, D = —-1.1 eV, Vg = 0.017 eV.

Graphs in figure Bl demonstrate the calculated dependences of the
deformation parameter u on the pressure p at various temperatures (be-
low and above of the tricritical point and just at T = Trep). Graphs
in figure [ show the respective dependences of the parameter 1 (de-
scribing a spontaneous dipole ordering) on the external pressure (our
investigation is limited to the case h = 0). The main peculiarity of the
curves in figure [ is a jump of the deformation Awu at the first order
phase transition from the ferro- (F) to the paraphase (P) accompanied
by compression of the lattice. As this takes place, a relative change of
the volume AV/V attains to values —0.011 corresponding to the mea-
sured change of the unit cell volume for the SnyPoSg crystal (according
to [3], veen =~ 0.457 - 10724 cm? for the ferrophase (T' = 293 K) and
Veell = 0.452 - 10724 cm? for the paraphase (T = 358 K)).

In the tricritical point Au — 0 and at T, > Tpcp the phase transi-
tion becomes of the second order, so the jump of u vanishes. However,
dependence u(p) still demonstrates a visible peculiarity in the vicinity
of the phase transition point. This peculiarity is more pronounced for
a respective dependence of the derivative Ou/do0 = —0u/dp = x which
corresponds to the volume compressibility. The curves, demonstrating
dependence of the compressibility y on the pressure, are calculated from
the equation set (20)—(2I) and presented in figure Bl In the tricritical
point, the function x(p) diverges while nearby this point it demonstrates
a peak-like behaviour. Variation of the compressibility within the peak
region reaches values of the order of 0.02-0.04 GPa~!. An experimen-
tal investigation of the compressibility behaviour close to the tricritical
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Figure 3. The calculated dependences of the deformation parameter u
on the pressure p at various temperatures (174 K, 203 K and 232 K,
respectively); here and in figures[l Bland B J = 0.14 €V, cov = 71.8 €V,
D=-1.1¢eV, Ey =—-0.011 eV, Vog = 0.017 eV.
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Figure 4. The dependences of the “polarization” i on the pressure p at
various temperatures (174 K, 203 K and 232 K, respectively).
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Figure 5. The dependences of the compressibility x on the pressure p at
various temperatures (174 K, 203 K and 232 K, respectively).
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Figure 6. The phase diagram (7, u) for the case of the mechanically
clamped crystal (regime u = const).

point was performed in paper [I4]. The values of x were obtained at
various external pressures (passing through the tricritical point as well
as close to it). In general, our calculated dependence x(p) demonstrates
a good correspondence to the measured one. Furthermore, a qualitative
agreement of the theory and experiment is achieved: ranges of the y
variation (magnitudes of peaks) as well as values of the compressibility
are close to each other.

The presented above plots correspond to the so-called mechanically
free crystal: the external pressure p (or the mechanical stress o) is an in-
dependent variable with a certain value (regime o = const). We can also
consider the case of the mechanically clamped crystal (regime u = const).
The jump of u at the first order phase transition in the free crystal corre-
sponds to a respective interval of u values located between the paraphase
and ferrophase in the case of the clamped crystals. Changing the tem-
perature in this regime, one can build a phase diagram that defines areas
of existence of various phases (figure [dl). For all values of u and T from
the intermediate region (located between areas of the P and F phases)
a separation into the para- and ferrophase occurs according to the rule

;CP:M, xF:u, (22)
Up — Ur Up — Uf
where zpy are the relative fractions of the P (F) phase, upr are the
values of the deformation u on the respective boundary of the mentioned
interval. Thus, the crystal separates into differently strained fragments
of the P and F phases.
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It should be mentioned that the existence of a mixed phase at T <
Trcp was already a subject of discussion [8,[9]. Supposedly, an appear-
ance of such a phase is usually related to metastability phenomena in
the vicinity of the phase transition between the F and P phases.

5. Conclusions

In the present work we proposed a modified version of the BEG model
formulated as a configurational version of a quantum lattice model. The
model takes into account the microscopic mechanism of the applied exter-
nal pressure influence on thermodynamics and phase transitions in crys-
tals with a multi-well (specifically, three-well) local lattice potential. Our
approach is based on the idea that the influence of pressure is not a direct
one but it is mediated by the crystal lattice strain. Namely, the crystal
deformation leads to the change of internal field and displacements of
atoms surrounding the structure elements (ionic groups); configurations
of the latter are determined by the mentioned above local potential. Our
modification of the BEG model supplementarily considers the shift of
local energy levels (due to restructuring of local anharmonic potentials
formed by the electron subsystem) under the influence of deformation
caused by a uniform pressure or tension. Such an approach allows to
describe the deformational effects accompanying the phase transitions
to the state with a dipole ordering (the ferroelectric phase).

It should be mentioned, that the applied here scheme of implemen-
tation of the microscopic parameter (such as deformation) into a macro-
scopic Hamiltonian with the subsequent determination of such a param-
eter from the equilibrium conditions was initially proposed in [15]. Based
on this approach, the set of effects induced by an external mechanical
field in the KHoPOy4-type ferroelectrics was described (see [16]).

The SnyP5Sg crystal is considered as an example. Experimental mea-
surements reveal that the temperature of the ferroelectric phase transi-
tion decreases under influence of the hydrostatic pressure with the change
of the phase transition order from the second to the first one resulting in
a subsequent suppression of the ferroelectric phase at p = p*. This phe-
nomenon is adequately described by the BEG model and the ab initio
calculations indicate rearrangement of the local anharmonic potential
under pressure. At the same time, we demonstrate in this case that the
interaction of energy states of the mentioned structure elements (e.g.,
groups P3Sg for the SnaPySg crystal) with the lattice deformation, taken
into account in the framework of the proposed d-BEG model, leads to
the anomaly of the u(p) dependence in the vicinity of the phase tran-
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sitions from the ferroelectric (F) to paraelectric (P) phase. The lattice
compresses and the deformation has a jump Awu at the first order phase
transition and changes continuously at the second order one. A peak-like
behaviour of the du/dp function in the vicinity of the phase transition is
also revealed. This peak increases approaching the tricritical point where
the compressibility x = —du/dp diverges. Such behaviour of u(p) and
X(p) coincides with the observed one.

Thermodynamics of SnoP2Sg and the respective phase transitions are
also considered in the case of a clamped crystal (regime u = const). As
is shown, at T" < Tpcp the region of deformation values is present in
this regime, where the crystal exists in a mixed state being separated
into differently strained fragments of the P and F phases. This mixed
phase is located between the “pure” P and F phases on the (T, u) phase
diagram. Such a state can be experimentally identified by measurement
of the compressibility x(u) in the “clamped” regime in the area of the
mixed state (here y(u) is a linear function on u in the interval [up, ug]).

References

1. de Gennes P. Collective motions of hydrogen bonds. Solid State
Communications. 1963;1(6):132-137. Available from: http://www.
sciencedirect.com/science/article/pii/0038109863902126.

2. Blume M, Emery VJ, Griffiths RB. Ising model for the A\ tran-
sition and phase separation in He3-He?! mixtures. Phys Rev A.
1971;4:1071-1077. Available from: https://1link.aps.org/doi/10.
1103/PhysRevA.4.1071.

3. Vysochanskii YuM, Janssen T, Currat R, et al. Phase transitions
in ferroelectric phosphorous chalcogenide crystals. Vilnius: Vilnius
University Publishing House; 2006.

4. Mukamel D, Blume M. Ising model for tricritical points in ternary
mixtures. Phys Rev A. 1974;10:610-617. Available from: https://
link.aps.org/doi/10.1103/PhysRevA.10.610.

5. Sokolovskii RO. Effect of an external magnetic field on the gas-liquid
transition in the Ising spin fluid. Phys Rev B. 2000;61:36-39. Avail-
able from: https://link.aps.org/doi/10.1103/PhysRevB.61.36.

6. Rushchanskii KZ, Vysochanskii YuM, Strauch D. Ferroelectricity,
nonlinear dynamics, and relaxation effects in monoclinic SnyP5S¢.
Phys Rev Lett. 2007;99:207601. Available from: https://1link.aps.
org/doi/10.1103/PhysRevLett.99.207601.

7. Yevych RM, Vysochanskii YuM. Triple well potential and macro-
scopic properties of SnoP2Sg ferroelectrics near phase transition. Fer-

ICMP-18-03E 15

10.

11.

12.

13.

14.

15.

16.

roelectrics. 2011;412(1):38-44. Available from: https://doi.org/
10.1080/00150193.2011.542693.

Yevych R, Haborets V, Medulych M, et al. Valence fluctuations
in Sn(Pb)2P2S¢ ferroelectrics. Low Temperature Physics. 2016;
42(12):1155-1162. Available from: https://doi.org/10.1063/1.
4973005.

Yevych R, Medulych M, Vysochanskii Yu. Nonlinear dynamics of
ferroelectrics with three-well local potential. Condensed Matter
Physics. 2018;21(2):23001. Available from: https://doi.org/10.
5488/CMP.21.23001.

Stasyuk IV, Tovstyuk KD, Gera OB, et al. Phase transitions of dipole
lattice gas model. Institute for Condensed Matter Physics of the NAS
of Ukraine; 2002. Preprint ICMP-02-09U. (in Ukrainian).

Chen HH, Levy PM. Dipole and quadrupole phase transitions
in spin-1 models. Phys Rev B. 1973;7:4267-4284. Available from:
https://link.aps.org/doi/10.1103/PhysRevB.7.4267.
Sivardiere J. Critical and multicritical points in fluids and magnets.
In: Pekalski A, Sznajd J, editors. Lecture notes in physics: Static
critical phenomena in inhomogeneous systems. Vol. 206. Berlin Hei-
delberg New York Tokyo: Springer-Verlag; 1984. p. 247-289.
Bilanych R, Yevych R, Kohutych A, et al. Elastic properties
of (Pb,Sni_,)2P2Ss solid solutions. Central European Journal of
Physics. 2014;12(9):611-614. Available from: https://doi.org/10.
2478/s11534-014-0514-3.

Slivka AG, Gerzanich EI, Guranich PP, et al. Phase transitions
in SnyPoSg ferroelectric under high pressures. Condensed Matter
Physics. 1999;2(3):415-420. Available from: https://doi.org/10.
5488/CMP.2.3.415.

Stasyuk IV, Biletskii IN. Influence of omnidirectional and uniaxial
stress on the ferroelectric phase transition in crystals of KHoPOy
type. Bull Acad Sci USSR Phys Ser. 1983;4(4):79-82.

Stasyuk IV, Levitskii RR, Moina AP. External pressure influence on
ferroelectrics and antiferroelectrics of the KHoPOy4 family: A unified
model. Phys Rev B. 1999;59:8530-8540. Available from: https://
link.aps.org/doi/10.1103/PhysRevB.59.8530.



http://www.sciencedirect.com/science/article/pii/0038109863902126
http://www.sciencedirect.com/science/article/pii/0038109863902126
https://link.aps.org/doi/10.1103/PhysRevA.4.1071
https://link.aps.org/doi/10.1103/PhysRevA.4.1071
https://link.aps.org/doi/10.1103/PhysRevA.10.610
https://link.aps.org/doi/10.1103/PhysRevA.10.610
https://link.aps.org/doi/10.1103/PhysRevB.61.36
https://link.aps.org/doi/10.1103/PhysRevLett.99.207601
https://link.aps.org/doi/10.1103/PhysRevLett.99.207601
https://doi.org/10.1080/00150193.2011.542693
https://doi.org/10.1080/00150193.2011.542693
https://doi.org/10.1063/1.4973005
https://doi.org/10.1063/1.4973005
https://doi.org/10.5488/CMP.21.23001
https://doi.org/10.5488/CMP.21.23001
https://link.aps.org/doi/10.1103/PhysRevB.7.4267
https://doi.org/10.2478/s11534-014-0514-3
https://doi.org/10.2478/s11534-014-0514-3
https://doi.org/10.5488/CMP.2.3.415
https://doi.org/10.5488/CMP.2.3.415
https://link.aps.org/doi/10.1103/PhysRevB.59.8530
https://link.aps.org/doi/10.1103/PhysRevB.59.8530

CONDENSED MATTER PHYSICS

The journal Condensed Matter Physics is founded in 1993 and
published by Institute for Condensed Matter Physics of the National
Academy of Sciences of Ukraine.

AIMS AND SCOPE: The journal Condensed Matter Physics con-
tains research and review articles in the field of statistical mechanics
and condensed matter theory. The main attention is paid to physics of
solid, liquid and amorphous systems, phase equilibria and phase tran-
sitions, thermal, structural, electric, magnetic and optical properties of
condensed matter. Condensed Matter Physics is published quarterly.

ABSTRACTED/INDEXED IN: Chemical Abstract Service, Cur-
rent Contents/Physical, Chemical&Earth Sciences; ISI Science Citation
Index-Expanded, ISI Alerting Services; INSPEC; “Referatyvnyj Zhur-
nal”; “Dzherelo”.

EDITOR IN CHIEF: TIhor Yukhnovskii.

EDITORIAL BOARD: T. Arimitsu, Tsukuba; J.-P. Badiali, Paris;
B. Berche, Nancy; T. Bryk (Associate Editor), Lviv; J.-M. Caillol, Or-
say; C. von Ferber, Coventry; R. Folk, Linz, L.E. Gonzalez, Valladolid;
D. Henderson, Provo; F. Hirata, Okazaki; Yu. Holovatch (Associate
Editor), Lwviv; M. Holovko (Associate Editor), Lviv; O. Ivankiv (Man-
aging Editor), Lviv; Ja. Ilnytskyi (Assistant Editor), Lwviv; N. Jakse,
Grenoble; W. Janke, Leipzig; J. Jedrzejewski, Wroctaw; Yu. Kalyuzh-
nyi, Lviv; R. Kenna, Coventry; M. Korynevskii, Lviv; Yu. Kozitsky,
Lublin; M. Kozlovskii, Lviv; O. Lavrentovich, Kent; M. Lebovka, Kyiv,
R. Lemanski, Wroctaw; R. Levitskii, Lviv; V. Loktev, Kyiv; E. Lomba,
Madrid; O. Makhanets, Chernivtsi; V. Morozov, Moscow; 1. Mryglod
(Associate Editor), Lviv; O. Patsahan (Assistant Editor), Lviv; O. Pizio,
Mezico; N. Plakida, Dubna; G. Ruocco, Rome; A. Seitsonen, Zirich;
S. Sharapov, Kyiv; Ya. Shchur, Lviv; A. Shvaika (Associate Editor), Lviv;
S. Sokotowski, Lublin; 1. Stasyuk (Associate Editor), Lwviv; J. Strecka,
Kogice; S. Thurner, Vienna; M. Tokarchuk, Lwiv; I. Vakarchuk, Luviv;
V. Vlachy, Ljubljana; A. Zagorodny, Kyiv

CONTACT INFORMATION:

Institute for Condensed Matter Physics

of the National Academy of Sciences of Ukraine

1 Svientsitskii Str., 79011 Lviv, Ukraine

Tel: +38(032)2761978; Fax: +38(032)2761158

E-mail: cmp@icmp.lviv.ua  http://www.icmp.lviv.ua



	Introduction
	The model
	Thermodynamics in the mean field approximation
	Phase diagrams of the deformed BEG model
	Conclusions

