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I.V. Stasyuk, O.V. VelychkoINFLUENCE OF OXYGEN NONSTOICHIOMETRYON LOCALIZATION OF APEX OXYGENSIN YBa2Cu3O7�x{TYPE CRYSTALS.
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1 ðÒÅÐÒÉÎÔ1. IntroductionAlready in early works on the YBa2Cu3O7 structure an anomalous be-haviour of apex oxygens O(4) (namely an elongation of thermal ellipsesalong the c{axis) was pointed out. For present time various experimentalevidences of an apex oxygen anharmonic behaviour exist but its natureis still a matter of discussion.An indirect evidence can be obtained from works on Raman scat-tering in YBa2Cu3O7, especially those concerning the change of maincharacteristics of O(4) modes in dependence on a concentration of thechain oxygen O(1). It should be emphasized that the frequency and thewidth of the O(4) mode strongly depend on oxygen content, history andpreparation technique of a sample as well as on a laser excitation beamfrequency. There are two main points of view on the apex oxygen modebehaviour. In the held in early works �rst approach the interpretationof experimental data was based on the assumption that only one apexoxygen mode Ag exists in the region 440{500 cm�1 which shifts to low-er frequencies when the concentration of vacancies increase and has amaximum width at the intermediate values of x [1{3]. In the last yearsthe another approach was developed basing on the recent experimentaldata (see for example [4,5]). In its framework the above mentioned be-haviour of O(4) mode was interpreted as a superposition of three modeswith concentration independent frequencies and widths while their in-tensities depend on x. These three modes correspond to di�erent O(1)arrangements (in the vicinity of O(4) ions) which realize in di�erentphases. On the Fig. 1 the characteristic regions of O(4) vibration fre-quencies are presented. The region 498{502 cm�1 corresponds to thex ' 0 (ortho{I phase), 485{490 cm�1 | to intermediate concentrations(ortho{II phase), 475{480 cm�1 | to x ' 1 (tetragonal phase).An attempt to explain the described behaviour of the O(4) mode wasmade on the early stage of the investigations [6] proceeding from theassumption about the existence of a double{well asymmetric potentialfor the O(4) ions and the redistribution of the occupation of both possible
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Figure 1. Characteristic frequencies of O(4) Raman active vibrations.
ICMP{98{25E 2positions at the change of stoichiometry. Authors of the latter works [2{5]hold the similar point of view but they also consider a one{well potentialfor the apex oxygen with the localization of its minimum de�ned mainlyby the occupation of the nearest O(1) positions in the CuO chains.EXAFS experiment data for YBa2Cu3O7�x crystals also have some-thing in common with the above considerations. According to the works[7{9] the anharmonic behaviour of apex oxygen may be described by adouble{well potential (�4 or double parabola) which best matches theexperimental data.Recent polarized X{ray absorption measurements on photodopedoxygen de�cient YBa2Cu3O7�x [10] also support conception of the doub-le{well potential. Nevertheless a di�erent interpretation of EXAFS dataone can �nd in the recent work [11]. It was suggested that two possiblepositions of O(4) are caused by the inuence of vacancies and each po-sition corresponds to a one{well potential. A vacancy shifts its nearestO(4) neighbours towards CuO chains and diagonal neighbours towardsCuO2 planes making well known distance 0.1�A between these positions.Such interpretation is consistent with the result of works [12,13] where onthe basis of the full potential LAPW method is shown that the apex oxy-gen has a one{minimum potential. A position of the minimum dependson temperature. Unfortunately a possible dependence of the minimumposition on the oxygen stoichiometry was not investigated.Next a range of works should be mentioned where hysteresis phenom-ena in the YBa2Cu3O7�x were observed during the temperature cycling.For instance it was observed the hysteresis of ultrasonic absorption (inthe temperature range 100-350 K [14]) and velocity (50-230 K [14] and adouble loop 60-280 K [15]). The distinction between the superconductingsample (x = 0:05) and the dielectric one (x = 0:7) lies mainly in a shiftof the hysteresis temperature range [14]. The hysteresis loops of thermalconductivity for two superconducting samples x < 0:05 (90-210 K) andx = 0:1 (90-320 K) are also di�ered by a similar temperature shift [16].It was reported about a speci�c heat hysteresis of the superconductingsample (Tc'92 K, 190-230 K) [17]. As a possible origin of the hysteresisa process of ordering of O(1) oxygens in the CuO chains (a variety oftransitions between phases Ortho{I, {II, etc.) is considered in the men-tioned works. It seems that the apex oxygen rearrangement between twopossible positions is a more resonable explanation of these phenomena[18,19].There is a number of theoretical approaches utilizing conception oftwo possible positions of apex oxygens. Historically the �rst one was aone{sublattice pseudospin{electron model concerning an interaction be-



3 ðÒÅÐÒÉÎÔtween electrons and highly anharmonic O(4) vibrations described in thepseudospin formalism [20{24]. An obvious two{sublattice nature of thesystem demands to a two{sublattice generalization of the model [25]. Apseudospin part of such model corresponds to the Mitsui{type model[26]. In the framework of these models the peculiarities of the electronspectrum are investigated, calculations of the transverse dielectric sus-ceptibility are made and the role of the anharmonic subsystems in thesuperconductive state appearance is studied. In the work [26] the issueof the possible manifestation of ferroelectric type anomalies and the ap-pearance of a ferroelectric phase at certain conditions is considered forthe two{sublattice model.A di�erent approach was used in the works [18,19] where anharmonicvibrations of apex oxygens in one sublattice were considered in frame-work of a scalar one component �3 + �4 model. The abrupt changesin positions of apex oxygen ions at the change of temperature with apossible metastability phenomena were predicted. On the basis of theobtained results authors proposed a mechanism of the possible structurebistability in the system.It should be also emphasized that a direct application of the one sub-lattice �3+�4 model to the YBa2Cu3O7�x structure{like compounds isnot su�ciently justi�ed. In the framework of this model an ordered stateof the anharmonic ions is always polar therefore the jump of the posi-tion occupations corresponds to a phase transition between two di�erentpolar phases [18]. But in the two{sublattice crystal structure the dipolemoments are as a rule compensated. For this reason a picture of possiblephase transitions in the system should be more complicated than in theone{sublattice case.The present paper is aimed for the investigation of a possible redis-tribution of apex oxygen ion localizations taking into account the realcrystal structure and presence of oxygen vacancies in the O(1) positionsof nonstoichiometric compounds. On the basis of the mentioned datawe consider that any apex oxygen can occupy two possible equilibriumpositions in the cell. Investigation is made in the framework of two{sublattice pseudospin Mitsui model with taking into account the inu-ence of a caused by vacancies random �eld. Thermodynamical functionsof the model are calculated and equilibrium states are explored at variousvalues of the model parameters, temperature and the vacancy concen-tration. Phase diagrams are built and a special attention is payed to thebistability phenomenon manifesting as the �rst order phase transitionsbetween nonpolar phases with di�erent pseudospins arrangements (whatcorresponds to di�erent occupations of two oxygen positions). Condi-
ICMP{98{25E 4tions of realization of the bistability e�ects in the investigated model areconsidered.2. Hamiltonian of the model and vacancy random �eldThe Hamiltonian of two{sublattice pseudospin model under considera-tion is as followsH = �Xi hi(Sz1i � Sz2i)� 12Xi Xj j11(i; j)(Sz1iSz1j + Sz2iSz2j) (1)�Xi Xj j12(i; j)Sz1iSz2j �EdXi (Sz1i + Sz2i):Here Sz�i = � 12 values of pseudospin z{component corresponds to twopossible positions of anharmonic O(4) ion from � sublattice (� = 1; 2)in the i{th unit cell. The �rst term in (1) describes an asymmetry ofa double{well potential for O(4) ions; in the pseudospin representationit has a meaning of interaction with some internal �eld acting on pseu-dospins of di�erent sublattices of opposite directions. Two next termsdescribe interactions between pseudospins located in the same and inthe di�erent sublattices. The last term describes an interaction of pseu-dospins with an external �eld E (here the e�ective dipole moment dconnected with hopping of O(4) ion between its equilibrium positions isintroduced; vector ~d is parallel to c axis of crystal).In the present model the �eld hi is random and depends on a unitcell index. It consists of two partshi = h+�hi; (2)where h is an asymmetry parameter in the case of fully oxygenatedsample of YBa2Cu3O7�x crystal (x = 0), �hi is an additional termarising due to inuence of vacancies. As was mentioned above a causedby vacancies random �eld has a complicated structure. In the presentpaper a simple bimodal approximation for the �eld hi is used. Namelyin the case without vacancies it is equal to h (h > 0; both O(4) oxygensare closer to plains CuO2 | Fig. 2a) and near a vacancy it is equal tohvac (hvac < 0; both O(4) oxygens are closer to chains | Fig. 2b).The random �eld probability distribution looks likeP (hi) = c�(hi � h) + (1� c)�(hi � hvac) = 2Xn=1 pn�(hi � hn); (3)



5 ðÒÅÐÒÉÎÔ
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Figure 2. Shape of an O(4) potential well near fully occupied O(1) chains(a) and near an O(1) vacancy (b).where p1 = c, p2 = 1 � c and 1 � c = x is the concentration of O(1)vacancies. The correlations between random �elds on di�erent cells arenot included. For this reason such distribution function can be appliedin the case of YBa2Cu3O7�x at su�ciently small values of x (ortho{Iphase, x < 0:15), when the ordering processes of vacancies have not yettake place and its distribution is random.Hence a simple con�gurational averaging procedureA(: : : hi : : :) =Yi Xni pniA(: : : hni : : :) (4)for calculation of thermodynamic quantities will be used below.3. Thermodynamic functions in cluster mean �eld ap-proximationPhase transitions in the Mitsui model may be analyzed in the mean �eldapproximation (MFA) [27]. As follows from the corresponding phase dia-gram, with the change of temperature the system can have none, one (ofthe �rst or the second order), two of the second order, and even three (insmall region) phase transitions depending on the values of parameters.Thus even ordinary Mitsui model exhibits a complicated behaviour.It is well known that standard MFA gives good results for systems,where a some physical quantity on a site has a large number of identical
ICMP{98{25E 6interactions, and fails if some interactions become peculiar (e.g. muchstronger). In the apex oxygen subsystem an interaction between nearestneighbours from di�erent sublattices is presumed to be signi�cant due tothe charge transfer and direct correlations through the common Cu atom[28]. For this reason one should treat this interaction j12(i; i) separatelyand consider as a basic one a cell formed by nearest pseudospins fromdi�erent sublattices with the same site index. To do this the basis of fourstates of the pair of pseudospins in the cell jSz1iSz2ii is introducedj1i = j++i; j2i = j+�i; j3i = j �+i; j4i = j � �i: (5)As the next step pseudospin variables are expressed in terms of Hubbardoperators acting in the space of these statesSz1i = 12 �X11i +X22i �X33i �X44i � �Xp �1pXppi ;Sz2i = 12 �X11i �X22i +X33i �X44i � �Xp �2pXppi : (6)Now the Hamiltonian (1) looks likeH = �Xi Xp "ipXppi � 12Xi 6=j Xpq Vpq(i; j)Xppi Xqqj (7)where "ip = (�1p � �2p)hi + �1p�2pj12(i; i);Vpq(i; j) = j11(i; j)�1p�1q + j12(i; j)�1p�2q +j21(i; j)�2p�1q + j22(i; j)�2p�2q :Now one can treat intracell interactions exactly and intercell interactionsin the MFA (this procedure may be considered as cluster MFA withcluster consisting of two pseudospins). It should be noted that here inthe MFA decoupling scheme a full average values (a con�gurational andthermodynamic averaged variables) are used in the spirit of the work[29]: ^Ai ^Bj = �hAi+ ( ^Ai � hAi)��hBi+ ( ^Bj � hBi)� 'hAi ^Bj + hBi ^Ai � hAi hBi;the notation h: : :i is used for the thermodynamic averaging procedure.For convenience the Hamiltonian is expressed in dimensionless quanti-ties by normalization of all relevant terms on j12(0) + j11(0). Then the



7 ðÒÅÐÒÉÎÔHamiltonian in the MFA is as followsHMFA = 12NXpq ~Vpq(0)hXppi hXqqi �Xi Xq �iqXqqi (8)where nonvanishing elements of ~Vpq(0) are~V11(0) = ~V44(0) = 12 ; ~V14(0) = ~V41(0) = � 12 ; (9)~V23(0) = ~V32(0) = 12a; ~V22(0) = ~V33(0) = � 12a;and �iq = ~"iq +Pp ~Vpq(0)hXppi:�i1 = 14j +Ed+ �; �i4 = 14j �Ed� �;�i2 = �14j + hi � a�; �i3 = �14j � hi + a�; (10)where � = 12 (hSz1 i+ hSz2 i); � = 12 (hSz1 i � hSz2 i); (11)a = j12(0)� j11(0)j12(0) + j11(0) ; j = j12(i; i)j12(0) + j11(0) :The MFA Hamiltonian consists of a static part and an e�ective singlesite part where �iq are its eigenvalues. The parameters �, � and a areintroduced, where � is the order parameter describing the ferroelectriclike state with nonzero total dipole (pseudospin) moment appearing dueto decompensation (hSz1 i 6= �hSz2 i) of sublattice dipole momenta.It is obvious that con�gurationally unaveraged variables �i and �i inthe particular cell i can take on two possible values according to a valueof the random �eld hi in the cell. They can be expressed by means ofselfconsistency equations�n = 12 [exp(��n1)� exp(��n4)]" 4Xk=1 exp(��nk)#�1 ; (12)�n = 12 [exp(��n2)� exp(��n3)]" 4Xk=1 exp(��nk)#�1 ;where n = 1; 2. After the con�gurational averaging equations (12) givea set of simultaneous equations for variables � and �8<: � =Pn pn�n� =Pn pn�n: (13)
ICMP{98{25E 8Equations (12) can be recast as�n = 14 �1 + tanh(�4 j)��tanh(�2 kn1) + tanh(�2 kn2)�1 + tanh(�4 j) tanh(�2 kn1) tanh(�2 kn2) (14)�n = 14 �1� tanh(�4 j)��tanh(�2 kn1)� tanh(�2 kn2)�1 + tanh(�4 j) tanh(�2 kn1) tanh(�2 kn2) ;where kn1 = �+hn�a�; kn2 = ��hn+a�. In the case j = 0 equations(14) pass into well-known equations of the Mitsui model in the ordinaryMFA [27]. In further calculations the equations are used in the form (12)because it is more convenient for numerical calculations.As a rule the set of simultaneous equations (13) has several solutions.It is necessary to take those of them, which corresponds to the minimumvalue of the free energy F of the systemF = �2 � a�2 � 1�Xn pn ln( 4Xk=1 exp(��nk)) : (15)The free energy can be expressed also in the following equivalent formF = �2 � a�2 � 1� Xn pn ln�4 �cosh(�4 j) cosh(�2 kn1) cosh(�2 kn2)+ sinh(�4 j) sinh(�2 kn1) sinh(�2 kn2)�� :Proceeding from the expression for the free energy one can derive thestatic dielectric susceptibility� = �@2F@E2 jE=0 == �d28<:(exp(��1) + exp(��4))Xn pn 4Xk=1 exp(��nk)!�1 (16)� (exp(��1)� exp(��4))2Xn pn 4Xk=1 exp(��nk)!�29=; ;which describes the ionic (connected with the redistribution of O(4) ions)part of dielectric response of the system under consideration in the c axisdirection.



9 ðÒÅÐÒÉÎÔWith use of obtained from the equation set (13) � and � values one caninvestigate possible ordered phases of the system and phase transitionsbetween them which depend on temperature, concentration c, �elds hand hvac etc. and plot appropriate phase diagrams.4. Numerical calculationsThe ordinary Mitsui model has two phases (see for example Fig. 3a):polar (when average pseudospin projections from di�erent sublatticesare antiparallel but mutually noncompensated) and nonpolar (when theyare mutually compensated). A new feature of the considered here modelwith random �eld hi is a possible existence of nonequivalent nonpolarphases (average projections of pseudospins in di�erent sublattices areopposite but directed in di�erent ways: j"#i or j#"i what correspondsto opposite signs of the average � and di�erent arrangements of apexoxygens). At variation of the model parameter values the system canhave various phase transitions between nonpolar phases and the polarone or, under a certain conditions, directly between nonpolar phases. Itcan be demonstrated on the \critical temperature �c | internal �eldh" phase diagram.The phase diagram of the ordinary Mitsui model is symmetrical withrespect to the change of the sign of the h �eld (Fig. 3a). A phase transi-tion between phases is mainly of the �rst order except a small region onthe top of the diagram where it is of the second order. For the systemwith the bimodal random �eld the phase diagram becomes asymmetricand at low temperatures two nonpolar phases with the polar one be-tween them can occure (Fig. 3b). For a strong enough negative value
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