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Ground-state phases of frustrated bilayer quantum Heisenberg
antiferromagnets
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Abstract. We use a variational mean-field approach to construct the
ground-state phase diagram of the Heisenberg antiferromagnet on the
square-lattice and honeycomb-lattice bilayers. Our findings are in a good
agreement with the results of more sophisticated approaches.
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Bilayer quantum (s = 1/2) Heisenberg antiferromagnets are defined
by the Hamiltonian

H = Z JoaSp - Sq» (1)

(pa)

where the sum runs over the exchange interaction pattern of the corre-
sponding bilayer lattice, see Fig. [ for the instances of the square-lattice
bilayer (left) and the honeycomb-lattice bilayer (right). The bilayer lat-
tice consists of N = 2\ sites, where N is the number of vertical dimers
(i.e., the number of the lattice sites of the underlying lattice). The un-
derlying lattices for the cases to be considered here are bipartite ones,
i.e., they consist of two sublattices, say A and B. For the square-lattice
case, we may assume that the sublattice-A site indexes are r = (7, j) and
i+ j is even, whereas the sublattice-B site indexes are r = (7,7) and
i+ 7 is odd. Moreover, each vertical dimer connects the nearest-neighbor
sites from the top layer ¢ and the bottom layer b.

J1 J1

Figure 1. Square- and honeycomb-lattice bilayers considered in the
present paper. Each vertical dimer connects the nearest-neighbor sites
from the top layer ¢t and the bottom layer b. Thick solid red lines cor-
respond to the exchange couplings Jo (nearest-neighbor interlayer cou-
pling), thin solid black lines correspond to the exchange couplings J;
(nearest-neighbor intralayer coupling), and thin dashed green lines cor-
respond to the exchange couplings Jx (next-nearest-neighbor interlayer
coupling).

Bilayer quantum Heisenberg antiferromagnets have received some in-
terest nowadays not only because of experimental relevance [IH3], but
also because of a possibility to realize high-precision quantum Monte
Carlo simulations which are sign-free in the presence of perfect frus-
tration [4H7]. We may also mention here several recent studies on the
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low-temperature thermodynamics of the frustrated quantum Heisenberg
bilayers given by Eq. (1) [8HI0] as well as of such systems in the pres-
ence of a magnetic field [ITHI4], when the Hamiltonian (Il) contains in
addition the Zeeman term —h Zp Sp-

In what follows, we focus on the ground-state phase diagram of
the square- and honeycomb-lattice bilayers (II) parameterized by three
different exchange interactions, namely, by the nearest-neighbor inter-
layer coupling Jo, the nearest-neighbor intralayer coupling Ji, and the
next-nearest-neighbor interlayer coupling Jx. The phase diagram of the
square-lattice bilayer has been obtained in Ref. [6] by the method of
infinite projected entangled pair states, whereas the phase diagram of
the honeycomb-lattice bilayer has been obtained in Ref. [8] by a set of
complementary approaches, namely, Schwinger bosons, dimer series ex-
pansion, bond operators, and exact diagonalization. Below we show that
these ground-state phase diagrams can be reproduced reasonably well
by a simple variational approach explained in detail in Refs. [I5HI9] (see
also Ref. [20]).

We begin with the square-lattice bilayer. It possesses the following
symmetry: The change of labeling ¢ ++ b on one of two sublattices of
the underlying square lattice (e.g., on the sublattice B with the site
indexes r = (4, 7), ¢ + j is odd) leads to the interchange of the exchange
interactions Ji <> Jy, see Fig. [l As a result, we may restrict ourselves
to the case J; < Jy; and obtain the results for the opposite case J; > Jy
by symmetry.

Assume at first J; < J,. In the small-J5 limit one faces two nonin-
teracting square lattices with the antiferromagnetic Néel-type long-range
order and in the large-Jo limit one faces the regular pattern of singlets
(on the vertical bonds), which is called valence-bond state. Then the
trial wave function

_ | Tedo) = Tl Leto)
b,

where r = (4, j) runs over all N vertical bonds (dimers) and 0 < T <1
interpolates between the Néel-like order (to be called bilayer antiferro-
magnet order (BAF)) for 0 < T < 1 and the dimer singlet order (DS)
for T' = 1. After straightforward calculations using (2]) one gets the vari-

ational energy
E() 1 r
i Sl (T 1
N (4 T r2> 2

P(R) e ®)

T
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and the optimal value of the variational parameter I"

{ 1, it AT — Jy) < Jo,
I =

) JIEAE 14— 1) 2 s, @)
The behavior of the on-site magnetization with varying J, indicates a
continuous (second-order) quantum phase transition.

Next, assume J; =~ Jx. In the case of perfect frustration J; = J
the model has local integrals of motion (the total spin at each vertical
bond). In the small-Js limit one faces the regular pattern of triplets on
the vertical bonds and in the large-J> limit one faces the regular pattern
of singlets on the vertical bonds (valence-bond state). Then we introduce
the following trial wave function

18) = T (81DS) + VI=2|DTAF))

DS), = [ Tebo) = [ deo).

V2

14+ (_1)i+j _1)i+j
s )

where 0 < 5 < 1. |8) @) illustrates a competition between the dimer
singlet phase (if 8 = 1) and the dimer triplet antiferromagnet (DT AF)
phase (if 5 = 0). It yields the variational energy

EB) (1
N (1—5>J2
~2(1- %) B2 (1 — J) — (1= B%)7 (J1 + ). (6)

For the optimal value of 5 we have:

L i St <
5—{0, i i > @

1

|DTAF), = | TeTe) +

The behavior of the on-site magnetization with varying Jo indicates a
discontinuous (first-order) quantum phase transition.

To complete the variational analysis of the ground state, we have to
compare the energy of the BAF phase with the energy of the DT AF
phase in the region Jx/Jo > J1/J2+1/4. One immediately concludes that
the DT AF phase has lower energy only for Jy/Jo > 1/4 and J,/Jo >
32(J1/J2)? = 8J1/J2 + 1]/(32J1/ J2 — 8).

Combining all results together, we arrive at the ground-state phase
diagram for the square-lattice bilayer shown in Fig. I (in the plane
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Figure 2. Ground-state phase diagram for the square-lattice bilayer ob-
tained within the variational mean-field approach in the J;/Jy — Jx/J2
plane (top) and in the Jy/J; — Jx/J1 plane (bottom). Red (blue) curves
correspond to continuous (discontinuous) quantum phase transitions.
Black circles denote quantum triple points.
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Figure 3. The ground-state phase diagram for the square-lattice bilayer
taken from Ref. [6]. It has to be compared with Fig. 2l bottom, where
the lower part of the diagram corresponds to J,/J; < 1.

J1/J2 — Jx/J2 (top) and in the plane J5/Jy — Jx/J1 (bottom)). The part
of the phase diagram which corresponds to the case J; > J; has been
added by symmetry. The obtained ground-state phase diagram contains
several magnetic (BAF and DT AF') and nonmagnetic (DS) phases, con-
tinuous phase transition lines (red), discontinuous phase transition lines
(blue), and two triple points (black circles).

For J, = 0 (unfrustrated square-lattice bilayer), the transition be-
tween the BAF1 and DS1 phases occurs at Jo/J; = 4 (Ref. [6] re-
ports the value 2.5220(2); the earlier variational paper [I5] obviously
gives also 4; quantum Monte Carlo simulations [2I] yield 2.5220(1)).
For J, = Jy (fully frustrated square-lattice bilayer), the transition be-
tween the DT AF and DS phases occurs at Jo/J; = 2 (Ref. [6] reports
the value 2.3279(1)). Two triple points in Fig. 2 top with the coordi-
nates (3/8,5/8) and (5/8,3/8) imply that the DTAF, BAF1, and DS1
phases meet at Jo = 8J1/5 = 1.6J; and J, = 3J1/5 = 0.6J;. These
numbers can be compared to the results of Ref. [6]: Jo» = 1.638(15).J;
and J, = 0.520(5)J;. Overall, as it follows from a comparison of Figs.
and [B] the simple variational mean-field approach provides quite rea-
sonable agreement with the outcomes of more sophisticated methods,
see [6LI5L21] and references therein.

In the case of the honeycomb-lattice bilayer, the ground-state phase
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Figure 4. Ground-state phase diagram for the honeycomb-lattice bilayer
obtained within the variational mean-field approach in the Jy /Jo — Jx/J2
plane (top) and in the Jy/J; — Jx/J1 plane (bottom). Red (blue) curves
correspond to continuous (discontinuous) quantum phase transitions.
Black circles denote quantum triple points.
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Figure 5. The ground-state phase diagram for the honeycomb-lattice
bilayer taken from Ref. [8]. It has to be compared with Fig. @ top.

diagram shown in Fig. Blremains qualitatively as in the case of the square-
lattice bilayer, however, quantitative details are different because of a dif-
ferent number of the neighboring vertical dimer bonds. The honeycomb-
lattice bilayer has been examined in Ref. [§] and we may use the results
of this paper to corroborate our variational calculations. For a critical
point on the J; = J line Ref. [§] gives: (J1/J2)SB"MFT — 0.547 and
(J1/J2)E5WT = 0.551. Our prediction is: (J1/J2). = 2/3 =~ 0.667. For
the coordinates of the quantum triple points we have: J;/Jo = 1/2 = 0.5,
Jyx/Jo=5/6=0.833...and J;/Jo =5/6=0.833..., J/J» = 1/2=0.5.
To compare further details of our phase diagram with the results of
Ref. [8], see Figs. [ and

In conclusion, the described variational mean-field approach allows
one to obtain in a simple manner the ground-state phase diagram for
the square- and honeycomb-lattice frustrated bilayers. More intriguing
question is the triangular- and kagome-lattice frustrated bilayers. The
work in this direction is in progress.
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