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Amnoraniss. Ha ocHOBI MOfie/1i KBAHTOBOTO I'PATKOBOIO ra3dy JAOC/IIZKEHO
HU3bKOYACTOTHY JMHAMIKY OJHOBUMIDHUX CUCTeM (THILy ATOMHUX JIAH-
IIO’KKIB 3 BOJHEBUMH 3B’d3KaMM) 3 JBOMIHIMyMHUM JIOKAJbHAM aHIap-
MOHIYHMM ITOTEHIaJIOM. B Mo/e/ri BpaxoBaHO KOPOTKOCSXKHI KOPEeJIATil
MiK JACTHHKAMU, & TAKOXK IIEPEHOC YaCTUHOK K Ha 3B’d3KaX B JIBOSAM-
HOMY TOTEHITa i, Tak 1 MixK 3B’a3kamMu. MeTomom TOUHOT aiaronatizarii
3 BUKOpHUCTaHHAM dhopmasizmy dyukiii ['pina pozpaxoBano quHAMIGHY
JIUIIOJIBHY CHPUHHAT/INBICTD, 1[0 BU3HAYAE JIIEJIEKTPUYHUAN BIJIYK CHC-
Temu. OTpUMaHO I'YCTHHY KOJIMBHMX CTAaHIB, aHAJI3Y€ThCs 11 9aCTOTHA
3aJIe2KHICTh. 3aMiCTh CTAHIAPTHOI M’SIKOI MO/ OTPUMAHO PO3IIEILIEHHS
HaHMKYOI TIIKM B CHEKTPI B 00JIACTI IEpexoy 10 BIOPSIKOBAHOTO
OCHOBHOI'O CTaHy.

Low-frequency dynamics of 1D quantum lattice gas: the case
of local potential with double wells

R.Ya. Stetsiv, O.Ya. Farenyuk

Abstract. The quantum lattice gas model is used for investigation of
low-frequency dynamics of the one-dimensional lattice (an analogue of
the H-bonded atomic chain) with the two minima local anharmonic po-
tential. Short-range correlations and particle hopping within potential
wells as well as between of them are taken into account. The dynam-
ical dipole susceptibility that determines the dielectric response of the
system, is calculated using exact diagonalization procedure on clusters
and the Green’s function formalism. The density of vibrational states is
found, its frequency dependence is analyzed. The splitting of the lowest
branch in spectrum in the region of transition to the ordered ground
state (instead of the standard soft-mode behaviour) is revealed.

ITomaerbest B Phase Transitions
Submitted to Phase Transitions

© IncruryT (isuku KoHAeHCOBaHUX cucreM 2018
Institute for Condensed Matter Physics 2018



Ipenpunatn Iucruryry disuku koujgencoanux cucreM HAH VYkpainu
PO3IIOBCIO/ZKYIOThCS Cepel] HAyKOBUX Ta iHdopMmariiinnx ycranos. Boxnn
TaKOXK JIOCTYIIHI IO €JIEKTPOHHIN KoMmIT'toTepHiit Mmepexki Ha WWW-cep-
Bepi iHcTUTYTY 3a ajgpecoro http://www.icmp.lviv.ua/

The preprints of the Institute for Condensed Matter Physics of the Na-
tional Academy of Sciences of Ukraine are distributed to scientific and
informational institutions. They also are available by computer network
from Institute’s WWW server (http://www.icmp.lviv.ua/)

Poman dApocnasosuu Crenis
Outer ApocaBoBra PapeHiok

HU3bKOYACTOTHA AUHAMIKA OJTHOBUMIPHOI'O TPATKOBOTO T'A3V:
BUITAJOK ABOAMHOI'O JIOKAJIBHOI'O ITOTEHILIAJIY

Pobory orpumano 29 xostHa 2018 p.

BarBepkeno 1o apyky Buenoro pamoro IOKC HAH Ykpaiuu
PexomenioBano 10 APYKY Bi/1iIOM KBAHTOBOI CTATUCTUKHU

Burorossieno npu IOKC HAH VYxkpaiuu
(© Vci npasa 3acrepexkeni

ICMP-18-04E 1

1. Introduction

The lattice gas approach is widely used during many years in the various
tasks of the condensed matter theory — from thermodynamics of quan-
tum liquids to description of phase transitions and collective dynamics in
intercalated crystalline structures, systems of adsorbed particles on the
surface of metals, ionic and superionic conductors. The models of such
type, that take into account quantum effects, found recently the appli-
cation in the theory of optical lattices with ultracold Bose- and Fermi
atoms. The processes and characteristics, related to transport of parti-
cles on a lattice (such as ionic conductivity, quantum diffusion, as well as
the spectra of the single particle excitations) were mainly the subject of
researches and calculations. The study of features of corresponding spec-
tral densities in different phases of system (normal, spatially modulated,
superfluid, etc.) allows, as was shown, in particular, in [IL[2], to identify
separate phases. It can be considered as an additional means at the con-
struction of phase diagrams of equilibrium states. One of examples of
objects, where the usage of quantum lattice model appeared to be suc-
cessful, is the crystalline systems with hydrogen bonds, where the tran-
sitions to the states (phases) with superionic conductivity, are possible.
In papers [3[4] based on the so-called orientational-tunneling model [5],
the phase transitions to the superionic state in the subsystem of protons
were described and the coefficients of proton conductivity were calcu-
lated for the group of crystals M3H (X Oy4)s where M = NHy, Rb,C's
and X = S, Se. The mentioned model was taken by us as the basis of
calculations of the single-particle spectrum and dynamic conductivity
of the one-dimensional (1d) ionic conductors [6L[7] by means of exact
diagonalization method on finite clusters. Such an approach allowed to
establish the existence of different ground-states, to describe the transi-
tions of the crossover type between them at 1" # 0, and also to investigate
the features of collective dynamics that determines the frequency disper-
sion of conductivity [6L[7]. Ideological basis of our calculations was the
hard-core boson approach; it was firstly used by Mahan [8] in description
of the quantum particle transport in a lattice.

Approach of exact diagonalization allows, at the same time, to con-
sider other dynamic characteristics that are important in description of
the hydrogen bonded systems and are measured experimentally. Low-
frequency dielectric response, that for such objects is caused foremost
by tunneling motion of protons on hydrogen bonds (except, of course,
the standard phonon modes), belongs to them. In normal phases (ferro-
electric or paraelectric) of the real 3d systems the soft mode behavior of
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the one of the lowest branches of vibrational spectra is known (when in
the limit of T — T, or Qg — Qo., w;(k = 0) — 0) [910]. In particular,
it is characteristics of the known de Gennes model [I1], that can be ob-
tained from the orientational-tunneling model when number of protons
on each of hydrogen bonds in a lattice is fixed (n; = 1) and the pro-
ton hopping between bonds is absent, while their interbond interaction
is taken into account. In the random phase approximation (RPA) this
result, that relates to behavior of soft mode, can be easily obtained. It
is known, however, that RPA (based on the mean field approximation),
becomes inapplicable at low dimensions (d = 1 and d = 2). Therefore
application of procedure of exact diagonalization can be useful in this
case.

This work is devoted to the calculation of the frequency depen-
dence of the dynamical susceptibility of the dipole-dipole type of the
one-dimensional N-site cluster with the periodical boundary conditions.
Numerical calculations are performed at N=10 . The corresponding den-
sity of vibrational states is obtained. The vibrational spectra are studied
depending on the particles (protons) tunneling frequency on the bond;
the influence of transfer of particles between the bonds on these spectra
is also investigated.

2. The model

Our quantum gas model in the case, when particles obey the Pauli statis-
tics, correspond to hard-core boson limit. If the particles positions are
characterized by symmetric local potential possessing two minima on
the bond (figlll), the two stage nature of particle (proton) transport is
taken into account via two particle transfer constants (£ for intra-bond
hopping between two positions a and b on each bond as well as Qg for
inter-bond transfer between hydrogen bonds that arises due to orienta-
tional motion of ionic groups). Because of that the model is known as
orientational-tunneling model [5]. It also includes the correlation between
nearest protons caused by the short-range repulsion (the corresponding
energies parameter are: V' on the bond and w for the neighbor bonds).
The Hamiltonian of this model in the case of chain like structure
(considered here as an example) can be presented as follows

H = (e—p) Z(nm +np) +V Z NiaMib + W Z NibNit1,a

2

3

+ Q0 Y (chew +cheia) + Qr D> _(Cheirta+ el acm), (1)
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Figure 1. The model of one-dimensional system. The large circles are
a heavy motionless ionic groups. The small circles denote two possible
positions of particles (protons) on each bond (in particular, hydrogen
bond)

In contrast to [B], ¢i.a (c;-fa) in our case are the Pauli operators.
They describe the process of annihilation (creation) of particle (proton)
in position i, (o = a,b); therefore n; o = c;)raci)a is the occupation
number of particles (protons) in this position (see Fig. ).

3. Dielectric susceptibility. Exact diagonalization tech-
nique

The Hamiltonian matrix as well as ¢; , and ¢;, matrices are constructed
on the basis of many-particle states [ny 4n1p... 0N N >
The diagonalization transformation is applied to Hamiltonain

U'HU = H = A X" (2)
p

where A, are eigenvalues of the Hamiltonian, XPP are Hubbard operators.
The creation and annihilation operators are presented in the form
UleioU=>Y AiaXr? | Ul U= AvX"  (3)
pq rs

where coeflicients Ag}] are the matrix elements of operator ¢; , on the
new bases
Dipole moment of the i-th bond is equal

D; = qidi(niy — Miq) (4)

where d; is the distance between equilibrium positions of a particle on
the bond, ¢; is the charge of the particle. For calculation of dielectric
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susceptibility x4(w) we can use the standard relation between such a
susceptibility and dipole-dipole two time Green’s function

2w
Xq(w) = T < D|D >0 (5)

By means of equation of motion procedure, the following expression
for the Green’s function in the case of system with Hamiltonian H can
be obtained

<L D|D >q = ¥ ZZ < D;|D; > el1Ri—Ry) =
i=1 j=1

N N
gid 1N2 ZZ 1R < (i — nia) | (njp — nja) >=

e 33 S A, T A

i=1 j=1 kk1
iax pia jax pja iax qia Jbx b
E Al lklg A e Ak E Al lklg Ak A
m

—BAk —BAk
ibk ax a 6 —€ !
E Al Alk1 E :AznklAJ Fhw — (e, — M)

The imaginary part of this Green function determines density of vi-
brational states

pg(w) =2Im <« D|D >q wyic (7)

4. The density of vibrational states

Here, we present the results of numerical calculations of density of vi-
brational states pg(w) at zero temperature (T = 0). Numerical values
of model parameters (including fiw)are given in relation to the V/6 en-
ergy parameter and are dimensionless. Such a choise corresponds to the
values that are characteristics of the chain-like proton conductors and
were used in our previous investigation of their equilibrium states [6].
We performed our calculations on the cluster with NV = 10 sites and
applied the periodical boundary conditions. As usual, having deal with
a discrete spectrum, we use the Lorentz distribution to broaden the § -
peaks of spectral density.

At large values of transfer constant 2y, when ¢ > 2w, we obtained
only one peak of the density of vibrational states at the frequency de-
noted as wy. At the increase of Qg, hw; — 2Qq (figh).
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Figure 2. The density of vibrational states (a) and (b) of the one-
dimensional system with two-minima local potential for particles (pro-
tons). Position (c) and intensity (d) of peaks of the density of states
depending on transfer constant Qg; V = 6,w = 3,n = 1/2,¢ = 0 for two
cases: g =0 and Qr = 1.
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This peak shifts to the region of lower frequencies Qg < hwy < 28 at
w < Qo < 2w, and its intensity increases monotonously. At the further
decrease of Q) a peak position becomes a fixed one (w; — w?) and does
not change in a relatively wide region of €y. At Qo — 0 and Qg = 0 the
intensity of w? peak goes to zero (I — 0). In this region the second peak
appears; it is caused by interaction (parameter w) between particles on
nearest bonds. Its position is Aiws &~ w at Qg — 0.

The third peak appears if the transfer of particles between nearest
bonds (g # 0) is included. This peak is caused by interaction (param-
eter V') between particles on the same bond. At lowering of € its fre-
quency decreases and if Qg — 0, hws — V. Peak w? shifts to higher
frequencies in the case if the parameter {2r increases and its intensity
growths at Qg — 0. The position of the ws peak does not change here.
The intensity of w; peak is of two orders larger than the intensity of
peaks wy and wsz. At Qy = 0.5 we obtained for Qr = 0: hw; = 0.043,
hwo = 3.09, I = 20.82, I = 0.294; for Qg = 1: Aw; = 0.098, Aws = 3.37,
hws = 6.27, Iy = 19.22, Iy = 0.250; Is = 0.320. We present the density
of states in relative units omitting the multiplier %q%d%.

5. Conclusions

The results, obtained in this work illustrate the behaviour of dipole sus-
ceptibity and vibrational spectrum of the one-dimensional lattice model
(that describes the chain-like hydrogen bonded structure) in the low fre-
quency region. In the absence of hopping of particles between bonds,
the existence of mode, frequency of which (w;) decreases if tunneling
parameter approaches to the region of values, that in the case of a 3d
system could correspond to the transition to the ordered (FE) phase,
is revealed. In our 1d case we see, however, the absence of behaviour
of the soft mode type. Instead of that, the new (ws) branch appears; it
frequency is determined by energy of repulsion (w) of protons residing
on nearest bonds.

Additional complication of spectrum arises due to the transfer of par-
ticles (protons) between bonds (in this case the model describes the pro-
ton 1d conductor). Another branch appears in this case with frequency
ws; its value is determined by energy of interaction V' of particles on near-
est positions (the case of two protons on hydrogen bond). Such splitting
of spectrum can be considered as manifestation of appearance of the col-
lective transport of particles along a chain. It should be reminded that
we present here the results of calculations at T' = 0. At unzero temper-
atures there is additional splitting of spectrum (the broadening of the
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mentioned peaks on the density of vibrational states takes place, and the
new peaks appear)
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