Low-temperature peculiarities of thermodynamic quantities for decorated spin chains

T. Krokhmalskii, ${ }^{a}$ T. Hutak, ${ }^{a}$ O. Rojas, ${ }^{b}$ S. M. de Souza, ${ }^{b}$ and O. Derzhko ${ }^{a, c}$
${ }^{a}$ Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsitskii Str., 79011 L'viv, Ukraine
${ }^{b}$ Departamento de Fisica, Universidade Federal de Lavras, CP 3037, 37200-000, Lavras-MG, Brazil
${ }^{c}$ Department of Metal Physics, Ivan Franko National University of L'viv, 8 Kyrylo $8 \mathcal{3}$ Mephodiy Str., 79005 L'viv, Ukraine

We discuss the origin of the peculiar low-temperature behavior of onedimensional decorated spin systems [1-4] which was coined the pseudotransition [5]. Tracing out the decorated parts results in the standard Ising-chain model with temperature-dependent parameters and an unexpected low-temperature behavior of thermodynamic quantities and correlations of the decorated spin chains can be tracked down to the critical point of the standard Ising-chain model at $\mathrm{H}=0$ and $\mathrm{T}=0$ [6].

We illustrate this perspective using as examples the spin- $1 / 2$ IsingXYZ diamond chain and the coupled spin-electron double-tetrahedral chain. We have verified that the pseudo-critical exponents satisfy the following universality relation: $\alpha=\alpha^{\prime}=\gamma=\gamma^{\prime}=3 \nu=3 \nu^{\prime}=3$ [7].
[1] L. Gálisová and J. Strečka, Phys. Rev. E 91, 022134 (2015).
[2] J. Torrico, M. Rojas, S. M. de Souza, and O. Rojas, Phys. Lett. A 380, 3655 (2016).
[3] O. Rojas, J. Strečka, and S. M. de Souza, Solid State Communications 246, 68 (2016).
[4] J. Strečka, R. C. Alécio, M. L. Lyra, and O. Rojas, J. Magn. Magn. Mater. 409, 124 (2016).
[5] S. M. de Souza and O. Rojas, Solid State Communications 269, 131 (2018); P. N. Timonin, J. Exp. Theor. Phys. 113, 251 (2011).
[6] R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, 1982).
[7] O. Rojas, J. Strečka, M. L. Lyra, and S. M. de Souza, Universality and "pseudo-critical" exponents of one-dimensional models displaying a "pseudo-transition" at finite temperatures, arXiv:1812.02815.

