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Одночастинковi спектральнi густини i дiаграми стану одно-
вимiрних протонних провiдникiв

Р.Я. Стецiв

Анотацiя. Ми дослiджуємо рiвноважнi стани одновимiрних протон-
них провiдникiв в системах з водневими зв’язками. Наша розширена
модель жорстких бозонiв включає короткосяжну взаємодiю мiж про-
тонами, їх перенесення як вздовж водневих зв’язкiв з двомiнiмумним
локальним ангармонiчним потенцiалом для протона, так i перенос
частинок мiж сусiднiми водневими зв’язками, а також модулююче
поле. Розрахунки проведено методом точної дiагоналiзацiї для скiн-
чених одновимiрних систем з перiодичними граничними умовами.
Виходячи з характеру частотної залежностi отриманих одночастин-
кових спектральних густин, встановлено iснування рiзних фаз си-
стеми при T = 0 в залежностi вiд величини короткосяжної взаємодiї
мiж частинками i вiд величини модулюючого поля.

One-particle spectral densities and state diagrams of one-di-
mensional proton conductors

R.Ya. Stetsiv

Abstract. The equilibrium states of one-dimensional proton conductors
in the systems with hydrogen bonds are investigated. Our extended
hard-core boson lattice model includes short-range interactions between
protons, their transfer along hydrogen bonds with the two-minima local
anharmonic potential as well as their inter-bond hopping, and the mo-
dulating field is taken into account. The exact diagonalization method
for finite one-dimensional system with periodic boundary conditions was
used. The existence of various phases of the system at T = 0, dependi-
ng on the values of short-range interactions between particles and the
modulating field strength, was established by analyzing the character of
the obtained frequency dependence of one-particle spectral density.
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1. Introduction

Ionic conductors are known since the times of Faraday [1], but the biggest
urge for the development of this direction in solid state physics was the
discovery in 1960th of structures where charge carriers are ions of silver
(α−AgI,Ag2S). These crystals are characterised by the presence of high
temperature phase with high ionic conductivity. This phase afterwards
was referred to as superionic (the same as crystals). The further research
resulted in the opening of a new class of the systems where charge car-
riers are hydrogen ions (protons). They are ferroelectric or ferroelastic
crystals at low temperatures, but at higher temperatures they undergo
transition to superprotonic phase, while the conductivity is increased by
several orders of magnitude (among others there are compounds of the
general form MeHXO4, where M = Cs, Rb, NH4; X = S, Se). Numerous
structural studies have shown that in low-temperature phase the pro-
tons are clearly in the fixed positions, while in high-temperature phase
they are distributed with equal probability between multiple positions
in the unit cell. Much effort is presently put for the synthesis of new
structures with high ionic conductivity. This is predetermined by their
use in the areas of new technique such as hydrogen energetics, chem-
ical sources of current, electronics, control and measurable devices for
special purposes. As an example, we can cite a series of lithium conduc-
tive materials synthesized from perovskit structures La23−xLi3xT iO3-
type [2–4]. The superionic state is educed , for example, in Ag2S, AgI,
AgBr, CuBr, Cu2S, CuCl, RbAg4I5 compounds where the metallic cation
migrates. Structures with the large concentration of admixture ions:
oxidizing solid solutions MO2 − M ′

2O3 and MO2 − M ′′O type, where
M−Zr,Ge;M ′−Ca, Sr,Ba;M ′′−S, Y ; structures Na2O.11Al2O3-type
(Na migrates in planes between Al2O3 blocks). Without regard to great
successes, only a few substances are presently known with high ionic con-
ductivity stable against chemical and mechanical action and possessing
other specific properties. The conductivity of ionic conductors is partic-
ularly high when the number of ions is much less than the number of
positions in a lattice, i.e. when there are vacancies. Therefore, a lot of
free positions facilitate the probability of ion hopping from one position
to another. In particular in the superionic phase of AgI (T > 147oC),
2 ions of conductivity of Ag+ are statistically distributed between 42
settled positions of different type in the unit cell.

Models of a lattice gas type with Pauli statistics of particles are of-
ten used for the description of ionic conductors [5–20]. Here, particles
are of Bose nature but they also obey the Fermi rule. The lattice model
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of Pauli particles is similar to the Bose-Hubbard model in the hard-core
approximation (provided that the occupation numbers are restricted, ni

= 0, 1). Such a lattice model can describe the emergence of a super-
fluid (SF)-type state even in the absence of a direct interaction between
particles [6–8].

One-dimensional ion conductors are investigated in our previous work
[8]. The existence of various phases of the system, depending on the val-
ues of interactions between particles V and modulating field strength
A, was established. In this work we examine finite one-dimensional ionic
conductors with the two-minima local potential for ions. Usually, they
are proton conductors in the systems with hydrogen bonds. Our extended
hard-core boson lattice model includes short-range interactions between
protons, their transfer along hydrogen bonds with the two-minima local
anharmonic potential as well as their inter-bond hopping, and modulat-
ing field is taken into account. Here, unlike the previous case, we have two
different interactions between ions (on the hydrogen bond - parameter of
V , and between bonds - parameter of w) and consequently two different
transfers. The exact diagonalization method for a finite one-dimensional
system with periodic boundary conditions was used. Energy spectrum
and one-particle spectral densities were calculated; the phase diagrams
were built.

2. The model

We use the lattice gas quantum model for the description of ionic (pro-
ton) conductors. This model corresponds to the hard-core boson limit,
if the particles obey the Pauli statistics. If the positions of particles are
characterized by symmetric local potential possessing two minima on
the bond, the two stage nature of particle transport is taken into ac-
count via two constants of particle transfer (Ω0 for intra-bond hopping
between two positions a and b on each bond as well as ΩR for inter-bond
transfer between hydrogen bonds that arises due to orientational motion
of ionic groups). That is why the model is referred to as orientational-
tunneling model [21]. It also includes the correlation between nearest
protons caused by the short-range repulsion (the corresponding energies
parameter are: V on the bond and w for the neighbor bonds); the mod-
ulating field is also included (the parameter A). The field A causes a
spatial modulation of the proton distribution in the so-called ordered
phase (the existence of such a phase at low temperatures is a character-
istic feature of superionic conductors).

The Hamiltonian of this model in the case of chain-like structure can
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be presented as follows:

H = (ε− µ)
∑

i

(nia + nib) + V
∑

i

nianib + w
∑

i

nibni+1,a+ (1)

Ω0

∑

i

(c+iacib + c+ibcia) + ΩR

∑

i

(c+ibci+1,a + c+i+1,acib) + A
∑

i

(nib − nia),

In our case operators ci,α (c+i,α) are the Pauli operators. They describe
the process of annihilation (creation) of particle (proton) in position
i, α (α = a, b); therefore, ni,α = c+i,αci,α is the occupation number of
particles (protons) in this position (here, the eigenvalues of ni,a and
ni,b are equal to 0 or 1). The energy spectrum of finite one-dimensional
system with periodic boundary conditions was calculated using the exact
diagonalization method. The Hamiltonian matrix as well as ci,a and c+i,a
matrices are constructed on the basis of many-particle states

|n1,an1,b . . . nN,anN,b > .

The Hamiltonian matrix on the basis of these states is diagonalized nu-
merically. Such an operation corresponds to the transformation

U−1HU = H̃ =
∑

p

λpX̃
pp, (2)

where λp are eigenvalues of the Hamiltonian, X̃pp are Hubbard operators

(in general, X̃pq =| p >< q |), (see [22], also [23]). The creation and
annihilation operators are presented in the form

U−1ci,αU =
∑

pq

Ai,α
pq X̃

pq , U−1c+i,αU =
∑

rs

Ai,α∗
rs X̃sr (3)

where coefficients Ai,α
pq are the matrix elements of operator ci,α on the

new bases.
Like in our previous work [8], we construct two-time temperature

Green’s functions Gi,α;i,α =≪ ci,α|c
+
i,α ≫ containing the information on

the one-particle spectrum of the system. We introduce Green’s functions
of two types, namely, the commutator Green’s function

≪ ci,α(t)|c+i,α(t′) ≫(c)= −iΘ(t− t′)〈[ci,α(t), c+i,α(t′)]〉 (4)

and the anticommutator Green’s function

≪ ci,α(t)|c+i,α(t′) ≫(a)= −iΘ(t− t′)〈{ci,α(t), c+i,α(t′)}〉. (5)
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One-particle spectral densities are determined by the imaginary parts
of those Green’s functions

ρ(ω) = −
1

πN

N∑

j=1

∑

α

Im ≪ cj,α|c
+
j,α ≫ω+iε (6)

= −
1

πN

N∑

j=1

∑

α

Im

[
1

Z

∑

pq

Aj,α
pq Aj,α∗

pq

e−βλp−ηe−βλq

ω− 1
~

(λq−λp)+iε

]
,

Here, Z =
∑
p

e−βλp .

We obtain spectral densities of commutator Green’s function (4),
when η = 1, and anticommutator Green’s function (5), when η = −1.
Spectral densities have a discrete structure that includes a number of
δ-peaks owing to the finite chain size. If the chain size (i.e. the number
of sites N) increases, the δ-peaks are located more densely and , at
N → ∞, they form a band structure. We confined ourselves to the case
N = 12. We introduce the small parameter ∆ to broaden the δ-peaks in
accordance with Lorentz distribution δ(~ω) → 1

π
∆

(~ω)2+∆2 .

3. One-particle spectral densities and diagrams of state

In this work all calculations are performed for the temperature equal
to zero (T = 0) . Numerical values of all energy parameters (including
~ω) are presented in relation to parameter Ω0, and it is dimensionless.
Experimental data, quantum-chemical calculations, semiempiric theo-
retical estimations offer a wide region of values of interaction between
ions, V = 3 ∗ 103....104cm−1, w = 103....104cm−1, depending on the
objects that are examined [24–26]. The ion transfer parameter Ω0,ΩR

can vary within wide limits, 40.....2500cm−1. For example, it is obtained
V = 5 ∗ 103....104cm−1 from the experimental data for Tc in the case
of H-bonded ferroelectrics. In our calculations we chose ΩR/Ω0 = 0.5.
We changed the parameters of short-range interactions in wide lim-
its: V/Ω0 = 0, 1, ....10, w/Ω0 = 0, 1, ....10. It is necessary to note that
the task is invariant in relation to simultaneous replacement of numer-
ical values w ↔ V,ΩR ↔ Ω0. For convenience, we use the notation
µ′ = µ− (V + w)/2.

One-particle spectral densities were calculated according to formula
(6). The existence of various phases of the system at T = 0, depend-
ing on the values of interactions between particles and the modulating
field strength, was established by analyzing the character of frequency
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dependence of one-particle spectral density. According to works [27,28],
a characteristic feature of the commutator spectral density in the super-
fluid (SF) phase is at ω = 0 the continuous continuation of a negative
branch (which exists at ω < 0) to a positive branch (which exists at
ω > 0). The chemical potential of particles is located at the point ω = 0.
In the charge ordering (CDW) phase, these branches are separated by
the gap. The chemical potential of particles is located in the energy gap.
We obtain a split of the spectrum into two subbands and the emergence
of a modulated state. Charge-density-wave (CDW ) state is character-
istic of the case of a half-filling of ionic sites (〈n〉 = 1/2) and one may
observe the situation when all protons occupy “a” positions ( or all pro-
tons occupy “b” positions) along the chain. This situation corresponds
to ferroelectric type ordering, though it has a more general meaning.
The protons occupy only some of the positions available (while other
positions remain unoccupied) which is a general feature of the ordered
phases that exist in superionic crystals. We call this state CDW though
the doubling of the lattice period is not observed. For the case of ionic
conductor (with one minimum local potential for ions), the splitting of
spectra occurred due to the charge ordering with the doubling of lattice
period (see [8]). If one attempts to include the long-range interaction
to our model, he or she will get the doubling of the lattice period also
for proton conductor as well. At walking away from the half-filling, we
get into the superfluid (SF ) state. In this phase, the conductivity of the
system grows by a few orders. Such a state experimentally looked like
a superionic phase. As we go far away from half filling (for example,
a decrease of chemical potential µ) we get into a Mott insulator (MI)
state. In this state, the commutator spectral density has no negative
branch. The level of chemical potential is below the band and protons
need some activation energy to induce their transport. MI state can also
be observed where the chemical potential is located above the upper sub-
band, and the commutator spectral density has only a negative branch.
The average occupation number of the state at a given µ was calculated

according to the spectral theorem, 〈n〉 =
∫
∞

−∞

ρa(ω)dω
eβω+1

, where ρa is the
anticommutator spectral density (the density of states).

In previous work [8], there was examined a chain with ten positions
for ions (N = 10). In this work, for the case of proton conductor (with
the two-minima local potential for ions), all calculations are executed
for N = 12. For comparison, we repeated some previous calculations for
the one dimensional systems with the one-minima local potential for
the conductivity particles, though at N = 12. In Fig. 1 and Fig. 2 some
diagrams of state at N = 12 are compared with the ones obtained earlier
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Figure 1. State diagram for a one-dimensional ionic conductor in the
(µ′, V ) coordinates, (T = 0).

in [8] at N = 10.
For the case, where the dependence of the phase borders on the value

of interaction between particles V is shown (Fig. 1), it is a phase diagram
in the (µ′, V ) coordinates, numerical difference in the position of border
phase-to-phase (in the µ′ coordinate) for the cases of N = 10 and N = 12
is 2−3 percent. For the case of phase diagram in the (µ′, A) coordinates,
(Fig. 2), this difference is 0.5 percent. The last one is built for the case
V = 0 and coincides with the exact diagram obtained analytically in a
number of works ( [11–14], see also [15]). The exact analytical solution
can be obtained by applying the Jordan-Wigner transformation, which
makes it possible to pass from the Hamiltonian of hard-core bosons to the
Hamiltonian of noninteracting spinless fermions (only in one-dimensional
case). In this diagram, the lines separating the CDW and SF phases are
linear on the field A and look like µ′ = +A and µ′ = −A (see Fig. 2).

In this work we examine a finite one-dimensional ionic conductors
with the two-minima local anharmonic potential for ions. Usually these
are proton conductors in the systems with hydrogen bonds.

We obtained phase diagrams of equilibrium states of the system de-
pending on the interactions between ions and modulating field.

For example, the diagram of state depending on the modulating field
A is shown in Fig. 3 (here V = 5, w = 1). It is a diagram in the (µ′, A)
coordinates.

The line separating CDW and SF phases in coordinates (µ′, A) is a
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Figure 2. State diagram for a one-dimensional ionic conductor in the
(µ′, A) coordinates, (T = 0).
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Figure 3. State diagram for a one-dimensional proton conductor in the
(µ′, A) coordinates, (T = 0).
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straight line depending of A (see Fig. 3). The width of CDW phase (in
µ′ coordinates) grows with an increase of the value of the modulating
field.

Anticommutator and commutator one-particle spectral densities, that
relate to this diagram at A = 1, are shown in Fig. 4. We get this or that
phase by changing the chemical potential. The average occupation num-
ber of positions ”a” and ”b” in two-minima potential for each phase is
presented in Fig. 4. For example, in CDW phase (at A = 1), we ob-
tained na = 0.886, nb = 0.106, protons occupy mainly “a” positions in
two-minima local potential on the bond. The width of CDW phase is
determined by the width of a gap in the energy spectrum.

Chemical potential level coincides with the position of ω = 0. In
CDW phase, chemical potential level is in the gap, while in SF phase
we observe a continuous transformation of the negative branch of the
commutator spectral density into the positive one at ω = 0.

In work [29] it is shown that an important characteristic of the SF
phase is a divergence of the Fourier transform of the real part of commu-
tator Green’s function at zero frequency (ω = 0) and zero wave vector
(k = 0), ReGk=0(ω = 0) → ∞. In the case of the considered finite-chain
model

Gk=0(ω = 0) =
1

N

N∑

i=1

N∑

j=1

[
1

Z

∑

pq

Ai
pqA

j∗
pq

e−βλp − e−βλq

λp − λq + iε

]
, (7)

The static susceptibility ReGk=0(ω = 0) calculated by us arrives at
maximal values in SF phase, though even at T = 0 those values remain
finite, which is a result of the finite size of the chain and probably with
unidimensionalness of object. ReGk=0(ω = 0) at V = 5, w = 1, A = 1
is shown in Fig.5 (T 6= 0). At T = 0 (at the same parameters) we get a
sharp peak in the region of SF phase, and susceptibility reaches the value
of 1778.6, which is by three orders larger than at T = 0.1 (see Fig.5).
At the further increase of temperature, a maximum ReGk=0(ω = 0)
becomes smeared, which proves that in onedimensional system a SF
phase is only at T = 0. The regions of different phases at the above-
mentioned parameters can be seen on the state diagram in Fig. 3

The CDW , SF and MI phases described above and the phase tran-
sitions between them for a one-dimensional system exist only at zero
temperature. At small temperatures, we can distinguish the regions of
existence of the states of the CDW , SF and MI types as such in which
the forms of the spectral functions of those phases remain nearly the
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Figure 4. Anticommutator (a) and commutator (b-d) one-particle spec-
tral density for various states of a one-dimensional proton conductor;
V = 5, w = 1, A = 1, T = 0, ∆ = 0.25. The chemical potential level is
located at ω = 0.
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Figure 5. Fourier transform of the real part of commutator Green’s
function at zero frequency (ω = 0) and zero wave vector (k = 0),
ReGk=0(ω = 0): 1 − T = 0.1; 2 − T = 0.2; 3 − T = 0.5; 4 − T = 1;
∆ = 1 ∗ 10−6.

same as at T = 0. In this case, the transition between the regions is not
a genuine phase transition, but has a crossover character.

Phase diagrams of equilibrium states of the system depending on the
short-range interactions between ions V and w, obtained at T = 0, A = 0,
are shown in Fig. 6 and Fig. 7.

The characteristic features of all the latter diagrams is that the
line separating SF and MI phases in (µ′, V ) and (µ′, w) coordinates
is strictly a straight line depending on V or w. At large values of inter-
actions V and w and at their further increase, we obtained the linear
dependence of the width of CDW phase on the values of interactions
between particles. At intermediate values of interactions there is a pos-
sibility of narrowing of CDW phase and the presence of a minimum
of its width (in µ′ coordinates) depending on the values of interactions
between ions.

4. Conclusions

The equilibrium states of one-dimensional proton conductors in the sys-
tems with hydrogen bonds are investigated. Our extended hard-core bo-
son lattice model includes short-range interactions between protons (on
a hydrogen bond - parameter of V , and between bonds - parameter
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Figure 6. State diagrams for a one-dimensional proton conductor in the
(µ′, V ) coordinates, A = 0, (T = 0).
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Figure 7. State diagrams for a one-dimensional proton conductor in the
(µ′, w) coordinates, A = 0, (T = 0).
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of w), their transfer along hydrogen bonds with the two-minima local
anharmonic potential as well as their inter-bond hopping, and the mod-
ulating field is taken into account. The exact diagonalization method for
a finite one-dimensional system with periodic boundary conditions was
used. The existence of various phases of the system at T = 0 depending
on the values of interactions between particles and the modulating field
strength, was established by analyzing the character of the obtained fre-
quency dependence of one-particle spectral density. It was shown that at
T = 0, the repulsive short-range interaction between particles (V > 0,
w > 0) results in the emergence of a gap in the energy spectrum in
the limit of half-filling of ionic sites (the emergence of CDW phase). A
similar effect also takes place under the influence of the modulating field
A. Charge-density-wave (CDW ) phase exists only at half-filling of ionic
sites (〈na〉 + 〈nb〉)/2 = 1/2. Departing from the half-filling, we get into
the SF phase. In this phase, the conductivity of the system grows into a
few orders. The mentioned phases and phase transitions between them
for the one-dimensional system exist only at T = 0. The presence of SF
phase is confirmed by the obtained sharp peak of the real part of static
susceptibility ReGk=0(ω = 0) at (T = 0). The predictable divergence of
this susceptibility in the SF phase ReGk=0(ω = 0) → ∞ was not reached
by us which is predetermined by the finite size of the ion conductor and
probably by its onedimensionalness. However, it is shown that at small
temperatures it is nearly by a few orders less than at T = 0, and at the
further increase of temperature a maximum ReGk=0(ω = 0) becomes
smeared which confirms that in onedimensional system a SF phase is
only at T = 0.

We obtained phase diagrams of equilibrium states of the system de-
pending on the interactions between ions and the modulating field. It
is shown that the width of CDW phase (in µ′ coordinates) grows with
an increase of the value of the modulating field. The dependence of the
width of CDW phase on short-range interactions between ions V and w
is more complex. The characteristic feature of all the latter diagrams is
that the line separating SF and MI phases in (µ′, V ) and (µ′, w) coor-
dinates is strictly a straight line depending on V or w. At large values
of interactions and at their further increase, we obtained a linear depen-
dence of the width of CDW phase on the values of interactions between
particles. At intermediate values of interactions, there is a possibility of
narrowing of CDW phase and the presence of a minimum of its width (in
µ′ coordinates) depending on the values of interactions between protons.
We did not observe this kind of behavior for the ion conductor (with the
one minimum local potential for ions) (see [8]).
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